Statistical Methods for Particle Physics Lecture 2: Introduction to Multivariate Methods

www.pp.rhul.ac.uk/~cowan/stat_trisep.html

Lectures on Statistics TRISEP School 27, 28 June 2016

Glen Cowan
Physics Department
Royal Holloway, University of London
g.cowan@rhul.ac.uk
www.pp.rhul.ac.uk/~cowan

Outline

Lecture 1: Introduction and review of fundamentals
Probability, random variables, pdfs
Parameter estimation, maximum likelihood
Statistical tests for discovery and limits

→ Lecture 2: Multivariate methods

Neyman-Pearson lemma
Fisher discriminant, neural networks
Boosted decision trees

Lecture 3: Systematic uncertainties and further topics
Nuisance parameters (Bayesian and frequentist)
Experimental sensitivity
The look-elsewhere effect

Resources on multivariate methods

C.M. Bishop, Pattern Recognition and Machine Learning, Springer, 2006

T. Hastie, R. Tibshirani, J. Friedman, The Elements of Statistical Learning, 2nd ed., Springer, 2009

R. Duda, P. Hart, D. Stork, Pattern Classification, 2nd ed., Wiley, 2001

A. Webb, Statistical Pattern Recognition, 2nd ed., Wiley, 2002.

Ilya Narsky and Frank C. Porter, *Statistical Analysis Techniques in Particle Physics*, Wiley, 2014.

朱永生(编著),实验数据多元统计分析,科学出版社, 北京,2009。

Software

Rapidly growing area of development – two important resources:

TMVA, Höcker, Stelzer, Tegenfeldt, Voss, Voss, physics/0703039

From tmva.sourceforge.net, also distributed with ROOT

Variety of classifiers

Good manual, widely used in HEP

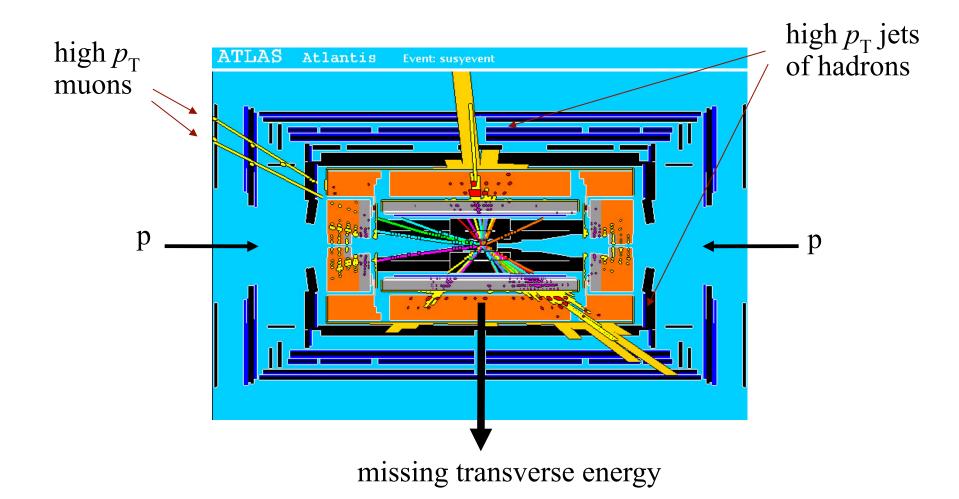
scikit-learn

Python-based tools for Machine Learning

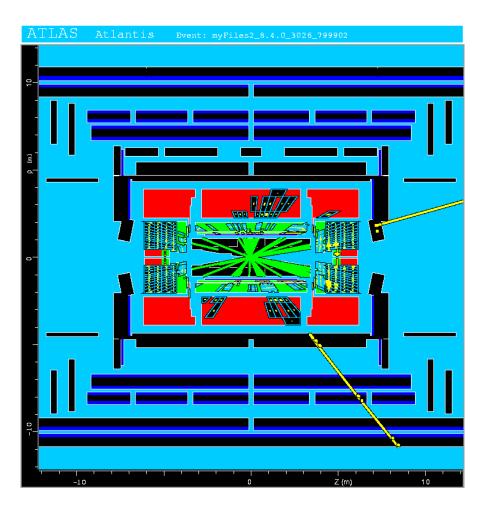
scikit-learn.org

Large user community

A simulated SUSY event in ATLAS



Background events



This event from Standard Model ttbar production also has high $p_{\rm T}$ jets and muons, and some missing transverse energy.

→ can easily mimic a SUSY event.

Defining a multivariate critical region

For each event, measure, e.g.,

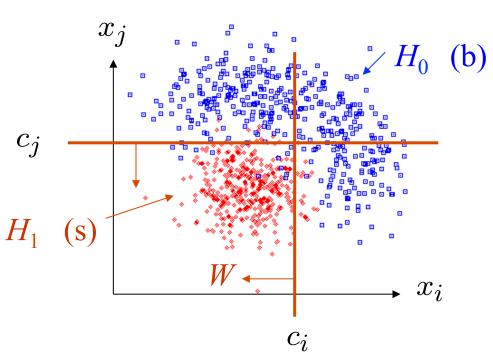
$$x_1 = \text{missing energy}, x_2 = \text{electron } p_T, x_3 = \dots$$

Each event is a point in *n*-dimensional *x*-space; critical region is now defined by a 'decision boundary' in this space. What is best way to determine the boundary?

Perhaps with 'cuts':

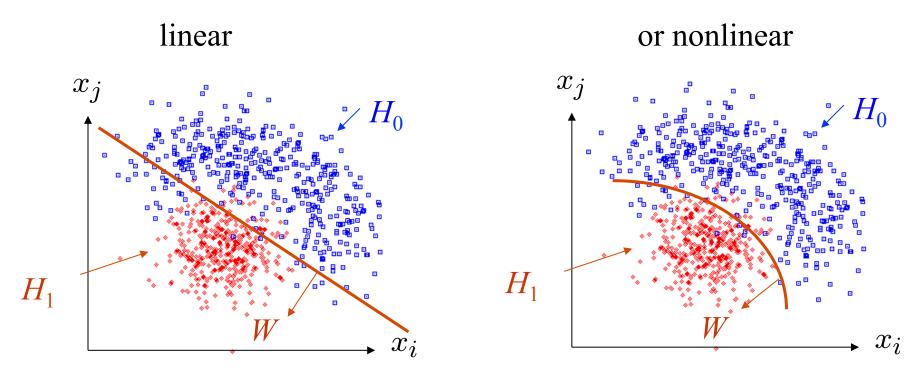
$$x_i < c_i$$

$$x_i < c_i$$
$$x_j < c_j$$



Other multivariate decision boundaries

Or maybe use some other sort of decision boundary:



Multivariate methods for finding optimal critical region have become a Big Industry (neural networks, boosted decision trees,...), benefitting from recent advances in Machine Learning.

Test statistics

The boundary of the critical region for an *n*-dimensional data space $x = (x_1, ..., x_n)$ can be defined by an equation of the form

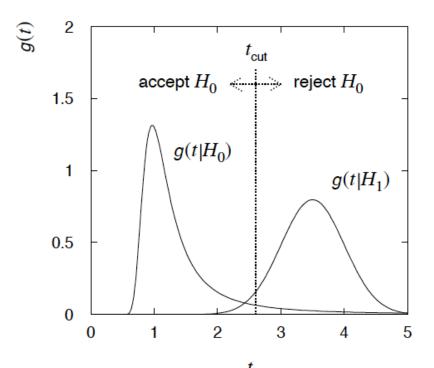
$$t(x_1,\ldots,x_n)=t_{\mathrm{cut}}$$

where $t(x_1,...,x_n)$ is a scalar test statistic.

