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Statistical Data Analysis:  Lecture 7

1 Probability, Bayes’ theorem
2 Random variables and probability densities
3 Expectation values, error propagation
4 Catalogue of pdfs
5 The Monte Carlo method
6 Statistical tests:  general concepts
7 Test statistics, multivariate methods
8 Goodness-of-fit tests
9 Parameter estimation, maximum likelihood
10 More maximum likelihood
11 Method of least squares
12 Interval estimation, setting limits
13 Nuisance parameters, systematic uncertainties
14 Examples of Bayesian approach
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Nonlinear test statistics

The optimal decision boundary may not be a hyperplane,

→  nonlinear test statistic

accept

H0

H1Multivariate statistical methods

are a Big Industry:

Particle Physics can benefit from progress in Machine Learning.

Neural Networks,

Support Vector Machines,

Kernel density methods,

...
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Introduction to neural networks

Used in neurobiology, pattern recognition, financial forecasting, ...
Here, neural nets are just a type of test statistic.

Suppose we take t(x) to have the form logistic
sigmoid

This is called the 
single-layer perceptron.

s(·) is monotonic 
→ equivalent to linear t(x)
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The multi-layer perceptron

Generalize from one layer 
to the multilayer perceptron:

The values of the nodes in the 
intermediate (hidden) layer are

and the network output is given by 

weights (connection strengths)
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Neural network discussion

Easy to generalize to arbitrary number of layers.

Feed-forward net:  values of a node depend only on earlier layers,
usually only on previous layer (“network architecture”).

More nodes → neural net gets closer to optimal t(x), but
more parameters need to be determined.

Parameters usually determined by minimizing an error function,

where t (0) , t (1) are target values, e.g., 0 and 1 for logistic sigmoid.

Expectation values replaced by averages of training data (e.g. MC).

In general training can be difficult; standard software available.
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Neural network example from LEP II

Signal:  ee → WW    (often 4 well separated hadron jets)

Background:  ee → qqgg  (4 less well separated hadron jets)

←  input variables based on jet
structure, event shape, ...
none by itself gives much separation.

Neural network output does better...

(Garrido, Juste and Martinez, ALEPH 96-144)
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Probability Density Estimation (PDE) techniques

See e.g. K. Cranmer, Kernel Estimation in High Energy Physics, CPC 136 (2001) 198; hep-ex/0011057; 
T. Carli and B. Koblitz, A multi-variate discrimination technique based on range-searching, 
NIM A 501 (2003) 576; hep-ex/0211019 

Construct non-parametric estimators of the pdfs

and use these to construct the likelihood ratio

(n-dimensional histogram is a brute force example of this.)

More clever estimation techniques can get this to work for
(somewhat) higher dimension.
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Kernel-based PDE (KDE, Parzen window)

Consider d dimensions, N training events, x1, ..., xN, 
estimate f (x) with

Use e.g. Gaussian kernel:

kernel
bandwidth 
(smoothing parameter)

Need to sum N terms to evaluate function (slow); 
faster algorithms only count events in vicinity of x 
(k-nearest neighbor, range search).
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Product of one-dimensional pdfs

First rotate to uncorrelated variables, i.e., find matrix A such that 

for we have

Estimate the d-dimensional joint pdf  as the product of 1-d pdfs,

(here x decorrelated)

This does not exploit non-linear features of the joint pdf, but
simple and may be a good approximation in practical examples. 
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Decision trees

A training sample of signal and background data is repeatedly
split by successive cuts on its input variables.

Order in which variables used based on best separation between
signal and background.

Example by Mini-Boone, B. Roe et 
al., NIM A 543 (2005) 577

Iterate until stop criterion reached,
based e.g. on purity, minimum
number of events in a node.

Resulting set of cuts is a ‘decision tree’.

Tends to be sensitive to 
fluctuations in training sample.
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Boosted decision trees

Boosting combines a number classifiers into a stronger one; 
improves stability with respect to fluctuations in input data.

To use with decision trees, increase the weights of misclassified
events and reconstruct the tree.  

Iterate → forest of trees (perhaps > 1000).   For the mth tree, 

Define a score m based on error rate of mth tree.

Boosted tree =  weighted sum of the trees:

Algorithms:  AdaBoost (Freund & Schapire), -boost (Friedman).
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For all methods, need to check:

Sensitivity to statistically unimportant variables
(best to drop those that don’t provide discrimination);

Level of smoothness in decision boundary (sensitivity
to over-training)

Given the test variable, next step is e.g., select n events and
estimate a cross section of signal:

Multivariate analysis discussion

Now need to estimate systematic error... 

If e.g. training (MC) data ≠ Nature, test variable is not optimal,
but not necessarily biased.  

But our estimates of background b and efficiencies would then 
be biased if based on MC.  (True also for ‘simple cuts’.)
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But in a cut-based analysis it may be easier to avoid regions
where untested features of MC are strongly influencing the
decision boundary.

Look at control samples to test joint distributions of inputs.

Try to estimate backgrounds directly from the data (sidebands).

Multivariate analysis discussion (2)

The purpose of the statistical test is often to select objects for 
further study and then measure their properties.

Need to avoid input variables that are correlated with the
properties of the selected objects that you want to study.
(Not always easy; correlations may be poorly known.)
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Comparing multivariate methods (TMVA)

Choose the best one! 
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Some multivariate analysis references
Hastie, Tibshirani, Friedman, The Elements of Statistical Learning,
Springer (2001);

Webb, Statistical Pattern Recognition, Wiley (2002);

Kuncheva, Combining Pattern Classifiers, Wiley (2004);

Specifically on neural networks:

L. Lönnblad et al., Comp. Phys. Comm., 70 (1992) 167;

C. Peterson et al., Comp. Phys. Comm., 81 (1994) 185;

C.M. Bishop, Neural Networks for Pattern Recognition, OUP (1995);

John Hertz et al., Introduction to the Theory of Neural Computation, 
Addison-Wesley, New York (1991).
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Wrapping up lecture 7

We looked at statistical tests and related issues:
discriminate between event types (hypotheses),
determine selection efficiency, sample purity, etc.

Some modern (and less modern) methods were mentioned:
Fisher discriminants, neural networks,
PDE, KDE, decision trees, ...

Next we will talk about goodness-of-fit tests:
p-value expresses level of agreement between data 
and hypothesis


