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Statistical Data Analysis:  Lecture 6

1 Probability, Bayes’ theorem
2 Random variables and probability densities
3 Expectation values, error propagation
4 Catalogue of pdfs
5 The Monte Carlo method
6 Statistical tests:  general concepts
7 Test statistics, multivariate methods
8 Goodness-of-fit tests
9 Parameter estimation, maximum likelihood
10 More maximum likelihood
11 Method of least squares
12 Interval estimation, setting limits
13 Nuisance parameters, systematic uncertainties
14 Examples of Bayesian approach
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For each reaction we consider we will have a hypothesis for the
pdf of     , e.g., 

Statistical tests (in a particle physics context)
Suppose the result of a measurement for an individual event 
is a collection of numbers

x1 = number of muons,

x2 = mean pt of jets,

x3 = missing energy, ...

     follows some n-dimensional joint pdf, which depends on 
the type of event produced, i.e., was it 

etc.

Often call H0 the signal hypothesis (the event type we want);
H1, H2, ... are background hypotheses.
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Selecting events
Suppose we have a data sample with two kinds of events,
corresponding to hypotheses H0 and H1 and we want to select 
those of type H0.

Each event is a point in     space.  What ‘decision boundary’ 
should we use to accept/reject events as belonging to event type 
H0?

accept
H0

H1

Perhaps select events
with ‘cuts’:
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Other ways to select events

Or maybe use some other sort of decision boundary:

accept
H0

H1

accept

H0

H1

linear or nonlinear

How can we do this in an ‘optimal’ way?

What are the difficulties in a high-dimensional space?
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Test statistics
Construct a ‘test statistic’ of lower dimension (e.g. scalar)

We can work out the pdfs

Goal is to compactify data without losing ability to discriminate
between hypotheses.

Decision boundary is now a 
single ‘cut’ on t.

This effectively divides the 
sample space into two regions, 
where we accept or reject H0.
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Significance level and power of a test

Probability to reject H0 if it is true 
(error of the 1st kind):

(significance level)

Probability to accept H0 if H1 is true
 (error of the 2nd kind):

( power)
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Efficiency of event selection

Probability to accept an event which
is signal (signal efficiency):

Probability to accept an event which
is background (background efficiency):
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Purity of event selection
Suppose only one background type b; overall fractions of signal
and background events are s and b (prior probabilities).

Suppose we select events with t < tcut.  What is the
‘purity’ of our selected sample?

Here purity means the probability to be signal given that
the event was accepted.  Using Bayes’ theorem we find:

So the purity depends on the prior probabilities as well as on the
signal and background efficiencies.
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Constructing a test statistic
How can we select events in an ‘optimal way’?

Neyman-Pearson lemma (proof in Brandt Ch. 8) states:

To get the lowest b for a given s (highest power for a given 
significance level), choose acceptance region such that

where c is a constant which determines s.

Equivalently, optimal scalar test statistic is

N.B. any monotonic function of this is just as good.
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Purity vs. efficiency — optimal trade-off
Consider selecting n events:

expected numbers s from signal, b from background;

→ n ~ Poisson (s + b)

Suppose b is known and goal is to estimate s with minimum 
relative statistical error.

Take as estimator:

Variance of Poisson variable equals its mean, therefore

→

So we should maximize 

equivalent to maximizing product of signal efficiency  purity.
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Why Neyman-Pearson doesn’t always help

The problem is that we usually don’t have explicit formulae for
the pdfs

Instead we may have Monte Carlo models for signal and 
background processes, so we can produce simulated data,
and enter each event into an n-dimensional histogram.

Use e.g. M bins for each of the n dimensions, total of Mn cells.

But n is potentially large, →  prohibitively large number of cells 
to populate with Monte Carlo data.

Compromise:  make Ansatz for form of test statistic
with fewer parameters; determine them (e.g. using MC) to 
give best discrimination between signal and background.
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Multivariate methods
Many new (and some old) methods:

Fisher discriminant

Neural networks

Kernel density methods

Support Vector Machines

Decision trees

Boosting

Bagging

New software for HEP, e.g.,

TMVA , Höcker, Stelzer, Tegenfeldt, Voss, Voss, physics/0703039

StatPatternRecognition, I. Narsky, physics/0507143 
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Linear test statistic

Ansatz:

→  Fisher:  maximize

Choose the parameters a1, ..., an so that the pdfs
have maximum ‘separation’.  We want:

s b

t

g (t) b

large distance  between 
mean values, small widths

s
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Determining coefficients for maximum separation

We have 

where

In terms of mean and variance of this becomes
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Determining the coefficients (2)
The numerator of J(a) is  

and the denominator is 

‘between’ classes

‘within’ classes

→ maximize 
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Fisher discriminant

Setting

accept
H0

H1

Corresponds to a linear
decision boundary.

gives Fisher’s linear discriminant function:
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Fisher discriminant:  comment on least squares 
We obtain equivalent separation between hypotheses if we multiply 
the ai by a common scale factor and add an arbitrary offset a0:

Thus we can fix the mean values 0 and 1 under the null and 
alternative hypotheses to arbitrary values, e.g., 0 and 1.

Then maximizing
 is equivalent to minimizing

Maximizing 
Fisher’s J(a) 
→ ‘least squares’

In practice, expectation values replaced by averages using samples
of training data, e.g., from Monte Carlo models.



G. Cowan Lectures on Statistical Data Analysis Lecture 6  page 18

Fisher discriminant for Gaussian data
Suppose

and covariance matrices V0 = V1 = V for both.  We can write the 
Fisher discriminant (with an offset) as

is multivariate Gaussian with mean values

Then the likelihood ratio becomes
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Fisher discriminant for Gaussian data (2)

That is, (monotonic)  so for this case,

the Fisher discriminant is equivalent to using the likelihood ratio,

and thus gives maximum purity for a given efficiency.

For non-Gaussian data this no longer holds, but linear
discriminant function may be simplest practical solution.

Often try to transform data so as to better approximate
Gaussian before constructing Fisher discrimimant.
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Fisher discriminant and Gaussian data (3)

Multivariate Gaussian data with equal covariance matrices also
gives a simple expression for posterior probabilities, e.g.,

For a particular choice of the offset a0 this can be written:

which is the logistic sigmoid function:

(We will use this later in connection
with Neural Networks.)
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Wrapping up lecture 6

We looked at statistical tests and related issues:
discriminate between event types (hypotheses),
determine selection efficiency, sample purity, etc.

We discussed a method to construct a test statistic 
using a linear function of the data:

Fisher discriminant

Next we will discuss nonlinear test variables such as
neural networks