We can work out the pdfs $g(t|H_0)$, $g(t|H_1)$, ...

Decision boundary is now a single 'cut' on t, defining the critical region.

So for an *n*-dimensional problem we have a corresponding 1-d problem.



Test statistic based on likelihood ratio

How can we choose a test's critical region in an 'optimal way'?

Neyman-Pearson lemma states:

To get the highest power for a given significance level in a test of H_0 , (background) versus H_1 , (signal) the critical region should have

$$\frac{f(\mathbf{x}|H_1)}{f(\mathbf{x}|H_0)} > c$$

inside the region, and $\leq c$ outside, where c is a constant chosen to give a test of the desired size.

Equivalently, optimal scalar test statistic is

$$t(\mathbf{x}) = \frac{f(\mathbf{x}|H_1)}{f(\mathbf{x}|H_0)}$$

N.B. any monotonic function of this is leads to the same test.

Neyman-Pearson doesn't usually help

We usually don't have explicit formulae for the pdfs f(x|s), f(x|b), so for a given x we can't evaluate the likelihood ratio

$$t(\mathbf{x}) = \frac{f(\mathbf{x}|s)}{f(\mathbf{x}|b)}$$

Instead we may have Monte Carlo models for signal and background processes, so we can produce simulated data:

generate
$$\mathbf{x} \sim f(\mathbf{x}|\mathbf{s}) \rightarrow \mathbf{x}_1,...,\mathbf{x}_N$$

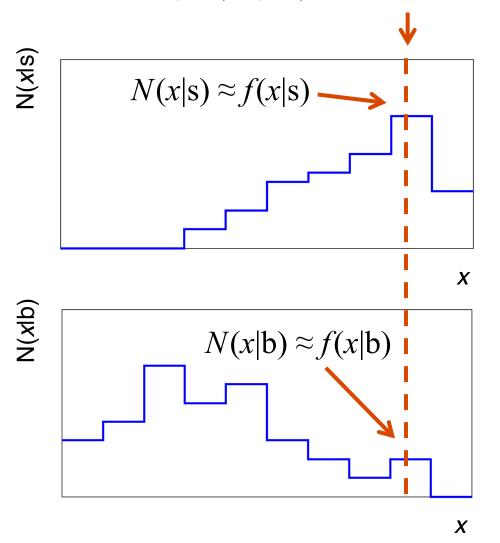
generate $\mathbf{x} \sim f(\mathbf{x}|\mathbf{b}) \rightarrow \mathbf{x}_1,...,\mathbf{x}_N$

This gives samples of "training data" with events of known type.

Can be expensive (1 fully simulated LHC event ~ 1 CPU minute).

Approximate LR from histograms

Want t(x) = f(x|s)/f(x|b) for x here



One possibility is to generate MC data and construct histograms for both signal and background.

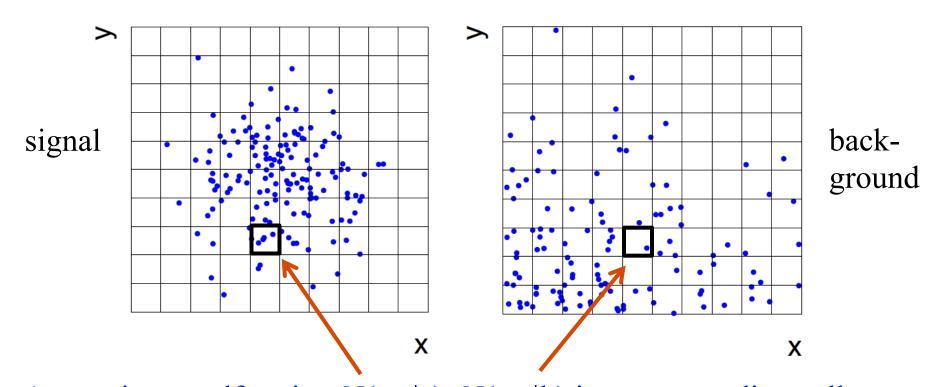
Use (normalized) histogram values to approximate LR:

$$t(x) pprox rac{N(x|s)}{N(x|b)}$$

Can work well for single variable.

Approximate LR from 2D-histograms

Suppose problem has 2 variables. Try using 2-D histograms:



Approximate pdfs using N(x,y|s), N(x,y|b) in corresponding cells.

But if we want M bins for each variable, then in n-dimensions we have M^n cells; can't generate enough training data to populate.

 \rightarrow Histogram method usually not usable for n > 1 dimension.

Strategies for multivariate analysis

Neyman-Pearson lemma gives optimal answer, but cannot be used directly, because we usually don't have f(x|s), f(x|b).

Histogram method with M bins for n variables requires that we estimate M^n parameters (the values of the pdfs in each cell), so this is rarely practical.

A compromise solution is to assume a certain functional form for the test statistic t(x) with fewer parameters; determine them (using MC) to give best separation between signal and background.

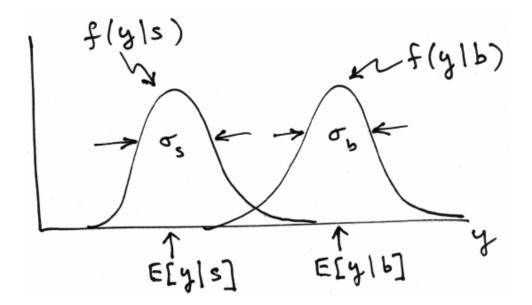
Alternatively, try to estimate the probability densities f(x|s) and f(x|b) (with something better than histograms) and use the estimated pdfs to construct an approximate likelihood ratio.

Linear test statistic

Suppose there are *n* input variables: $x = (x_1, ..., x_n)$.

Consider a linear function:
$$y(\mathbf{x}) = \sum_{i=1}^{n} w_i x_i$$

For a given choice of the coefficients $\mathbf{w} = (w_1, ..., w_n)$ we will get pdfs $f(y|\mathbf{s})$ and $f(y|\mathbf{b})$:



Linear test statistic

Fisher: to get large difference between means and small widths for f(y|s) and f(y|b), maximize the difference squared of the expectation values divided by the sum of the variances:

$$J(\mathbf{w}) = \frac{(E[y|s] - E[y|b])^2}{V[y|s] + V[y|b]}$$

Setting
$$\partial J/\partial w_i = 0$$
 gives for $\mathbf{w} = (w_1, \dots w_n)$:

$$\mathbf{w} \propto W^{-1}(\boldsymbol{\mu}_{\mathrm{b}} - \boldsymbol{\mu}_{\mathrm{s}})$$

$$W_{ij} = \operatorname{cov}[x_i, x_j | \mathbf{s}] + \operatorname{cov}[x_i, x_j | \mathbf{b}]$$

$$\mu_{i,s} = E[x_i|s], \qquad \mu_{i,b} = E[x_i|b]$$

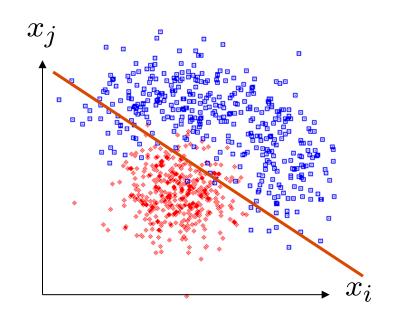
The Fisher discriminant

The resulting coefficients w_i define a Fisher discriminant.

