## Statistical Data Analysis: Lecture 8

| 1  | Probability, Bayes' theorem                   |
|----|-----------------------------------------------|
| 2  | Random variables and probability densities    |
| 3  | Expectation values, error propagation         |
| 4  | Catalogue of pdfs                             |
| 5  | The Monte Carlo method                        |
| 6  | Statistical tests: general concepts           |
| 7  | Test statistics, multivariate methods         |
| 8  | Goodness-of-fit tests                         |
| 9  | Parameter estimation, maximum likelihood      |
| 10 | More maximum likelihood                       |
| 11 | Method of least squares                       |
| 12 | Interval actimation cotting limits            |
|    | Interval estimation, setting limits           |
| 13 | Nuisance parameters, systematic uncertainties |

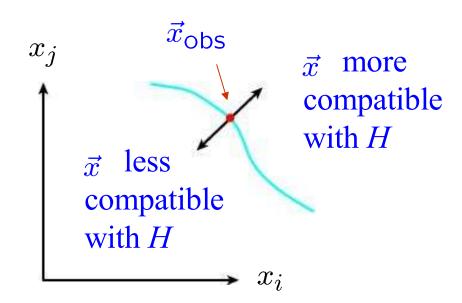
### Testing significance / goodness-of-fit

Suppose hypothesis H predicts pdf  $f(\vec{x}|H)$  for a set of observations  $\vec{x} = (x_1, \dots, x_n)$ .

We observe a single point in this space:  $\vec{x}_{obs}$ 

What can we say about the validity of *H* in light of the data?

Decide what part of the data space represents less compatibility with H than does the point  $\vec{x}_{\text{Obs}}$ . (Not unique!)



### *p*-values

Express 'goodness-of-fit' by giving the *p*-value for *H*:

p = probability, under assumption of H, to observe data with equal or lesser compatibility with H relative to the data we got.



This is not the probability that *H* is true!

In frequentist statistics we don't talk about P(H) (unless H represents a repeatable observation). In Bayesian statistics we do; use Bayes' theorem to obtain

$$P(H|\vec{x}) = \frac{P(\vec{x}|H)\pi(H)}{\int P(\vec{x}|H)\pi(H) dH}$$

where  $\pi(H)$  is the prior probability for H.

For now stick with the frequentist approach; result is p-value, regrettably easy to misinterpret as P(H).

## p-value example: testing whether a coin is 'fair'

Probability to observe *n* heads in *N* coin tosses is binomial:

$$P(n; p, N) = \frac{N!}{n!(N-n)!} p^n (1-p)^{N-n}$$

Hypothesis *H*: the coin is fair (p = 0.5).

Suppose we toss the coin N = 20 times and get n = 17 heads.

Region of data space with equal or lesser compatibility with H relative to n = 17 is: n = 17, 18, 19, 20, 0, 1, 2, 3. Adding up the probabilities for these values gives:

$$P(n = 0, 1, 2, 3, 17, 18, 19, \text{ or } 20) = 0.0026$$
.

i.e. p = 0.0026 is the probability of obtaining such a bizarre result (or more so) 'by chance', under the assumption of H.

### The significance of an observed signal

Suppose we observe *n* events; these can consist of:

 $n_{\rm b}$  events from known processes (background)

 $n_{\rm s}$  events from a new process (signal)

If  $n_s$ ,  $n_b$  are Poisson r.v.s with means s, b, then  $n = n_s + n_b$  is also Poisson, mean = s + b:

$$P(n; s, b) = \frac{(s+b)^n}{n!} e^{-(s+b)}$$

Suppose b = 0.5, and we observe  $n_{\rm obs} = 5$ . Should we claim evidence for a new discovery?

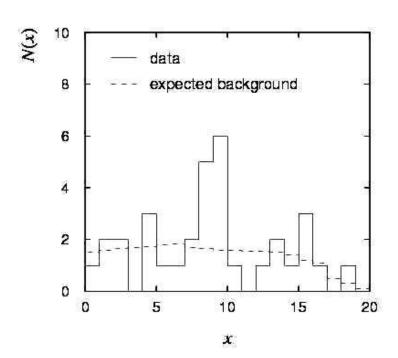
Give *p*-value for hypothesis s = 0:

p-value = 
$$P(n \ge 5; b = 0.5, s = 0)$$
  
=  $1.7 \times 10^{-4} \ne P(s = 0)!$ 

## The significance of a peak

Suppose we measure a value *x* for each event and find:

Each bin (observed) is a Poisson r.v., means are given by dashed lines.



In the two bins with the peak, 11 entries found with b = 3.2. The *p*-value for the s = 0 hypothesis is:

$$P(n \ge 11; b = 3.2, s = 0) = 5.0 \times 10^{-4}$$

#### The significance of a peak (2)

But... did we know where to look for the peak?

 $\rightarrow$  give  $P(n \ge 11)$  in any 2 adjacent bins

Is the observed width consistent with the expected *x* resolution?

 $\rightarrow$  take x window several times the expected resolution

How many bins × distributions have we looked at?

→ look at a thousand of them, you'll find a 10<sup>-3</sup> effect

Did we adjust the cuts to 'enhance' the peak?

→ freeze cuts, repeat analysis with new data

How about the bins to the sides of the peak... (too low!)

Should we publish????

