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Statistical Data Analysis:  Lecture 13

1 Probability, Bayes’ theorem
2 Random variables and probability densities
3 Expectation values, error propagation
4 Catalogue of pdfs
5 The Monte Carlo method
6 Statistical tests:  general concepts
7 Test statistics, multivariate methods
8 Goodness-of-fit tests
9 Parameter estimation, maximum likelihood
10 More maximum likelihood
11 Method of least squares
12 Interval estimation, setting limits
13 Nuisance parameters, systematic uncertainties
14 Examples of Bayesian approach
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Statistical vs. systematic errors 
Statistical errors:  

How much would the result fluctuate upon repetition 
of the measurement?

Implies some set of assumptions to define 
probability of outcome of the measurement.

Systematic errors:

What is the uncertainty in my result due to 
uncertainty in my assumptions, e.g.,

model (theoretical) uncertainty;
modelling of measurement apparatus.

The sources of error do not vary upon repetition of the 
measurement.  Often result from uncertain
value of, e.g., calibration constants, efficiencies, etc.
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Systematic errors and nuisance parameters

Response of measurement apparatus is never modelled perfectly:
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Model can be made to approximate better the truth by including
more free parameters.

systematic uncertainty ↔ nuisance parameters
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Nuisance parameters 

Suppose the outcome of the experiment is some set of 
data values x (here shorthand for e.g. x1, ..., xn).

We want to determine a parameter  
(could be a vector of parameters 1, ...,  n).

The probability law for the data x depends on  :

L(x| )          (the likelihood function)

E.g. maximize L to find estimator

Now suppose, however, that the vector of parameters: 
contains some that are of interest, 
and others that are not of interest:
Symbolically:  

The                      are called nuisance parameters.  
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Example #1:  fitting a straight line

Data:

Model:  measured yi independent, Gaussian:

assume xi and i known.

Goal:  estimate 0 

(don’t care about 1).
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Case #1:  1 known a priori

For Gaussian yi, ML same as LS

Minimize 2 → estimator

Come up one unit from     

to find 
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Correlation between

             causes errors

to increase.

Standard deviations from

tangent lines to contour

Case #2:  both 0 and 1 unknown
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The information on 1

improves accuracy of

Case #3: we have a measurement t1 of 1
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The ‘tangent plane’ method is a special case of using the

profile likelihood:   

The profile likelihood

is found by maximizing L (0, 1) for each 0.

Equivalently use 

The interval obtained from                                    is the same as 

what is obtained from the tangents to

Well known in HEP as the ‘MINOS’ method in MINUIT.

Profile likelihood is one of several ‘pseudo-likelihoods’ used
in problems with nuisance parameters.  See e.g. talk by Rolke
at PHYSTAT05.
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The Bayesian approach

In Bayesian statistics we can associate a probability with
a hypothesis, e.g., a parameter value .

        Interpret probability of  as ‘degree of belief’ (subjective).

Need to start with ‘prior pdf’ (), this reflects degree 
of belief about  before doing the experiment.

        Our experiment has data x, → likelihood function L(x|).

Bayes’ theorem tells how our beliefs should be updated in
light of the data x:

Posterior pdf  p(| x) contains all our knowledge about .
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Case #4:  Bayesian method

We need to associate prior probabilities with 0 and 1, e.g.,

Putting this into Bayes’ theorem gives:

posterior                      likelihood                prior

← based on previous 
     measurement

reflects ‘prior ignorance’, in any
case much broader than
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Bayesian method (continued)

Ability to marginalize over nuisance parameters is an important
feature of Bayesian statistics.

We then integrate (marginalize)  p(0, 1 | x) to find p(0 | x):

In this example we can do the integral (rare).  We find
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Digression: marginalization with MCMC
Bayesian computations involve integrals like

often high dimensionality and impossible in closed form,
also impossible with ‘normal’ acceptance-rejection Monte Carlo.

Markov Chain Monte Carlo (MCMC) has revolutionized
Bayesian computation.  

Google for ‘MCMC’, ‘Metropolis’, ‘Bayesian computation’, ...

MCMC generates correlated sequence of random numbers:
cannot use for many applications, e.g., detector MC;
effective stat. error greater than √n .

Basic idea:  sample multidimensional 
look, e.g., only at distribution of parameters of interest. 
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MCMC basics:  Metropolis-Hastings algorithm
Goal:  given an n-dimensional pdf 

generate a sequence of points 

1)  Start at some point 

2)  Generate  

Proposal density
e.g. Gaussian centred
about

3)  Form Hastings test ratio

4)  Generate

5)  If

else

move to proposed point

old point repeated

6)  Iterate
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Metropolis-Hastings (continued)
This rule produces a correlated sequence of points (note how 
each new point depends on the previous one).

