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Statistical Data Analysis:  Lecture 9

1 Probability, Bayes’ theorem
2 Random variables and probability densities
3 Expectation values, error propagation
4 Catalogue of pdfs
5 The Monte Carlo method
6 Statistical tests:  general concepts
7 Test statistics, multivariate methods
8 Goodness-of-fit tests
9 Parameter estimation, maximum likelihood
10 More maximum likelihood
11 Method of least squares
12 Interval estimation, setting limits
13 Nuisance parameters, systematic uncertainties
14 Examples of Bayesian approach
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Parameter estimation
The parameters of a pdf are constants that characterize
 its shape, e.g.

r.v.

Suppose we have a sample of observed values:

parameter

We want to find some function of the data to estimate the 
parameter(s):

←  estimator written with a hat

Sometimes we say ‘estimator’ for the function of x1, ..., xn;
‘estimate’ for the value of the estimator with a particular data set.
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Properties of estimators
If we were to repeat the entire measurement, the estimates
from each would follow a pdf:

biasedlarge
variance

best

We want small (or zero) bias (systematic error):

→  average of repeated measurements should tend to true value.

And we want a small variance (statistical error):

→  small bias & variance are in general conflicting criteria
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An estimator for the mean (expectation value)

Parameter:

Estimator:

We find:

(‘sample mean’)
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An estimator for the variance

Parameter:

Estimator:

(factor of n1 makes this so)

(‘sample
variance’)

We find:

where
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The likelihood function
Suppose the entire result of an experiment (set of measurements)
is a collection of numbers x, and suppose the joint pdf for
the data x is a function that depends on a set of parameters :

Now evaluate this function with the data obtained and
regard it as a function of the parameter(s).  This is the 
likelihood function:

(x constant)
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The likelihood function for i.i.d.*. data

Consider n independent observations of x:  x1, ..., xn,  where 

x follows f (x; ).  The joint pdf for the whole data sample is:

In this case the likelihood function is

(xi constant)

* i.i.d. = independent and identically distributed
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Maximum likelihood estimators
If the hypothesized  is close to the true value, then we expect 
a high probability to get data like that which we actually found.

So we define the maximum likelihood (ML) estimator(s) to be 
the parameter value(s) for which the likelihood is maximum.

ML estimators not guaranteed to have any ‘optimal’
properties, (but in practice they’re very good).



G. Cowan Lectures on Statistical Data Analysis Lecture 9  page 9

ML example:  parameter of exponential pdf

Consider exponential pdf,

and suppose we have i.i.d. data,

The likelihood function is

The value of  for which L() is maximum also gives the 
maximum value of its logarithm (the log-likelihood function):
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ML example:  parameter of exponential pdf (2)

Find its maximum by setting 

→

Monte Carlo test:  
generate 50  values
using  = 1:

We find the ML estimate:
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Functions of ML estimators

Suppose we had written the exponential pdf as

i.e., we use  = 1/.  What is the ML estimator for ?

For a function () of a parameter , it doesn’t matter
whether we express L as a function of  or .

The ML estimator of a function () is simply  

So for the decay constant we have

Caveat:   is biased, even though is unbiased.

(bias →0 for n →∞)Can show
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Example of ML:  parameters of Gaussian pdf

Consider independent x1, ..., xn,  with xi ~ Gaussian (,2)

The log-likelihood function is
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Example of ML:  parameters of Gaussian pdf (2)

Set derivatives with respect to , 2 to zero and solve,

We already know that  the estimator for   is unbiased.

But we find, however, so ML estimator

for 2 has a bias, but b→0 for n→∞.  Recall, however, that

is an unbiased estimator for 2.
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Variance of estimators:  Monte Carlo method
Having estimated our parameter we now need to report its
‘statistical error’, i.e., how widely distributed would estimates
be if we were to repeat the entire measurement many times.

One way to do this would be to simulate the entire experiment
many times with a Monte Carlo program (use ML estimate for MC).

For exponential example, from 
sample variance of estimates
we find:

Note distribution of estimates is roughly
Gaussian − (almost) always true for 
ML in large sample limit.



G. Cowan Lectures on Statistical Data Analysis Lecture 9  page 15

Variance of estimators from information inequality
The information inequality (RCF) sets a lower bound on the 
variance of any estimator (not only ML):

Often the bias b is small, and equality either holds exactly or
is a good approximation (e.g. large data sample limit).   Then,

Estimate this using the 2nd derivative of  ln L at its maximum:
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Variance of estimators: graphical method
Expand ln L () about its maximum:

First term is ln Lmax, second term is zero, for third term use 
information inequality (assume equality):

i.e.,

→  to get , change  away from until ln L decreases by 1/2.



G. Cowan Lectures on Statistical Data Analysis Lecture 9  page 17

Example of variance by graphical method

ML example with exponential:

Not quite parabolic ln L since finite sample size (n = 50).
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Wrapping up lecture 9

We’ve seen some main ideas about parameter estimation:

estimators, bias, variance,

and introduced the likelihood function and ML estimators.

Also we’ve seen some ways to determine the variance 
(statistical error) of estimators:

Monte Carlo method
Using the information inequality
Graphical Method

Next we will extend this to cover multiparameter problems,
variable sample size, histogram-based data, ...