### Pearson's $\chi^2$ statistic

Test statistic for comparing observed data  $\vec{n} = (n_1, \dots, n_N)$  ( $n_i$  independent) to predicted mean values  $\vec{\nu} = (\nu_1, \dots, \nu_N)$ :

$$\chi^2 = \sum_{i=1}^{N} \frac{(n_i - \nu_i)^2}{\sigma_i^2}$$
, where  $\sigma_i^2 = V[n_i]$ . (Pearson's  $\chi^2$  statistic)

 $\chi^2$  = sum of squares of the deviations of the *i*th measurement from the *i*th prediction, using  $\sigma_i$  as the 'yardstick' for the comparison.

For  $n_i \sim \text{Poisson}(v_i)$  we have  $V[n_i] = v_i$ , so this becomes

$$\chi^2 = \sum_{i=1}^{N} \frac{(n_i - \nu_i)^2}{\nu_i}.$$

### Pearson's $\chi^2$ test

If  $n_i$  are Gaussian with mean  $v_i$  and std. dev.  $\sigma_i$ , i.e.,  $n_i \sim N(v_i, \sigma_i^2)$ , then Pearson's  $\chi^2$  will follow the  $\chi^2$  pdf (here for  $\chi^2 = z$ ):

$$f_{\chi^2}(z;N) = \frac{1}{2^{N/2}\Gamma(N/2)} z^{N/2-1} e^{-z/2}$$

If the  $n_i$  are Poisson with  $v_i >> 1$  (in practice OK for  $v_i > 5$ ) then the Poisson dist. becomes Gaussian and therefore Pearson's  $\chi^2$  statistic here as well follows the  $\chi^2$  pdf.

The  $\chi^2$  value obtained from the data then gives the p-value:

$$p = \int_{\chi^2}^{\infty} f_{\chi^2}(z; N) dz.$$

## The ' $\chi^2$ per degree of freedom'

Recall that for the chi-square pdf for N degrees of freedom,

$$E[z] = N, \quad V[z] = 2N.$$

This makes sense: if the hypothesized  $v_i$  are right, the rms deviation of  $n_i$  from  $v_i$  is  $\sigma_i$ , so each term in the sum contributes  $\sim 1$ .

One often sees  $\chi^2/N$  reported as a measure of goodness-of-fit. But... better to give  $\chi^2$  and N separately. Consider, e.g.,

$$\chi^2 = 15$$
,  $N = 10 \rightarrow p - \text{value} = 0.13$ ,  
 $\chi^2 = 150$ ,  $N = 100 \rightarrow p - \text{value} = 9.0 \times 10^{-4}$ .

i.e. for N large, even a  $\chi^2$  per dof only a bit greater than one can imply a small p-value, i.e., poor goodness-of-fit.

### Pearson's $\chi^2$ with multinomial data

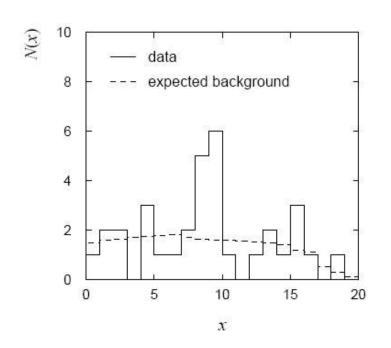
If 
$$n_{\text{tot}} = \sum_{i=1}^{N}$$
 is fixed, then we might model  $n_i \sim$  binomial with  $p_i = n_i / n_{\text{tot}}$ . I.e.  $\vec{n} = (n_1, \dots, n_N) \sim$  multinomial.

In this case we can take Pearson's  $\chi^2$  statistic to be

$$\chi^2 = \sum_{i=1}^{N} \frac{(n_i - p_i n_{\text{tot}})^2}{p_i n_{\text{tot}}}$$

If all  $p_i n_{tot} >> 1$  then this will follow the chi-square pdf for N-1 degrees of freedom.

## Example of a $\chi^2$ test



← This gives

$$\chi^2 = \sum_{i=1}^{N} \frac{(n_i - \nu_i)^2}{\nu_i} = 29.8$$

for N = 20 dof.

Now need to find p-value, but... many bins have few (or no) entries, so here we do not expect  $\chi^2$  to follow the chi-square pdf.

# Using MC to find distribution of $\chi^2$ statistic

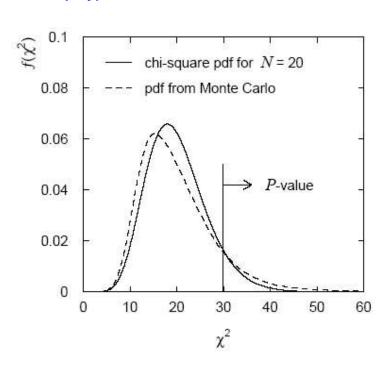
The Pearson  $\chi^2$  statistic still reflects the level of agreement between data and prediction, i.e., it is still a 'valid' test statistic.

To find its sampling distribution, simulate the data with a Monte Carlo program:  $n_i \sim \text{Poisson}(\nu_i)$ , i = 1, N.

Here data sample simulated  $10^6$  times. The fraction of times we find  $\chi^2 > 29.8$  gives the *p*-value:

$$p = 0.11$$

If we had used the chi-square pdf we would find p = 0.073.



## Wrapping up lecture 8

We've had a brief introduction to goodness-of-fit tests:

*p*-value expresses level of agreement between data and hypothesis.

p-value is not the probability of the hypothesis!

This included a look at the widely used  $\chi^2$  test:

statistic = sum of  $(data - prediction)^2 / variance$ .

Often  $\chi^2 \sim$  chi-square pdf  $\rightarrow$  use to get p-value.

(Otherwise may need to use MC.)

Next we'll turn to the second main part of statistics: parameter estimation