For our purposes this correlation is not fatal, but statistical
errors larger than naive

The proposal density can be (almost) anything, but choose
so as to minimize autocorrelation.  Often take proposal
density symmetric:

Test ratio is (Metropolis-Hastings):

I.e. if the proposed step is to a point of higher           , take it;  

if not, only take the step with probability 

If proposed step rejected, hop in place.
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Metropolis-Hastings caveats
Actually one can only prove that the sequence of points follows
the desired pdf in the limit where it runs forever.

There may be a “burn-in” period where the sequence does
not initially follow

Unfortunately there are few useful theorems to tell us when the
sequence has converged.

Look at trace plots, autocorrelation.

Check result with different proposal density.

If you think it’s converged, try it again starting from 10 
different initial points and see if you find same result.
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Although numerical values of answer here same as in frequentist
case, interpretation is different (sometimes unimportant?)

Example:  posterior pdf from MCMC
Sample the posterior pdf from previous example with MCMC:

Summarize pdf of parameter of
interest with, e.g., mean, median,
standard deviation, etc.
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Case #5:  Bayesian method with vague prior

Suppose we don’t have a previous measurement of 1 but
rather some vague information, e.g., a theorist tells us:

1 ≥ 0 (essentially certain);

1 should have order of magnitude less than 0.1 ‘or so’.  

Under pressure, the theorist sketches the following prior:

From this we will obtain posterior probabilities for 0 (next slide).

We do not need to get the theorist to ‘commit’ to this prior;
final result has ‘if-then’ character.
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Sensitivity to prior

Vary () to explore how extreme your prior beliefs would have 
to be to justify various conclusions (sensitivity analysis).

Try exponential with different
mean values...

Try different functional forms...
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Example #2:  Poisson data with background

Count n events, e.g., in fixed time or integrated luminosity.

s = expected number of signal events

b = expected number of background events

n ~ Poisson(s+b):

Sometimes b known, other times it is in some way uncertain.

Goal:  measure or place limits on s, taking into 
consideration the uncertainty in b.
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Classical procedure with measured background

Suppose we have a measurement 
of b,   e.g.,  bmeas ~ N (b, b)

So the data are really: n events 
and the value bmeas. 

In principle the confidence interval 
recipe can be generalized to two 
measurements and two parameters. 

Difficult and not usually attempted, but see 
e.g. talks by K. Cranmer at PHYSTAT03, 
G. Punzi at PHYSTAT05.

G. Punzi, PHYSTAT05
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Bayesian limits with uncertainty on b
Uncertainty on b goes into the prior, e.g.,

Put this into Bayes’ theorem,

Marginalize over b, then use p(s|n) to find intervals for s
with any desired probability content.

Controversial part here is prior for signal s(s) 
(treatment of nuisance parameters is easy).
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Cousins-Highland method 

Regard b as ‘random’, characterized by pdf (b).

Makes sense in Bayesian approach, but in frequentist 
model b is constant (although unknown).

A measurement bmeas is random but this is not the mean
number of background events, rather, b is.

Compute anyway

This would be the probability for n if Nature were to generate
a new value of b upon repetition of the experiment with b(b).

Now e.g. use this P(n;s) in the classical recipe for upper limit
at CL = 1 :

Result has hybrid Bayesian/frequentist character.
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‘Integrated likelihoods’ 

Consider again signal s and background b, suppose we have
uncertainty in b characterized by a prior pdf b(b).

Define integrated likelihood as
also called modified profile likelihood, in any case not
a real likelihood.

Now use this to construct likelihood ratio test and invert
to obtain confidence intervals.

Feldman-Cousins  & Cousins-Highland (FHC2), see e.g.
J. Conrad et al., Phys. Rev. D67 (2003) 012002 and 
Conrad/Tegenfeldt PHYSTAT05 talk.

Calculators available (Conrad, Tegenfeldt, Barlow).
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Interval from inverting profile LR test 

Suppose we have a measurement bmeas of b.

Build the likelihood ratio test with  profile likelihood:

and use this to construct confidence intervals.

See PHYSTAT05 talks by Cranmer, Feldman, Cousins, Reid.
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Wrapping up lecture 13

We’ve seen some main ideas about systematic errors,

uncertainties in result arising from model assumptions;

can be quantified by assigning corresponding uncertainties
to additional (nuisance) parameters.

Different ways to quantify systematics

Bayesian approach in many ways most natural;

marginalize over nuisance parameters;

important tool:  MCMC

Frequentist methods rely on a hypothetical sample space
for often non-repeatable phenomena


