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Statistical Data Analysis:  Lecture 4

1 Probability, Bayes’ theorem
2 Random variables and probability densities
3 Expectation values, error propagation
4 Catalogue of pdfs
5 The Monte Carlo method
6 Statistical tests:  general concepts
7 Test statistics, multivariate methods
8 Goodness-of-fit tests
9 Parameter estimation, maximum likelihood
10 More maximum likelihood
11 Method of least squares
12 Interval estimation, setting limits
13 Nuisance parameters, systematic uncertainties
14 Examples of Bayesian approach
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Some distributions

Distribution/pdf Example use in HEP

Binomial Branching ratio

Multinomial Histogram with fixed N

Poisson Number of events found

Uniform Monte Carlo method

Exponential Decay time

Gaussian Measurement error

Chi-square Goodness-of-fit

Cauchy Mass of resonance

Landau Ionization energy loss
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Binomial distribution

Consider N independent experiments (Bernoulli trials):

outcome of each is ‘success’ or ‘failure’,

probability of success on any given trial is p.

Define discrete r.v. n = number of successes (0 ≤ n ≤  N).

Probability of a specific outcome (in order), e.g. ‘ssfsf’ is

But order not important; there are

ways (permutations) to get n successes in N trials, total 

probability for n is sum of probabilities for each permutation.



G. Cowan Lectures on Statistical Data Analysis Lecture 4  page 4

Binomial distribution  (2)

The binomial distribution is therefore

random
variable

parameters

For the expectation value and variance we find:
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Binomial distribution  (3)

Binomial distribution for several values of the parameters:

Example:  observe N decays of W±,  the number n of which are 
W→ is a binomial r.v., p = branching ratio.



G. Cowan Lectures on Statistical Data Analysis Lecture 4  page 6

Multinomial distribution
Like binomial but now m outcomes instead of two, probabilities are

For N trials we want the probability to obtain:

n1 of outcome 1,
n2 of outcome 2,


nm of outcome m.

This is the multinomial distribution for
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Multinomial distribution (2)
Now consider outcome i as ‘success’, all others as ‘failure’.

→ all ni individually binomial with parameters N, pi

for all i

One can also find the covariance to be

Example:  represents a histogram

with m bins, N total entries, all entries independent.
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Poisson distribution
Consider binomial n in the limit

→ n follows the Poisson distribution:

Example:  number of scattering events
n with cross section  found for a fixed
integrated luminosity, with
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Uniform distribution
Consider a continuous r.v. x with ∞ < x < ∞ .  Uniform pdf is:

N.B.  For any r.v. x with cumulative distribution F(x),
y = F(x) is uniform in [0,1].

Example:  for 0 → , E is uniform in [Emin, Emax], with
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Exponential distribution
The exponential pdf for the continuous r.v. x is defined by:

Example:  proper decay time t of an unstable particle

( = mean lifetime)

Lack of memory (unique to exponential):
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Gaussian distribution
The Gaussian (normal) pdf for a continuous r.v. x is defined by:

Special case:  = 0, 2 = 1   (‘standard Gaussian’):

(N.B. often , 2 denote
mean, variance of any
r.v., not only Gaussian.)

If y ~ Gaussian with , 2, then  x = (y  ) /  follows (x).
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Gaussian pdf and the Central Limit Theorem
The Gaussian pdf is so useful because almost any random
variable that is a sum of a large number of small contributions
follows it.  This follows from the Central Limit Theorem:

For n independent r.v.s xi with finite variances i
2, otherwise

arbitrary pdfs, consider the sum

Measurement errors are often the sum of many contributions, so 
frequently measured values can be treated as Gaussian r.v.s.

In the limit n → ∞, y is a Gaussian r.v. with
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Central Limit Theorem (2)
The CLT can be proved using characteristic functions (Fourier
transforms), see, e.g., SDA Chapter 10.

Good example:  velocity component vx of air molecules.

OK example:  total deflection due to multiple Coulomb scattering.
(Rare large angle deflections give non-Gaussian tail.)

Bad example:  energy loss of charged particle traversing thin
gas layer.  (Rare collisions make up large fraction of energy loss,
cf. Landau pdf.)

For finite n, the theorem is approximately valid to the
extent that the fluctuation of  the sum is not dominated by
one (or few) terms. 

Beware of measurement errors with non-Gaussian tails.
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Multivariate Gaussian distribution

Multivariate Gaussian pdf for the vector 

are column vectors, are transpose (row) vectors, 

For n = 2 this is

where  = cov[x1, x2]/(12) is the correlation coefficient.
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Chi-square (2) distribution
The chi-square pdf for the continuous r.v. z  (z ≥ 0) is defined by

n = 1, 2, ... =  number of ‘degrees of
                       freedom’ (dof)

For independent Gaussian xi, i = 1, ..., n, means i, variances i
2,

follows 2 pdf with n dof.

Example:  goodness-of-fit test variable especially in conjunction
with method of least squares.
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Cauchy (Breit-Wigner) distribution

The Breit-Wigner pdf for the continuous r.v. x is defined by

 = 2, x0 = 0 is the Cauchy pdf.)

E[x] not well defined,   V[x] →∞.

x0 = mode (most probable value)

 = full width at half maximum

Example:  mass of resonance particle, e.g. , K*, 0, ...

 = decay rate (inverse of mean lifetime)
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Landau 
distribution

For a charged particle with  = v /c traversing a layer of matter
of thickness d, the energy loss  follows the Landau pdf:

L. Landau, J. Phys. USSR 8 (1944) 201; see also
W. Allison and J. Cobb, Ann. Rev. Nucl. Part. Sci. 30 (1980) 253.





d
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Landau distribution  (2)

Long ‘Landau tail’

     →  all moments ∞

Mode (most probable 
value) sensitive to ,
     →  particle i.d.
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Beta distribution

Often used to represent pdf 
of continuous r.v. nonzero only
between finite limits. 
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Gamma distribution

Often used to represent pdf 
of continuous r.v. nonzero only
in [0,∞].

Also e.g. sum of n exponential
r.v.s or time until nth event
in Poisson process ~ Gamma
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Student's t distribution

 = number of degrees of freedom
      (not necessarily integer)

 = 1 gives Cauchy,

 → ∞ gives Gaussian.
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Student's t distribution (2)

If x ~ Gaussian with = 0, 2 = 1, and 

    z ~ 2 with n degrees of freedom, then

    t = x / (z/n)1/2  follows Student's t with  = n.

This arises in problems where one forms the ratio of a sample 
mean to the sample standard deviation of Gaussian r.v.s.

The Student's t provides a bell-shaped pdf with adjustable
tails, ranging from those of a Gaussian, which fall off very
quickly, (→ ∞, but in fact already very Gauss-like for 
=  two dozen),  to the very long-tailed Cauchy ( = 1). 

Developed in 1908 by William Gosset, who worked under
the pseudonym "Student" for the Guinness Brewery.



G. Cowan Lectures on Statistical Data Analysis Lecture 4  page 23

Wrapping up lecture 4

We’ve looked at a number of important distributions:
Binomial, Multinomial, Poisson, Uniform, Exponential
Gaussian, Chi-square, Cauchy, Landau, Beta,
Gamma, Student's t

and we’ve seen the important Central Limit Theorem:
explains why Gaussian r.v.s come up so often

For a more complete catalogue see e.g. the handbook on
statistical distributions by Christian Walck from

http://www.physto.se/~walck/


