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Outline 
Lecture 1:  Introduction and review of fundamentals 

 Review of probability 
 Parameter estimation, maximum likelihood 
 Statistical tests for discovery and limits 

Lecture 2:  Multivariate methods 
 Neyman-Pearson lemma 
 Fisher discriminant, neural networks 
 Boosted decision trees 

Lecture 3:  Further topics 
 Nuisance parameters (Bayesian and frequentist) 
 Experimental sensitivity 
 Revisiting limits 
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Some statistics books, papers, etc.  
G. Cowan, Statistical Data Analysis, Clarendon, Oxford, 1998 
R.J. Barlow, Statistics: A Guide to the Use of Statistical Methods in 
the Physical Sciences, Wiley, 1989 
Ilya Narsky and Frank C. Porter, Statistical Analysis Techniques in 
Particle Physics, Wiley, 2014.   
L. Lyons, Statistics for Nuclear and Particle Physics, CUP, 1986 
F. James., Statistical and Computational Methods in Experimental 
Physics, 2nd ed., World Scientific, 2006 
S. Brandt, Statistical and Computational Methods in Data 
Analysis, Springer, New York, 1998 (with program library on CD) 
K.A. Olive et al. (Particle Data Group), Review of Particle Physics,  
Chin. Phys. C, 38, 090001 (2014); see also pdg.lbl.gov sections 
on probability, statistics, Monte Carlo 
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Theory ↔ Statistics ↔ Experiment 

+ simulation 
of detector 
and cuts 

Theory (model, hypothesis): Experiment: 

+ data 
selection 
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Quick review of probablility 
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Frequentist Statistics − general philosophy  
In frequentist statistics, probabilities are associated only with 
the data, i.e., outcomes of repeatable observations (shorthand:     ). 

 Probability = limiting frequency 

Probabilities such as 

 P (Higgs boson exists),  
 P (0.117 < αs < 0.121),  

etc. are either 0 or 1, but we don’t know which. 
The tools of frequentist statistics tell us what to expect, under 
the assumption of certain probabilities, about hypothetical 
repeated observations. 

A hypothesis is is preferred if the data are found in a region of 
high predicted probability (i.e., where an alternative hypothesis 
predicts lower probability). 
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Bayesian Statistics − general philosophy  
In Bayesian statistics, use subjective probability for hypotheses: 

posterior probability, i.e.,  
after seeing the data 

prior probability, i.e., 
before seeing the data 

probability of the data assuming  
hypothesis H (the likelihood) 

normalization involves sum  
over all possible hypotheses 

Bayes’ theorem has an “if-then” character:  If your prior 
probabilities were π(H), then it says how these probabilities 
should change in the light of the data. 

 No general prescription for priors (subjective!) 
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Distribution, likelihood, model 
Suppose the outcome of a measurement is x. (e.g., a number of  
events, a histogram, or some larger set of numbers). 

The probability density (or mass) function or ‘distribution’ of x, 
which may depend on parameters θ, is: 

P(x|θ)       (Independent variable is x; θ is a constant.) 

If we evaluate P(x|θ) with given data and regard it as a 
function of the parameter(s), then this is the likelihood: 

We will use the term ‘model’ to refer to the full function P(x|θ) 
that contains the dependence both on x and θ. 

L(θ) = P(x|θ)         (Data x fixed; treat L as function of θ.) 
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Quick review of frequentist parameter estimation 
Suppose we have a pdf characterized by one or more parameters: 

random variable 

Suppose we have a sample of observed values: 

parameter 

We want to find some function of the data to estimate the  
parameter(s): 

←  estimator written with a hat 

Sometimes we say ‘estimator’ for the function of x1, ..., xn; 
‘estimate’ for the value of the estimator with a particular data set. 
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Maximum likelihood 
The most important frequentist method for 
constructing estimators is to take the value of  
the parameter(s) that maximize the likelihood: 

The resulting estimators are functions of  
the data and thus characterized by a sampling  
distribution with a given (co)variance: 

In general they may have a nonzero bias: 

Under conditions usually satisfied in practice, bias of ML estimators 
is zero in the large sample limit, and the variance is as small as 
possible for unbiased estimators.   

