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Statistical Data Analysis:  Lecture 14

1 Probability, Bayes’ theorem
2 Random variables and probability densities
3 Expectation values, error propagation
4 Catalogue of pdfs
5 The Monte Carlo method
6 Statistical tests:  general concepts
7 Test statistics, multivariate methods
8 Goodness-of-fit tests
9 Parameter estimation, maximum likelihood
10 More maximum likelihood
11 Method of least squares
12 Interval estimation, setting limits
13 Nuisance parameters, systematic uncertainties
14 Examples of Bayesian approach
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A typical fitting problem
Given measurements: 

and (usually) covariances:

Predicted value:

control variable parameters bias

Often take:

Minimize

Equivalent to maximizing L() ~ e2/2, i.e., least squares same 
as maximum likelihood using a Gaussian likelihood function. 

expectation value
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Its Bayesian equivalent

and use Bayes’ theorem:

To get desired probability for , integrate (marginalize) over b:

→ Posterior is Gaussian with mode same as least squares estimator, 
same as from 2 = 2

min + 1.  (Back where we started!)

Take

Joint probability
for all parameters
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The error on the error
Some systematic errors are well determined

Error from finite Monte Carlo sample

Some are less obvious

Do analysis in n ‘equally valid’ ways and
extract systematic error from ‘spread’ in results.

Some are educated guesses

Guess possible size of missing terms in perturbation series; 

vary renormalization scale

Can we incorporate the ‘error on the error’?

(cf. G. D’Agostini 1999; Dose & von der Linden 1999)
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Motivating a non-Gaussian prior b(b)

Suppose now the experiment is characterized by

where si is an (unreported) factor by which the systematic error is 
over/under-estimated.

Assume correct error for a Gaussian b(b) would be sii
sys, so

Width of s(si) reflects
‘error on the error’.
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Error-on-error function s(s)

A simple unimodal probability density for 0 < s < 1 with 
adjustable mean and variance is the Gamma distribution:

Want e.g. expectation value 
of 1 and adjustable standard 
deviation s , i.e., 

mean = b/a
variance = b/a2

In fact if we took s (s) ~ inverse Gamma, we could integrate b(b)
in closed form (cf. D’Agostini, Dose, von Linden).  But Gamma 
seems more natural & numerical treatment not too painful.

s
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Prior for bias b(b) now has longer tails

Gaussian (s = 0)      P(|b| > 4sys)  =  6.3 £ 10-5

s = 0.5                    P(|b| > 4sys)  =  0.65%

b
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A simple test
Suppose fit effectively averages four measurements.

Take sys = stat = 0.1, uncorrelated.

Case #1: data appear compatible Posterior p(|y):

Usually summarize posterior p(|y) 
with mode and standard deviation:
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Simple test with inconsistent data

Case #2: there is an outlier

→ Bayesian fit less sensitive to outlier.

→ Error now connected to goodness-of-fit.

Posterior p(|y):
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Goodness-of-fit vs. size of error

In LS fit, value of minimized 2 does not affect size
of error on fitted parameter.

In Bayesian analysis with non-Gaussian prior for systematics,
a high 2 corresponds to a larger error (and vice versa).

2000 repetitions of
experiment, s = 0.5,
here no actual bias.

2

 from least squares

post-
erior
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Is this workable in practice?

Straightforward to generalize to include correlations

Prior on correlation coefficients ~ ()
(Myth:   = 1 is “conservative”)

Can separate out different systematic for same measurement

Some will have small s, others larger.

Remember the “if-then” nature of a Bayesian result:  

We can (should) vary priors and see what effect this has 
on the conclusions.
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Bayesian model selection (‘discovery’)

no Higgs

Higgs

The probability of hypothesis H0 relative to its complementary
alternative H1 is often given by the posterior odds:

Bayes factor B01 prior odds

The Bayes factor is regarded as measuring the weight of 
evidence of the data in support of H0 over H1.

Interchangeably use B10 = 1/B01
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Assessing Bayes factors

One can use the Bayes factor much like a p-value (or Z value).

There is an “established” scale, analogous to HEP's 5 rule:

B10 Evidence against H0

--------------------------------------------
1 to 3 Not worth more than a bare mention
3 to 20 Positive
20 to 150 Strong
> 150 Very strong

Kass and Raftery, Bayes Factors, J. Am Stat. Assoc 90 (1995) 773.
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Rewriting the Bayes factor

Suppose we have models Hi, i = 0, 1, ...,

each with a likelihood

and a prior pdf for its internal parameters 

so that the full prior is

where                         is the overall prior probability for Hi. 

The Bayes factor comparing Hi and Hj can be written 
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Bayes factors independent of P(Hi)

For Bij we need the posterior probabilities marginalized over
all of the internal parameters of the models:

Use Bayes
theorem

So therefore the Bayes factor is

The prior probabilities pi = P(Hi) cancel.

Ratio of  marginal 
likelihoods
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Numerical determination of Bayes factors

Both numerator and denominator of Bij are of the form

‘marginal likelihood’

Various ways to compute these, e.g., using sampling of the 
posterior pdf (which we can do with MCMC).

Harmonic Mean (and improvements)
Importance sampling
Parallel tempering (~thermodynamic integration)
...

See e.g. 
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Harmonic mean estimator

E.g., consider only one model and write Bayes theorem as:

() is normalized to unity so integrate both sides,

Therefore sample  from the posterior via MCMC and estimate m 
with one over the average of 1/L (the harmonic mean of L).

posterior
expectation
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Improvements to harmonic mean estimator

The harmonic mean estimator is numerically very unstable;
formally infinite variance (!).  Gelfand & Dey propose variant:

Rearrange Bayes thm; multiply 
both sides by arbitrary pdf f():

Integrate over  :

Improved convergence if tails of f() fall off faster than L(x|)()

Note harmonic mean estimator is special case f() = ().
.
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Importance sampling

Need pdf f() which we can evaluate at arbitrary  and also
sample with MC.

The marginal likelihood can be written

Best convergence when f() approximates shape of L(x|)().

Use for f() e.g. multivariate Gaussian with mean and covariance
estimated from posterior (e.g. with MINUIT).



G. Cowan Lectures on Statistical Data Analysis Lecture 14  page 20

Bayes factor computation discussion

Also tried method of parallel tempering; see note on course web 
page and also

Harmonic mean OK for very rough estimate.

I had trouble with all of the methods based on posterior sampling.

Importance sampling worked best, but may not scale well to higher 
dimensions. 

Lots of discussion of this problem in the literature, e.g.,
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Wrapping up lecture 14

Bayesian methods are becoming increasingly important, 
especially thanks to computational methods like MCMC.

Allows incorporation of prior information not
necessarily related to available measurements.

Requires specification of prior.

Model selection using Bayes factors

Often a computational challenge

Interpretation (arguably) more intuitive than p-value