Coefficients defined up to multiplicative constant; can also add arbitrary offset, i.e., usually define test statistic as

$$y(\mathbf{x}) = w_0 + \sum_{i=1}^n w_i x_i$$

Boundaries of the test's critical region are surfaces of constant y(x), here linear (hyperplanes):



Fisher discriminant for Gaussian data

Suppose the pdfs of the input variables, f(x|s) and f(x|b), are both multivariate Gaussians with same covariance but different means:

$$f(\mathbf{x}|\mathbf{s}) = \text{Gauss}(\boldsymbol{\mu}_{\mathbf{s}}, V)$$
 Same covariance $V_{ij} = \text{cov}[x_i, x_j]$

In this case it can be shown that the Fisher discriminant is

$$y(\mathbf{x}) \sim \ln \frac{f(\mathbf{x}|\mathbf{s})}{f(\mathbf{x}|\mathbf{b})}$$

i.e., it is a monotonic function of the likelihood ratio and thus leads to the same critical region. So in this case the Fisher discriminant provides an optimal statistical test.

Transformation of inputs

If the data are not Gaussian with equal covariance, a linear decision boundary is not optimal. But we can try to subject the data to a transformation

 $\varphi_1(\vec{x}), \ldots, \varphi_m(\vec{x})$

and then treat the ϕ_i as the new input variables. This is often called "feature space" and the ϕ_i are "basis functions". The basis functions can be fixed or can contain adjustable parameters which we optimize with training data (cf. neural networks).

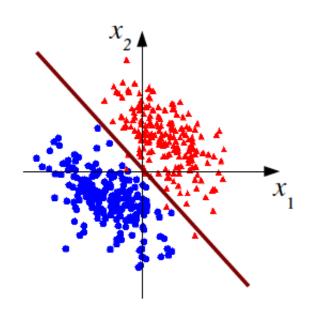
In other cases we will see that the basis functions only enter as dot products

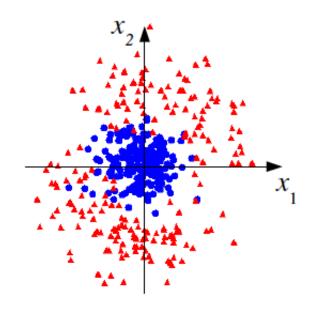
$$\vec{\varphi}(\vec{x}_i) \cdot \vec{\varphi}(\vec{x}_j) = K(\vec{x}_i, \vec{x}_j)$$

and thus we will only need the "kernel function" $K(x_i, x_j)$

Linear decision boundaries

A linear decision boundary is only optimal when both classes follow multivariate Gaussians with equal covariances and different means.

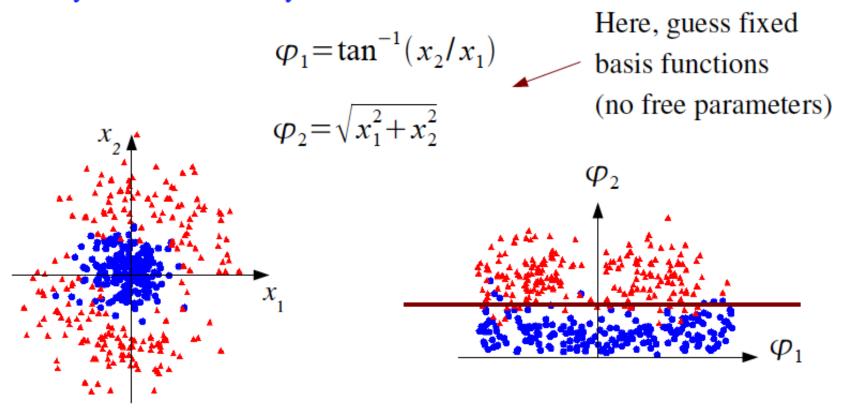




For some other cases a linear boundary is almost useless.

Nonlinear transformation of inputs

We can try to find a transformation, $x_1, ..., x_n \rightarrow \varphi_1(\vec{x}), ..., \varphi_m(\vec{x})$ so that the transformed "feature space" variables can be separated better by a linear boundary:



Neural networks

Neural networks originate from attempts to model neural processes (McCulloch and Pitts, 1943; Rosenblatt, 1962).

Widely used in many fields, and for many years the only "advanced" multivariate method popular in HEP.

We can view a neural network as a specific way of parametrizing the basis functions used to define the feature space transformation.

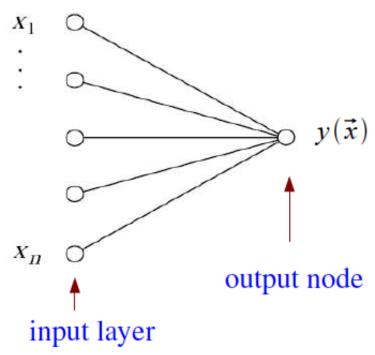
The training data are then used to adjust the parameters so that the resulting discriminant function has the best performance.

The single layer perceptron

Define the discriminant using
$$y(\vec{x}) = h \left(w_0 + \sum_{i=1}^n w_i x_i \right)$$

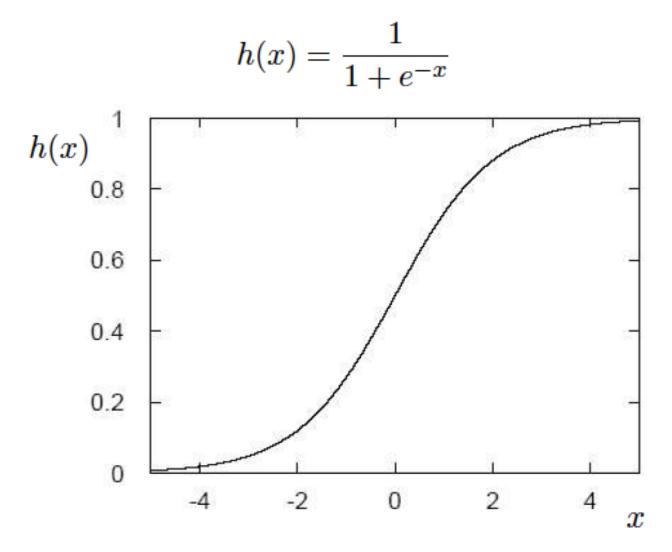
where h is a nonlinear, monotonic activation function; we can use e.g. the logistic sigmoid $h(x)=(1+e^{-x})^{-1}$.

If the activation function is monotonic, the resulting y(x) is equivalent to the original linear discriminant. This is an example of a "generalized linear model" called the single layer perceptron.