ML estimator may not in some cases be regarded as the optimal  
trade-off between these criteria (cf. regularized unfolding). 
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ML example:  parameter of exponential pdf 

Consider exponential pdf, 

and suppose we have i.i.d. data, 

The likelihood function is 

The value of τ for which L(τ) is maximum also gives the  
maximum value of its logarithm (the log-likelihood function): 
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ML example:  parameter of exponential pdf (2) 

Find its maximum by setting  

→ 

Monte Carlo test:   
 generate 50  values 
 using τ = 1: 

 
We find the ML estimate: 
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ML example:  parameter of exponential pdf (3) 

For the ML estimator  

For the exponential distribution one has for mean, variance: 

we therefore find 

→ 

→ 
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Variance of estimators from information inequality 
The information inequality (RCF) sets a lower bound on the  
variance of any estimator (not only ML): 

Often the bias b is small, and equality either holds exactly or 
is a good approximation (e.g. large data sample limit).   Then, 

Estimate this using the 2nd derivative of  ln L at its maximum: 

Minimum Variance 
Bound (MVB)  
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Variance of estimators: graphical method 
Expand ln L (θ) about its maximum: 

First term is ln Lmax, second term is zero, for third term use  
information inequality (assume equality): 

i.e., 

→  to get , change θ away from until ln L decreases by 1/2. 
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Example of variance by graphical method 

ML example with exponential: 

Not quite parabolic ln L since finite sample size (n = 50). 
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Information inequality for N parameters 
Suppose we have estimated N parameters    

The (inverse) minimum variance bound is given by the  
Fisher information matrix: 

The information inequality then states that V - I-1 is a positive 
semi-definite matrix, where                                  Therefore 

Often use I-1 as an approximation for covariance matrix,  
estimate using e.g. matrix of 2nd derivatives at maximum of L. 

N 
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Frequentist statistical tests  
Consider a hypothesis H0 and alternative H1. 

A test of H0  is defined by specifying a critical region w of the 
data space such that there is no more than some (small) probability 
α, assuming H0 is correct,  to observe the data there, i.e., 

  P(x ∈ w | H0 ) ≤ α 

Need inequality if data are 
discrete. 

α is called the size or  
significance level of the test. 

If x is observed in the  
critical region, reject H0. 

data space Ω 

critical region w 
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Definition of a test (2) 
But in general there are an infinite number of possible critical 
regions that give the same significance level α. 

So the choice of the critical region for a test of H0  needs to take 
into account the alternative hypothesis H1. 

Roughly speaking, place the critical region where there is a low  
probability to be found if H0 is true, but high if H1 is true: 
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Type-I, Type-II errors  
Rejecting the hypothesis H0 when it is true is a Type-I error.   

The maximum probability for this is the size of  the test: 

 P(x ∈ W | H0 ) ≤ α

But we might also accept H0 when it is false, and an alternative  
H1 is true. 

This is called a Type-II error, and occurs with probability 

 P(x ∈ S - W | H1 ) = β 

One minus this is called the power of the test with respect to 
the alternative H1: 

 Power = 1 - β 
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p-values 
Suppose hypothesis H predicts pdf  
observations 

for a set of 

We observe a single point in this space: 

What can we say about the validity of H in light of the data? 

Express level of compatibility by giving the p-value for H: 

p = probability, under assumption of H, to observe data with  
equal or lesser compatibility with H relative to the data we got.  

This is not the probability that H is true! 

Requires one to say what part of data space constitutes lesser 
compatibility with H than the observed data (implicitly this 
means that region gives better agreement with some alternative). 
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Test statistics and p-values 
Consider a parameter µ proportional to rate of signal process. 

Often define a function of the data (test statistic) qµ that reflects  
level of agreement between the data and the hypothesized value µ. 

Usually define qµ so that higher values increasingly incompatibility  
with the data (more compatible with a relevant alternative). 

We can define critical region of test of µ  by qµ ≥ const., 
or equivalently define the p-value of µ as: 

Equivalent formulation of test:  reject µ if pµ < α. 

pdf of qµ assuming µ observed value of qµ 
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Confidence interval from inversion of a test 

Carry out a test of size α for all values of µ. 

The values that are not rejected constitute a confidence interval 
for µ at confidence level CL = 1 – α. 

 The confidence interval will by construction contain the 
 true value of µ with probability of at least 1 – α. 

The interval will cover the true value of µ with probability ≥ 1 - α. 

Equivalently, the parameter values in the confidence interval have 
p-values of at least α. 

To find edge of interval (the “limit”), set pµ = α and solve for µ. 
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Significance from p-value 
Often define significance Z as the number of standard deviations 
that a Gaussian variable would fluctuate in one direction 
to give the same p-value. 

1 - TMath::Freq 

TMath::NormQuantile 
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The Poisson counting experiment 
Suppose we do a counting experiment and observe n events. 

 Events could be from signal process or from background –  
 we only count the total number. 

