Statistical Data Analysis: Lecture 4

- 1 Probability, Bayes' theorem
- 2 Random variables and probability densities
- 3 Expectation values, error propagation

4 Catalogue of pdfs

- 5 The Monte Carlo method
- 6 Statistical tests: general concepts
- 7 Test statistics, multivariate methods
- 8 Goodness-of-fit tests
- 9 Parameter estimation, maximum likelihood
- 10 More maximum likelihood
- 11 Method of least squares
- 12 Interval estimation, setting limits
- 13 Nuisance parameters, systematic uncertainties
- 14 Examples of Bayesian approach

Some distributions

Distribution/pdf Binomial Multinomial Poisson Uniform Exponential Gaussian Chi-square Cauchy Landau

Example use in HEP **Branching ratio** Histogram with fixed NNumber of events found Monte Carlo method Decay time Measurement error Goodness-of-fit Mass of resonance Ionization energy loss

Binomial distribution

Consider *N* independent experiments (Bernoulli trials): outcome of each is 'success' or 'failure', probability of success on any given trial is *p*.

Define discrete r.v. n = number of successes ($0 \le n \le N$).

Probability of a specific outcome (in order), e.g. 'ssfsf' is

$$pp(1-p)p(1-p) = p^n(1-p)^{N-n}$$

But order not important; there are

$$\frac{1}{n!(N-n)!}$$

 \mathbf{M}

ways (permutations) to get *n* successes in *N* trials, total probability for *n* is sum of probabilities for each permutation.

Binomial distribution (2)

The binomial distribution is therefore

$$f(n; N, p) = \frac{N!}{n!(N-n)!}p^n(1-p)^{N-n}$$
random parameters
variable

For the expectation value and variance we find:

$$E[n] = \sum_{n=0}^{N} nf(n; N, p) = Np$$
$$V[n] = E[n^{2}] - (E[n])^{2} = Np(1 - p)$$

G. Cowan

Lectures on Statistical Data Analysis

Binomial distribution (3)

Binomial distribution for several values of the parameters:

Example: observe *N* decays of W^{\pm} , the number *n* of which are $W \rightarrow \mu \nu$ is a binomial r.v., *p* = branching ratio.

Multinomial distribution

Like binomial but now *m* outcomes instead of two, probabilities are

$$\vec{p} = (p_1, \dots, p_m)$$
, with $\sum_{i=1}^m p_i = 1$.

For N trials we want the probability to obtain:

 n_1 of outcome 1, n_2 of outcome 2,

 n_m of outcome *m*.

This is the multinomial distribution for $\vec{n} = (n_1, \dots, n_m)$

$$f(\vec{n}; N, \vec{p}) = \frac{N!}{n_1! n_2! \cdots n_m!} p_1^{n_1} p_2^{n_2} \cdots p_m^{n_m}$$

Multinomial distribution (2)

Now consider outcome *i* as 'success', all others as 'failure'.

 \rightarrow all n_i individually binomial with parameters N, p_i

$$E[n_i] = Np_i, \quad V[n_i] = Np_i(1-p_i) \quad \text{for all } i$$

One can also find the covariance to be

$$V_{ij} = Np_i(\delta_{ij} - p_j)$$

Example: $\vec{n} = (n_1, \dots, n_m)$ represents a histogram with *m* bins, *N* total entries, all entries independent.

Poisson distribution Consider binomial *n* in the limit

$$N \to \infty, \qquad p \to 0, \qquad E[n] = Np \to \nu$$

 \rightarrow *n* follows the Poisson distribution:

$$f(n;\nu) = \frac{\nu^n}{n!} e^{-\nu} \quad (n \ge 0)$$

$$E[n] = \nu, \quad V[n] = \nu.$$

Example: number of scattering events *n* with cross section σ found for a fixed integrated luminosity, with $\nu = \sigma \int L dt$.

Uniform distribution

Consider a continuous r.v. x with $-\infty < x < \infty$. Uniform pdf is:

N.B. For any r.v. *x* with cumulative distribution F(x), y = F(x) is uniform in [0,1].