The activation function

For activation function $h(\cdot)$ often use logistic sigmoid:



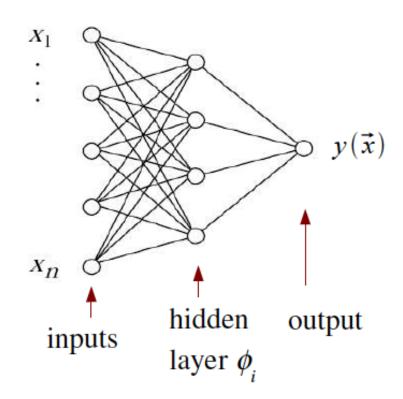
The multilayer perceptron

Now use this idea to define not only the output y(x), but also the set of transformed inputs $\varphi_1(\vec{x}), \dots, \varphi_m(\vec{x})$ that form a "hidden layer":

Superscript for weights indicates layer number

$$\varphi_i(\vec{x}) = h \left(w_{i0}^{(1)} + \sum_{j=1}^n w_{ij}^{(1)} x_j \right)$$

$$y(\vec{x}) = h \left(w_{10}^{(2)} + \sum_{j=1}^{n} w_{1j}^{(2)} \varphi_j(\vec{x}) \right)$$



This is the multilayer perceptron, our basic neural network model; straightforward to generalize to multiple hidden layers.

Network architecture

Theorem: An MLP with a single hidden layer having a sufficiently large number of nodes can approximate arbitrarily well the optimal decision boundary.

Holds for any continuous non-polynomial activation function Leshno, Lin, Pinkus and Schocken (1993) Neural Networks 6, 861-867

However, the number of required nodes may be very large; cannot train well with finite samples of training data.

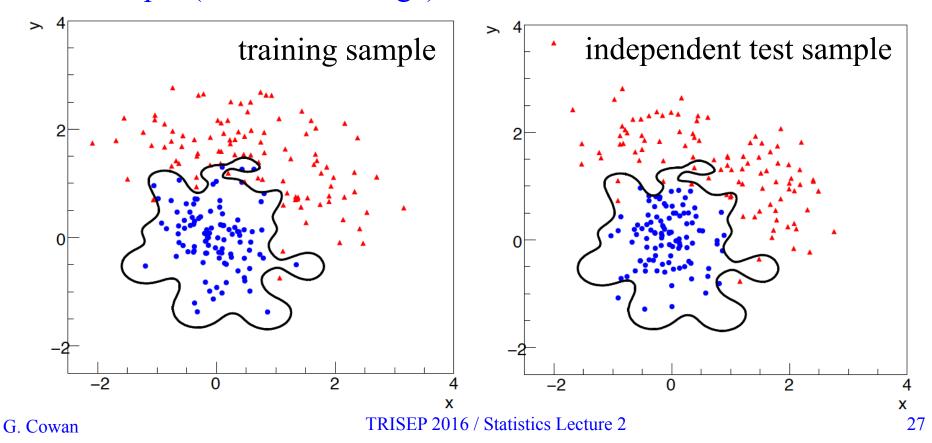
Recent advances in *Deep Neural Networks* have shown important advantages in having multiple hidden layers.

For a particle physics application of Deep Learning, see e.g. Baldi, Sadowski and Whiteson, *Nature Communications* 5 (2014); arXiv:1402.4735.

Overtraining

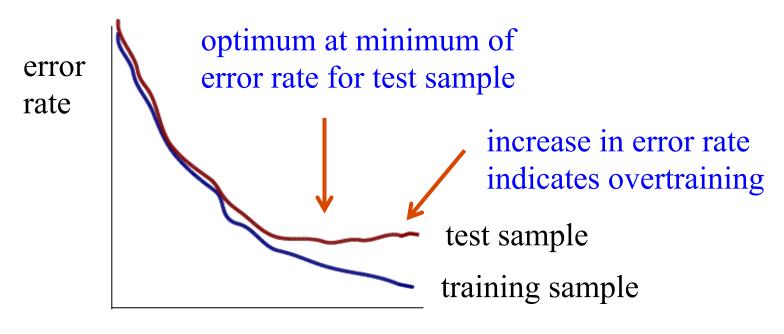
Including more parameters in a classifier makes its decision boundary increasingly flexible, e.g., more nodes/layers for a neural network.

A "flexible" classifier may conform too closely to the training points; the same boundary will not perform well on an independent test data sample (\rightarrow "overtraining").



Monitoring overtraining

If we monitor the fraction of misclassified events (or similar, e.g., error function E(w)) for test and training samples, it will usually decrease for both as the boundary is made more flexible:

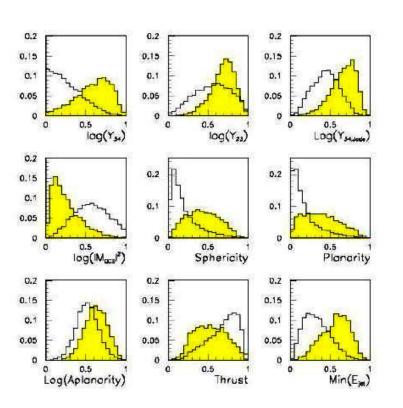


flexibility (e.g., number of nodes/layers in MLP)

Neural network example from LEP II

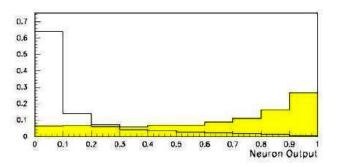
Signal: $e^+e^- \rightarrow W^+W^-$ (often 4 well separated hadron jets)

Background: $e^+e^- \rightarrow qqgg$ (4 less well separated hadron jets)



← input variables based on jet structure, event shape, ... none by itself gives much separation.

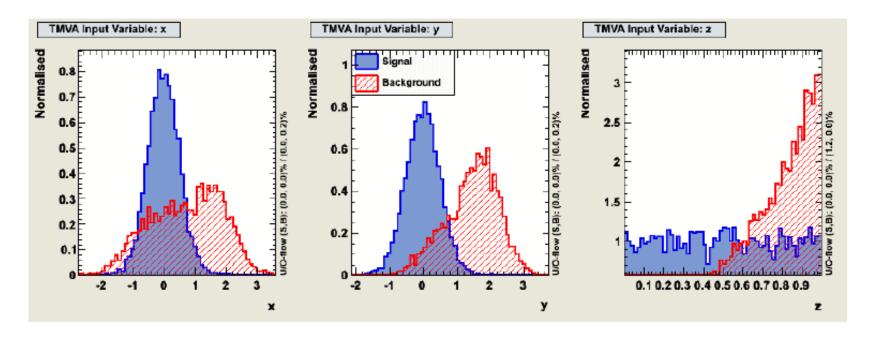
Neural network output:



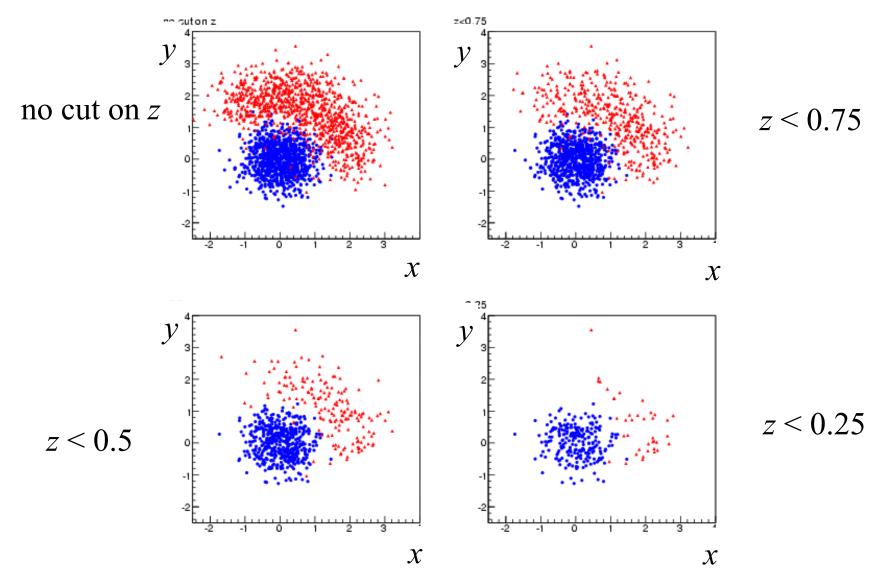
(Garrido, Juste and Martinez, ALEPH 96-144)