Poisson model:   

s = mean (i.e., expected) # of signal events 

b = mean # of background events 

Goal is to make inference about s, e.g., 

     test s = 0 (rejecting H0 ≈ “discovery of signal process”) 

     test all non-zero s  (values not rejected =  confidence interval) 

In both cases need to ask what is relevant alternative hypothesis. 
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Poisson counting experiment: discovery p-value 
Suppose b = 0.5 (known), and we observe nobs = 5.   

Should we claim evidence for a new discovery?   

    Take n itself as the test statistic, p-value for hypothesis s = 0 is 
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Poisson counting experiment: discovery significance 

In fact this tradition should be 
revisited:  p-value intended to 
quantify probability of a signal-
like fluctuation assuming 
background only; not intended to 
cover, e.g., hidden systematics, 
plausibility signal model, 
compatibility of data with signal, 
“look-elsewhere effect”  
(~multiple testing), etc. 

Equivalent significance for p = 1.7 × 10-4:   

Often claim discovery if Z > 5 (p < 2.9 × 10-7, i.e., a “5-sigma effect”) 
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Frequentist upper limit on Poisson parameter 
Consider again the case of observing n ~ Poisson(s + b). 

Suppose b = 4.5, nobs = 5.  Find upper limit on s at 95% CL. 

Relevant alternative is s = 0 (critical region at low n) 

p-value of hypothesized s is P(n ≤ nobs; s, b) 

Upper limit sup at CL = 1 – α found from 
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Frequentist upper limit on Poisson parameter 
Upper limit sup at CL = 1 – α found from ps = α.  

nobs = 5,  

b = 4.5 
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n ~ Poisson(s+b):  frequentist upper limit on s 
For low fluctuation of n formula can give negative result for sup; 
i.e. confidence interval is empty. 
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Prototype search analysis  
Search for signal in a region of phase space; result is histogram 
of some variable x giving numbers: 
 
 
Assume the ni are Poisson distributed with expectation values 

signal 

where 

background 

strength parameter 
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Prototype analysis (II) 
Often also have a subsidiary measurement that constrains some 
of the background and/or shape parameters: 
 
 
Assume the mi are Poisson distributed with expectation values 

nuisance parameters (θs, θb,btot) 
Likelihood function is 
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The profile likelihood ratio 
Base significance test on the profile likelihood ratio: 

maximizes L for 
specified µ

maximize L

Define critical region of test of µ by the region of data space 
that gives the lowest values of λ(µ).  

Important advantage of profile LR is that its distribution becomes 
independent of nuisance parameters in large sample limit. 
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Test statistic for discovery 
Suppose relevant alternative to background-only (µ = 0) is µ ≥ 0. 

So take critical region for test of µ = 0 corresponding to high q0  
and       > 0 (data characteristic for µ ≥ 0). 

That is, to test background-only hypothesis define statistic 

i.e. here only large (positive) observed signal strength is evidence  
against the background-only hypothesis. 

Note that even though here physically µ ≥ 0, we allow  
to be negative.  In large sample limit its distribution becomes 
Gaussian, and this will allow us to write down simple  
expressions for distributions of our test statistics. 

µ̂
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Distribution of q0 in large-sample limit 
Assuming approximations valid in the large sample (asymptotic) 
limit, we can write down the full distribution of q0 as 

The special case µ′ = 0 is a “half chi-square” distribution:  

In large sample limit, f(q0|0) independent of nuisance parameters; 
f(q0|µ′)  depends on nuisance parameters through σ. 

Cowan, Cranmer, Gross, Vitells, arXiv:1007.1727, EPJC 71 (2011) 1554 
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p-value for discovery 
Large q0 means increasing incompatibility between the data 
and hypothesis, therefore p-value for an observed q0,obs is 

use e.g. asymptotic formula 

From p-value get  
equivalent significance, 
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Cumulative distribution of q0, significance 

From the pdf, the cumulative distribution of q0 is found to be  

The special case µ′ = 0 is  

The p-value of the µ = 0 hypothesis is 

Therefore the discovery significance Z is simply 

Cowan, Cranmer, Gross, Vitells, arXiv:1007.1727, EPJC 71 (2011) 1554 
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Monte Carlo test of asymptotic formula 

Here take τ = 1. 

Asymptotic formula is  
good approximation to 5σ
level (q0 = 25) already for 
b ~ 20. 