Example: for $\pi^0 \to \gamma\gamma$, E_{γ} is uniform in $[E_{\min}, E_{\max}]$, with $E_{\min} = \frac{1}{2} E_{\pi} (1 - \beta)$, $E_{\max} = \frac{1}{2} E_{\pi} (1 + \beta)$

G. Cowan

Lectures on Statistical Data Analysis

Exponential distribution

The exponential pdf for the continuous r.v. *x* is defined by:

Example: proper decay time t of an unstable particle

 $f(t;\tau) = \frac{1}{\tau}e^{-t/\tau}$ (τ = mean lifetime)

Lack of memory (unique to exponential): $f(t - t_0 | t \ge t_0) = f(t)$

G. Cowan

Lectures on Statistical Data Analysis

Gaussian distribution

The Gaussian (normal) pdf for a continuous r.v. *x* is defined by:

$$f(x; \mu, \sigma) = \frac{1}{\sqrt{2\pi\sigma}} e^{-(x-\mu)^2/2\sigma^2}$$

$$E[x] = \mu$$

$$K[x] = \mu$$

$$F[x] = \mu$$

$$F[x] = \sigma^2$$

$$F[$$

Special case: $\mu = 0$, $\sigma^2 = 1$ ('standard Gaussian'):

$$\varphi(x) = \frac{1}{\sqrt{2\pi}} e^{-x^2/2} , \quad \Phi(x) = \int_{-\infty}^x \varphi(x') \, dx'$$

If $y \sim \text{Gaussian}$ with μ , σ^2 , then $x = (y - \mu) / \sigma$ follows $\varphi(x)$.

G. Cowan

Lectures on Statistical Data Analysis

Lecture 4 page 11

μ=0, σ=1 μ=0, σ=2 μ=1, σ=1

0

x

2

Gaussian pdf and the Central Limit Theorem

The Gaussian pdf is so useful because almost any random variable that is a sum of a large number of small contributions follows it. This follows from the Central Limit Theorem:

For *n* independent r.v.s x_i with finite variances σ_i^2 , otherwise arbitrary pdfs, consider the sum

$$y = \sum_{i=1}^{n} x_i$$

In the limit $n \to \infty$, y is a Gaussian r.v. with

$$E[y] = \sum_{i=1}^{n} \mu_i \qquad V[y] = \sum_{i=1}^{n} \sigma_i^2$$

Measurement errors are often the sum of many contributions, so frequently measured values can be treated as Gaussian r.v.s.

G. Cowan

Central Limit Theorem (2)

The CLT can be proved using characteristic functions (Fourier transforms), see, e.g., SDA Chapter 10.

For finite *n*, the theorem is approximately valid to the extent that the fluctuation of the sum is not dominated by one (or few) terms.

Beware of measurement errors with non-Gaussian tails.

Good example: velocity component v_x of air molecules.

OK example: total deflection due to multiple Coulomb scattering. (Rare large angle deflections give non-Gaussian tail.)

Bad example: energy loss of charged particle traversing thin gas layer. (Rare collisions make up large fraction of energy loss, cf. Landau pdf.)

G. Cowan

Lectures on Statistical Data Analysis

Multivariate Gaussian distribution

Multivariate Gaussian pdf for the vector $\vec{x} = (x_1, \dots, x_n)$:

$$f(\vec{x};\vec{\mu},V) = \frac{1}{(2\pi)^{n/2}|V|^{1/2}} \exp\left[-\frac{1}{2}(\vec{x}-\vec{\mu})^T V^{-1}(\vec{x}-\vec{\mu})\right]$$

 $\vec{x}, \vec{\mu}$ are column vectors, $\vec{x}^T, \vec{\mu}^T$ are transpose (row) vectors,

$$E[x_i] = \mu_i, , \quad \text{cov}[x_i, x_j] = V_{ij}.$$

For n = 2 this is

$$f(x_1, x_2; \mu_1, \mu_2, \sigma_1, \sigma_2, \rho) = \frac{1}{2\pi\sigma_1\sigma_2\sqrt{1-\rho^2}} \\ \times \exp\left\{-\frac{1}{2(1-\rho^2)} \left[\left(\frac{x_1-\mu_1}{\sigma_1}\right)^2 + \left(\frac{x_2-\mu_2}{\sigma_2}\right)^2 - 2\rho\left(\frac{x_1-\mu_1}{\sigma_1}\right)\left(\frac{x_2-\mu_2}{\sigma_2}\right) \right] \right\}$$

where $\rho = \operatorname{cov}[x_1, x_2]/(\sigma_1 \sigma_2)$ is the correlation coefficient.

G. Cowan

Lectures on Statistical Data Analysis

Chi-square (χ^2) distribution

The chi-square pdf for the continuous r.v. $z \ (z \ge 0)$ is defined by

$$f(z;n) = \frac{1}{2^{n/2} \Gamma(n/2)} z^{n/2-1} e^{-z/2}$$

n = 1, 2, ... = number of 'degrees of freedom' (dof)

$$E[z] = n, \quad V[z] = 2n.$$

For independent Gaussian x_i , i = 1, ..., n, means μ_i , variances σ_i^2 ,

$$z = \sum_{i=1}^{n} \frac{(x_i - \mu_i)^2}{\sigma_i^2} \quad \text{follows } \chi^2 \text{ pdf with } n \text{ dof.}$$

Example: goodness-of-fit test variable especially in conjunction with method of least squares.