Test example with TMVA

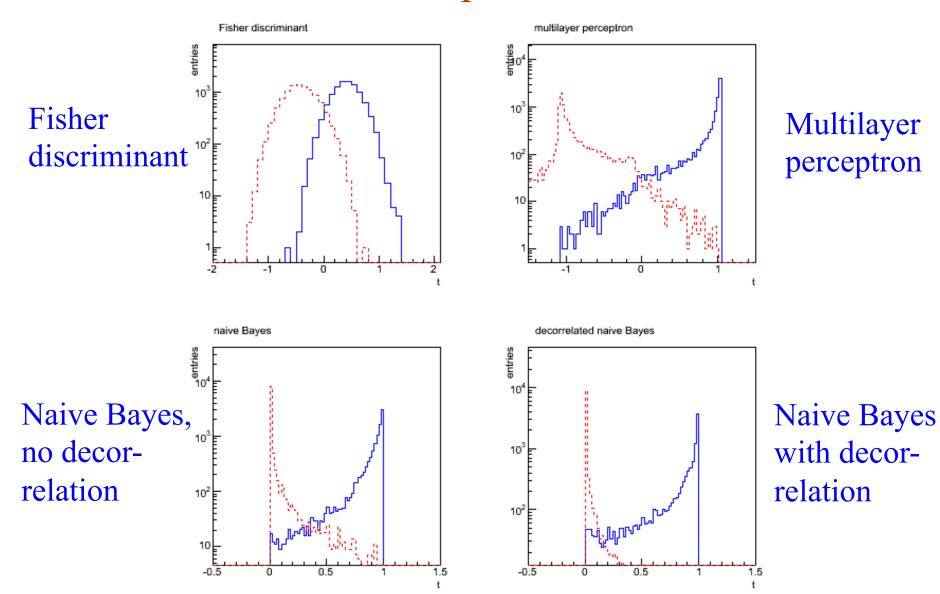
Each event characterized by 3 variables, x, y, z:



Test example (x, y, z)

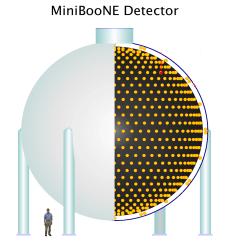


Test example results

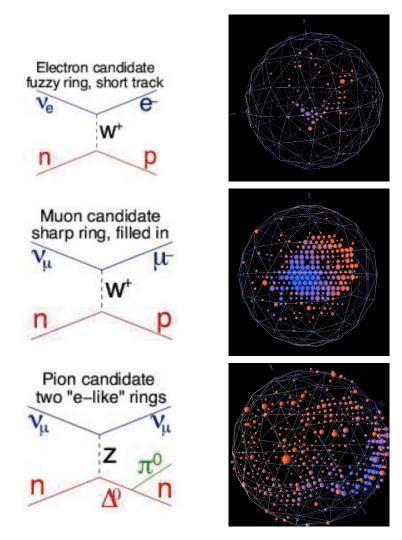


Particle i.d. in MiniBooNE

Detector is a 12-m diameter tank of mineral oil exposed to a beam of neutrinos and viewed by 1520 photomultiplier tubes:



Search for v_{μ} to v_{e} oscillations required particle i.d. using information from the PMTs.



H.J. Yang, MiniBooNE PID, DNP06

Decision trees

Out of all the input variables, find the one for which with a single cut gives best improvement in signal purity:

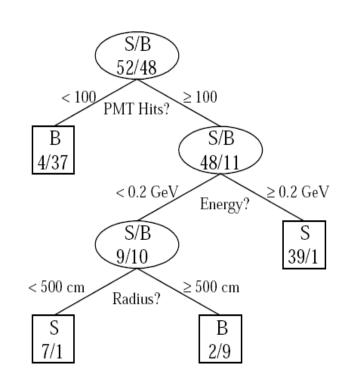
$$P = \frac{\sum_{\text{signal}} w_i}{\sum_{\text{signal}} w_i + \sum_{\text{background}} w_i}$$

where w_i is the weight of the *i*th event.

Resulting nodes classified as either signal/background.

Iterate until stop criterion reached based on e.g. purity or minimum number of events in a node.

The set of cuts defines the decision boundary.



Example by MiniBooNE experiment, B. Roe et al., NIM 543 (2005) 577

Finding the best single cut

The level of separation within a node can, e.g., be quantified by the *Gini coefficient*, calculated from the (s or b) purity as:

$$G = p(1-p)$$

For a cut that splits a set of events a into subsets b and c, one can quantify the improvement in separation by the change in weighted Gini coefficients:

$$\Delta = W_a G_a - W_b G_b - W_c G_c$$
 where, e.g., $W_a = \sum_{i \in a} w_i$

Choose e.g. the cut to the maximize Δ ; a variant of this scheme can use instead of Gini e.g. the misclassification rate:

$$\varepsilon = 1 - \max(p, 1 - p)$$

Decision tree classifier

The terminal nodes (leaves) are classified a signal or background depending on majority vote (or e.g. signal fraction greater than a specified threshold).

This classifies every point in input-variable space as either signal or background, a decision tree classifier, with discriminant function

f(x) = 1 if x in signal region, -1 otherwise

Decision trees tend to be very sensitive to statistical fluctuations in the training sample.

Methods such as boosting can be used to stabilize the tree.

Boosting

Boosting is a general method of creating a set of classifiers which can be combined to achieve a new classifier that is more stable and has a smaller error than any individual one.

Often applied to decision trees but, can be applied to any classifier.

Suppose we have a training sample *T* consisting of *N* events with

$$x_1, ..., x_N$$
 event data vectors (each x multivariate) $y_1, ..., y_N$ true class labels, +1 for signal, -1 for background

 w_1, \dots, w_N event weights

Now define a rule to create from this an ensemble of training samples T_1, T_2, \dots , derive a classifier from each and average them.

Trick is to create modifications in the training sample that give classifiers with smaller error rates than those of the preceding ones.

A successful example is AdaBoost (Freund and Schapire, 1997).

AdaBoost

First initialize the training sample T_1 using the original

$$x_1,..., x_N$$
 event data vectors $y_1,..., y_N$ true class labels (+1 or -1) $w_1^{(1)},..., w_N^{(1)}$ event weights

with the weights equal and normalized such that

$$\sum_{i=1}^{N} w_i^{(1)} = 1$$

Then train the classifier $f_1(x)$ (e.g., a decision tree) with a method that uses the event weights. Recall for an event at point x,

 $f_1(x) = +1$ for x in signal region, -1 in background region

We will define an iterative procedure that gives a series of classifiers $f_1(x)$, $f_2(x)$,...