Cowan, Cranmer, Gross, Vitells, arXiv:1007.1727, EPJC 71 (2011) 1554 



I.e. when setting an upper limit, an upwards fluctuation of the data  
is not taken to mean incompatibility with the hypothesized µ:   

From observed qµ find p-value: 

Large sample approximation:    

95% CL upper limit on µ is highest value for which p-value is  
not less than 0.05. 

G. Cowan  TRISEP 2016 / Statistics Lecture 1 39 

Test statistic for upper limits 
For purposes of setting an upper limit on µ use 

where 

Cowan, Cranmer, Gross, Vitells, arXiv:1007.1727, EPJC 71 (2011) 1554 
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Monte Carlo test of asymptotic formulae 
Consider again n ~ Poisson (µs + b), m ~ Poisson(τb) 
Use qµ to find p-value of hypothesized µ values. 

E.g.  f (q1|1) for p-value of µ =1. 

Typically interested in 95% CL, i.e., 
p-value threshold = 0.05, i.e., 
q1 = 2.69 or  Z1 = √q1 =  1.64. 

Median[q1 |0] gives “exclusion 
sensitivity”. 

Here asymptotic formulae good 
for s = 6, b = 9. 

Cowan, Cranmer, Gross, Vitells, arXiv:1007.1727, EPJC 71 (2011) 1554 
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Finishing Lecture 1
So far we have introduced the basic ideas of: 

 Probability (frequentist, subjective) 

 Parameter estimation (maximum likelihood) 
 Statistical tests (reject H if data found in critical region) 
 Confidence intervals (region of parameter space not 
 rejected by a test of each parameter value) 

We saw tests based on the profile likelihood ratio statistic 
 Sampling distribution independent of nuisance parameters 
 in large sample limit; simple formulae for p-value. 
 Formula for upper limit can give empty confidence interval 
 if e.g. data fluctuate low relative to expected background. 
 More on this later. 
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Extra slides 
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Large sample distribution of the profile 
likelihood ratio (Wilks’ theorem, cont.) 

Suppose problem has likelihood L(θ, ν), with 

← parameters of interest 

← nuisance parameters 

Want to test point in θ-space.  Define profile likelihood ratio: 

,   where  

and define qθ = -2 ln λ(θ). 

Wilks’ theorem says that distribution f (qθ|θ,ν) approaches the 
chi-square pdf for N degrees of freedom for large sample (and  
regularity conditions), independent of the nuisance parameters ν. 

“profiled” values of ν 
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p-values in cases with nuisance parameters 
Suppose we have a statistic qθ that we use to test a hypothesized 
value of a parameter θ, such that the p-value of θ is 

Fundamentally we want to reject θ only if pθ < α for all ν. 
 → “exact” confidence interval 

Recall that for statistics based on the profile likelihood ratio, the 
distribution f (qθ|θ,ν) becomes independent of the nuisance 
parameters in the large-sample limit. 

But in general for finite data samples this is not true; one may be 
unable to reject some θ values if all values of ν must be 
considered, even those strongly disfavoured by the data (resulting 
interval for θ “overcovers”). 
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Profile construction (“hybrid resampling”) 

Approximate procedure is to reject θ if pθ ≤ α where 
the p-value is computed assuming the profiled values of the  
nuisance parameters: 

“double hat” notation means 
value of parameter that maximizes 
likelihood for the given θ. 

The resulting confidence interval will have the correct coverage 
for the points  (θ, ˆ̂ν(θ)) . 

Elsewhere it may under- or overcover, but this is usually as good 
as we can do (check with MC if crucial or small sample problem). 
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How to read the p0 plot 
The “local” p0 means the p-value of the background-only 
hypothesis obtained from the test of µ = 0 at each individual mH, 
without any correct for the Look-Elsewhere Effect. 

The “Expected” (dashed) curve gives the median p0 under 
assumption of the SM Higgs (µ = 1) at each mH. 

ATLAS, Phys. Lett. B 716 (2012) 1-29 

The blue band gives the 
width of the distribution 
(±1σ) of significances 
under assumption of the 
SM Higgs. 
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How to read the green and yellow limit plots 
For every value of mH, find the upper limit on µ. 

Also for each mH, determine the distribution of upper limits µup one 
would obtain under the hypothesis of µ = 0.   

The dashed curve is the median µup, and the green (yellow) bands 
give the ± 1σ (2σ) regions of this distribution. 

ATLAS, Phys. Lett. B 716 (2012) 1-29 
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How to read the “blue band” 
On the plot of     versus mH, the blue band is defined by  µ̂

i.e., it approximates the 1-sigma error band (68.3% CL conf. int.) 
ATLAS, Phys. Lett. B 716 (2012) 1-29 