G. Cowan

Lectures on Statistical Data Analysis

Cauchy (Breit-Wigner) distribution

The Breit-Wigner pdf for the continuous r.v. *x* is defined by

$$f(x; \Gamma, x_0) = \frac{1}{\pi} \frac{\Gamma/2}{\Gamma^2/4 + (x - x_0)^2}$$
$$(\Gamma = 2, x_0 = 0 \text{ is the Cauchy pdf.})$$
$$E[x] \text{ not well defined, } V[x] \to \infty.$$
$$x_0 = \text{mode (most probable value)}$$

 Γ = full width at half maximum

Example: mass of resonance particle, e.g. ρ , K^{*}, ϕ^0 , ... Γ = decay rate (inverse of mean lifetime)

G. Cowan

Lectures on Statistical Data Analysis

Landau

distribution

For a charged particle with $\beta = v/c$ traversing a layer of matter of thickness *d*, the energy loss Δ follows the Landau pdf:

L. Landau, J. Phys. USSR **8** (1944) 201; see also W. Allison and J. Cobb, Ann. Rev. Nucl. Part. Sci. **30** (1980) 253.

G. Cowan

Lectures on Statistical Data Analysis

Landau distribution (2)

Long 'Landau tail'

 \rightarrow all moments ∞

Mode (most probable value) sensitive to β , \rightarrow particle i.d.

4 (keV⁻¹) (a) B=0.43 B=0.6 $f(\Delta;\beta)$ B=0.95 2 β=0.999 1 0 3 2 0 (keV) 4 Δ_{mp} (keV) (b) 3 2 1 0 10² 10⁻¹ 103 104 10 βγ

Beta distribution

 \mathbf{n}

$$f(x;\alpha,\beta) = \frac{\Gamma(\alpha+\beta)}{\Gamma(\alpha)\Gamma(\beta)} x^{\alpha-1} (1-x)^{\beta-1}$$

$$E[x] = \frac{\alpha}{\alpha + \beta}$$
$$V[x] = \frac{\alpha\beta}{(\alpha + \beta)^2(\alpha + \beta + 1)}$$

Often used to represent pdf of continuous r.v. nonzero only between finite limits.

Gamma distribution

$$f(x; \alpha, \beta) = \frac{1}{\Gamma(\alpha)\beta^{\alpha}} x^{\alpha-1} e^{-x/\beta}$$

$$V[x] = \alpha \beta^2$$

 $\Gamma[m] - \alpha \beta$

Often used to represent pdf of continuous r.v. nonzero only in $[0,\infty]$.

Also e.g. sum of *n* exponential r.v.s or time until *n*th event in Poisson process ~ Gamma

Lectures on Statistical Data Analysis

Student's t distribution

$$f(x;\nu) = \frac{\Gamma\left(\frac{\nu+1}{2}\right)}{\sqrt{\nu\pi}\,\Gamma(\nu/2)} \left(1 + \frac{x^2}{\nu}\right)^{-\left(\frac{\nu+1}{2}\right)}$$

$$E[x] = 0 \quad (\nu > 1)$$
$$V[x] = \frac{\nu}{\nu - 2} \quad (\nu > 2)$$

v = number of degrees of freedom (not necessarily integer)

v = 1 gives Cauchy,

 $v \rightarrow \infty$ gives Gaussian.

Lectures on Statistical Data Analysis

Student's *t* distribution (2)

- If $x \sim$ Gaussian with $\mu = 0$, $\sigma^2 = 1$, and
 - $z \sim \chi^2$ with *n* degrees of freedom, then

 $t = x / (z/n)^{1/2}$ follows Student's t with v = n.

This arises in problems where one forms the ratio of a sample mean to the sample standard deviation of Gaussian r.v.s.

The Student's *t* provides a bell-shaped pdf with adjustable tails, ranging from those of a Gaussian, which fall off very quickly, $(v \rightarrow \infty)$, but in fact already very Gauss-like for v = two dozen), to the very long-tailed Cauchy (v = 1).

Developed in 1908 by William Gosset, who worked under the pseudonym "Student" for the Guinness Brewery. Wrapping up lecture 4

We've looked at a number of important distributions: Binomial, Multinomial, Poisson, Uniform, Exponential Gaussian, Chi-square, Cauchy, Landau, Beta, Gamma, Student's *t*

and we've seen the important Central Limit Theorem: explains why Gaussian r.v.s come up so often

For a more complete catalogue see e.g. the handbook on statistical distributions by Christian Walck from http://www.physto.se/~walck/