Error rate of the kth classifier

At the kth iteration the classifier $f_k(x)$ has an error rate

$$\varepsilon_k = \sum_{i=1}^N w_i^{(k)} I(y_i f_k(\mathbf{x}_i) \le 0)$$

where I(X) = 1 if X is true and is zero otherwise.

Next assign a score to the kth classifier based on its error rate,

$$\alpha_k = \frac{1}{2} \ln \frac{1 - \varepsilon_k}{\varepsilon_k}$$

Updating the event weights

The classifier at each iterative step is found from an updated training sample, in which the weight of event i is modified from step k to step k+1 according to

$$w_i^{(k+1)} = w_i^{(k)} \frac{e^{-\alpha_k f_k(\mathbf{x}_i)y_i}}{Z_k}$$

Here Z_k is a normalization factor defined such that the sum of the weights over all events is equal to one.

That is, the weight for event i is increased in the k+1 training sample if it was classified incorrectly in step k.

Idea is that next time around the classifier should pay more attention to this event and try to get it right.

Defining the classifier

After K boosting iterations, the final classifier is defined as a weighted linear combination of the $f_k(x)$,

$$t(\mathbf{x}) = \sum_{k=1}^{K} \alpha_k f_k(\mathbf{x})$$

One can show that the error rate on the training data of the final classifier satisfies the bound

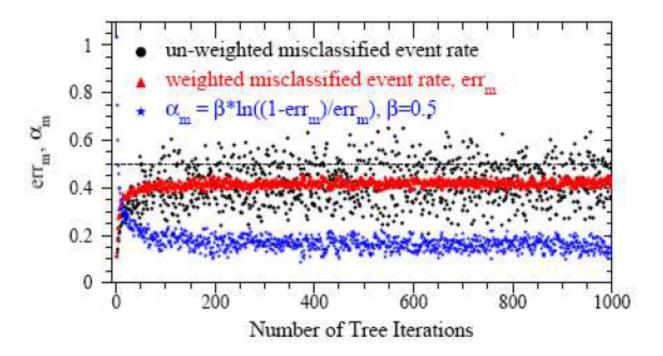
$$\varepsilon \leq \prod_{k=1}^{K} 2\sqrt{\varepsilon_k (1 - \varepsilon_k)}$$

i.e. as long as the $\varepsilon_k < \frac{1}{2}$ (better than random guessing), with enough boosting iterations every event in the training sample will be classified correctly.

BDT example from MiniBooNE

~200 input variables for each event (v interaction producing e, μ or π).

Each individual tree is relatively weak, with a misclassification error rate $\sim 0.4 - 0.45$

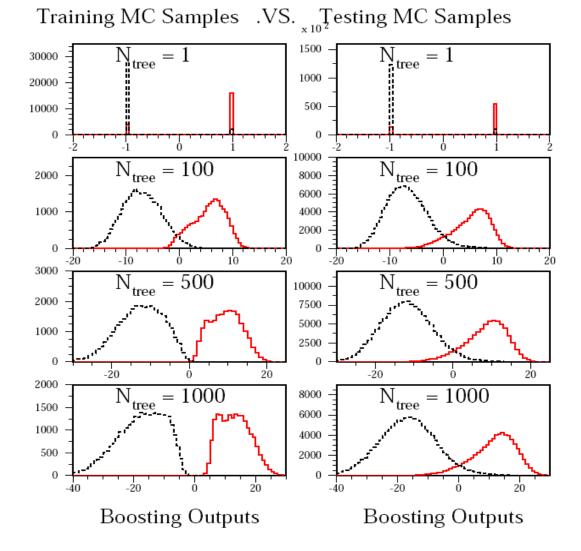


B. Roe et al., NIM 543 (2005) 577

Monitoring overtraining

From MiniBooNE example:

Performance stable after a few hundred trees.



Summary on multivariate methods

Particle physics has used several multivariate methods for many years:

linear (Fisher) discriminant neural networks naive Bayes

and has in recent years started to use a few more:

boosted decision trees support vector machines kernel density estimation *k*-nearest neighbour

The emphasis is often on controlling systematic uncertainties between the modeled training data and Nature to avoid false discovery.

Although many classifier outputs are "black boxes", a discovery at 5σ significance with a sophisticated (opaque) method will win the competition if backed up by, say, 4σ evidence from a cut-based method.

Extra slides

A simple example (2D)

Consider two variables, x_1 and x_2 , and suppose we have formulas for the joint pdfs for both signal (s) and background (b) events (in real problems the formulas are usually not available).

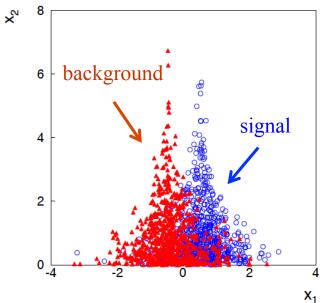
 $f(x_1|x_2) \sim$ Gaussian, different means for s/b, Gaussians have same σ , which depends on x_2 , $f(x_2) \sim$ exponential, same for both s and b, $f(x_1, x_2) = f(x_1|x_2) f(x_2)$:

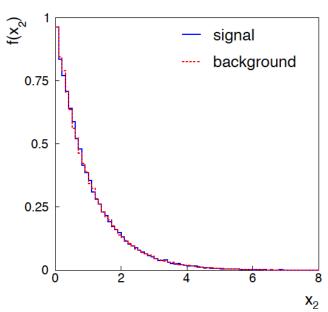
$$f(x_1, x_2|\mathbf{s}) = \frac{1}{\sqrt{2\pi}\sigma(x_2)} e^{-(x_1 - \mu_{\mathbf{s}})^2/2\sigma^2(x_2)} \frac{1}{\lambda} e^{-x_2/\lambda}$$

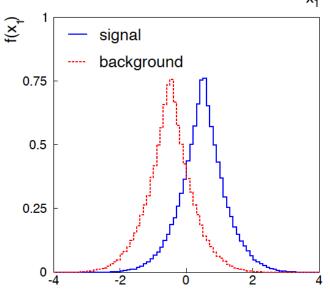
$$f(x_1, x_2|\mathbf{b}) = \frac{1}{\sqrt{2\pi}\sigma(x_2)} e^{-(x_1 - \mu_{\mathbf{b}})^2/2\sigma^2(x_2)} \frac{1}{\lambda} e^{-x_2/\lambda}$$

$$\sigma(x_2) = \sigma_0 e^{-x_2/\xi}$$

Joint and marginal distributions of x_1, x_2







 X_1

Distribution $f(x_2)$ same for s, b.

So does x_2 help discriminate between the two event types?

Likelihood ratio for 2D example

Neyman-Pearson lemma says best critical region is determined by the likelihood ratio:

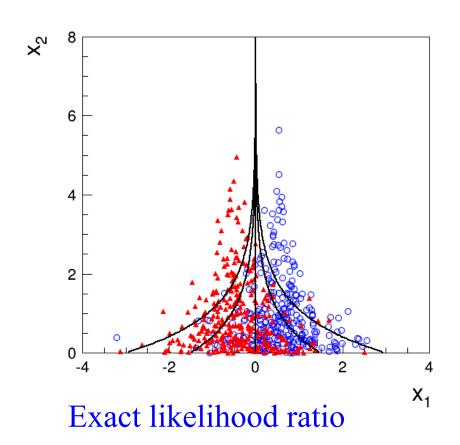
$$t(x_1, x_2) = \frac{f(x_1, x_2|\mathbf{s})}{f(x_1, x_2|\mathbf{b})}$$

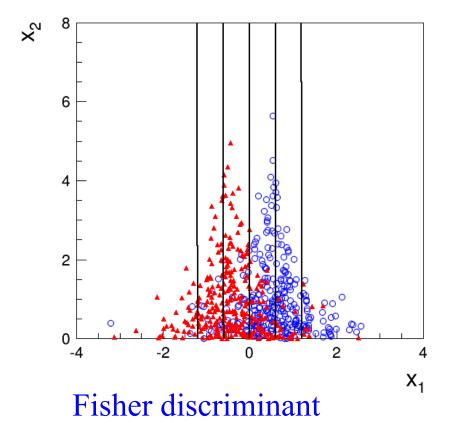
Equivalently we can use any monotonic function of this as a test statistic, e.g.,

$$\ln t = \frac{\frac{1}{2}(\mu_{\rm b}^2 - \mu_{\rm s}^2) + (\mu_{\rm s} - \mu_{\rm b})x_1}{\sigma_0^2 e^{-2x_2/\xi}}$$

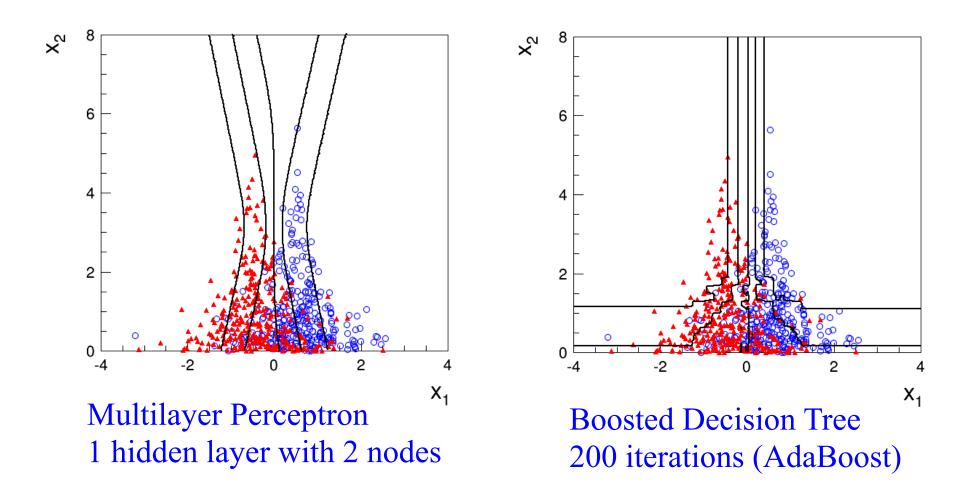
Boundary of optimal critical region will be curve of constant $\ln t$, and this depends on x_2 !

Contours of constant MVA output



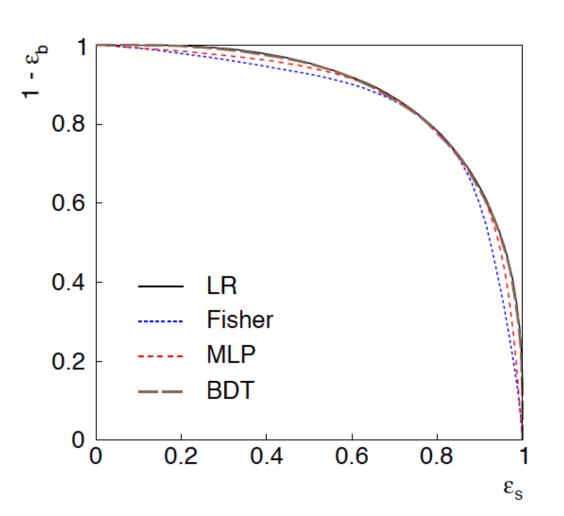


Contours of constant MVA output



Training samples: 10⁵ signal and 10⁵ background events

ROC curve



ROC = "receiver operating characteristic" (term from signal processing).

Shows (usually) background rejection $(1-\varepsilon_b)$ versus signal efficiency ε_s .

Higher curve is better; usually analysis focused on a small part of the curve.

2D Example: discussion

Even though the distribution of x_2 is same for signal and background, x_1 and x_2 are not independent, so using x_2 as an input variable helps.

Here we can understand why: high values of x_2 correspond to a smaller σ for the Gaussian of x_1 . So high x_2 means that the value of x_1 was well measured.

If we don't consider x_2 , then all of the x_1 measurements are lumped together. Those with large σ (low x_2) "pollute" the well measured events with low σ (high x_2).

Often in HEP there may be variables that are characteristic of how well measured an event is (region of detector, number of pile-up vertices,...). Including these variables in a multivariate analysis preserves the information carried by the well-measured events, leading to improved performance.

Probability Density Estimation (PDE)

Construct non-parametric estimators for the pdfs of the data x for the two event classes, $p(x|H_0)$, $p(x|H_1)$ and use these to construct the likelihood ratio, which we use for the discriminant function:

$$y(\vec{x}) = \frac{\hat{p}(\vec{x}|H_0)}{\hat{p}(\vec{x}|H_1)}$$

n-dimensional histogram is a brute force example of this; we will see a number of ways that are much better.

Correlation vs. independence

In a general a multivariate distribution p(x) does **not** factorize into a product of the marginal distributions for the individual variables:

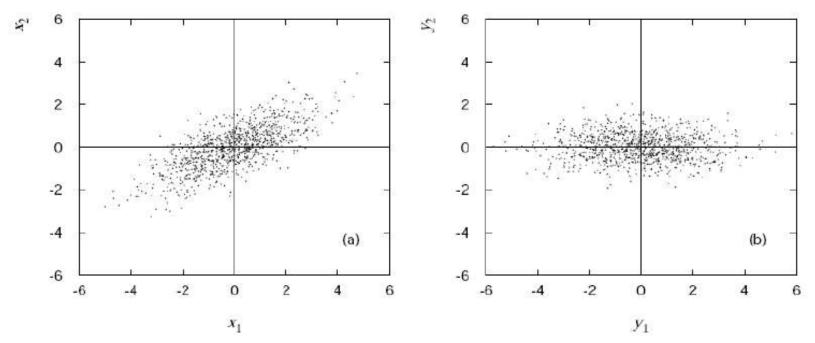
$$p(\vec{x}) = \prod_{i=1}^{n} p_i(x_i)$$
 holds only if the components of x are independent

Most importantly, the components of x will generally have nonzero covariances (i.e. they are correlated):

$$V_{ij} = \text{cov}[x_i, x_j] = E[x_i x_j] - E[x_i]E[x_j] \neq 0$$

Decorrelation of input variables

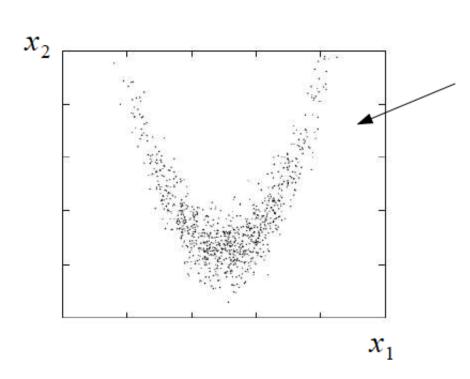
But we can define a set of uncorrelated input variables by a linear transformation, i.e., find the matrix A such that for $\vec{y} = A\vec{x}$ the covariances $\text{cov}[y_i, y_i] = 0$:



For the following suppose that the variables are "decorrelated" in this way for each of $p(\mathbf{x}|H_0)$ and $p(\mathbf{x}|H_1)$ separately (since in general their correlations are different).

Decorrelation is not enough

But even with zero correlation, a multivariate pdf p(x) will in general have nonlinearities and thus the decorrelated variables are still not independent.



pdf with zero covariance but components still not independent, since clearly

$$p(x_2|x_1) \equiv \frac{p(x_1, x_2)}{p_1(x_1)} \neq p_2(x_2)$$

and therefore

$$p(x_1, x_2) \neq p_1(x_1) p_2(x_2)$$

Naive Bayes method

First decorrelate x, i.e., find y = Ax, with $cov[y_i, y_j] = V[y_i] \delta_{ij}$.

Pdfs of x and y are then related by

$$f(\mathbf{x}) = |J|g(\mathbf{y}(\mathbf{x}))$$
 where $J = \det(A)$

If nonlinear features of g(y) not too important, estimate using product of marginal pdfs:

$$\hat{f}(\mathbf{x}) = |J| \prod_{i=1}^{n} g_i(y_i(\mathbf{x})) = |\det(A)| \prod_{i=1}^{n} g_i((A\mathbf{x})_i)$$

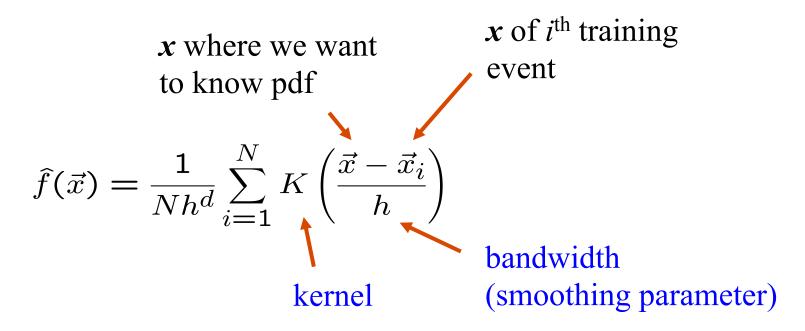
Do separately for the two hypotheses s and b (separate matrices A_s and A_b and marginal pdfs $g_{s,i}$, $g_{b,i}$). Then define test statistic as

$$y(\mathbf{x}) = \frac{\hat{f}_{\mathrm{s}}(\mathbf{x})}{\hat{f}_{\mathrm{b}}(\mathbf{x})}$$

Called Naive Bayes classifier. Reduces problem of estimating an *n*-dimensional pdf to finding *n* one-dimensional marginal pdfs.

Kernel-based PDE (KDE)

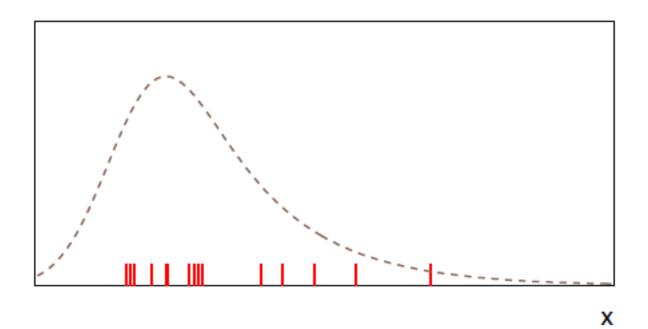
Consider d dimensions, N training events, $x_1, ..., x_N$ estimate f(x) with



Use e.g. Gaussian kernel:
$$K(\vec{x}) = \frac{1}{(2\pi)^{d/2}} e^{-|\vec{x}|^2/2}$$

Gaussian KDE in 1-dimension

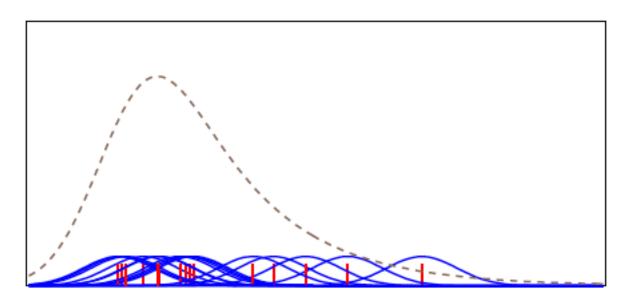
Suppose the pdf (dashed line) below is not known in closed form, but we can generate events that follow it (the red tick marks):



Goal is to find an approximation to the pdf using the generated date values.

Gaussian KDE in 1-dimension (cont.)

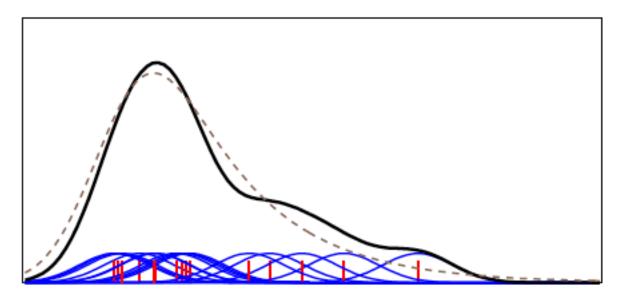
Place a kernel pdf (here a Gaussian) centred around each generated event weighted by $1/N_{\text{event}}$:



Х

Gaussian KDE in 1-dimension (cont.)

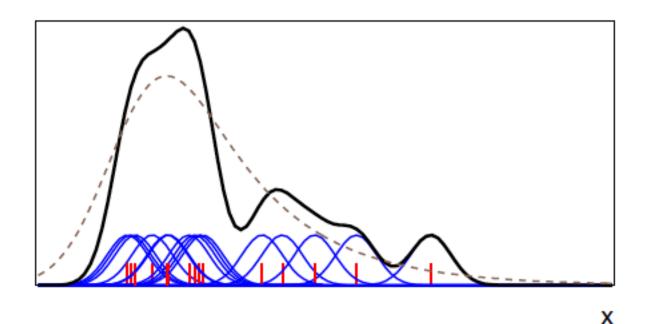
The KDE estimate the pdf is given by the sum of all of the Gaussians:



Х

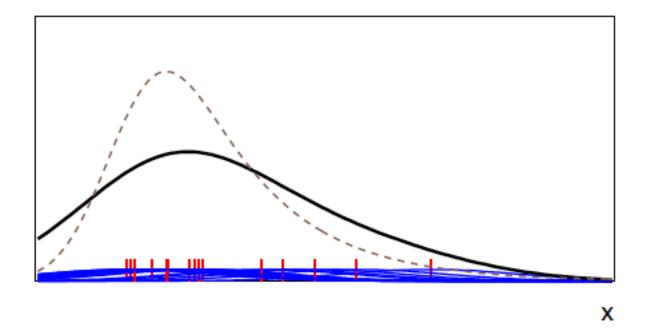
Choice of kernel width

The width *h* of the Gaussians is analogous to the bin width of a histogram. If it is too small, the estimator has noise:



Choice of kernel width (cont.)

If width of Gaussian kernels too large, structure is washed out:



KDE discussion

Various strategies can be applied to choose width *h* of kernel based trade-off between bias and variance (noise).

Adaptive KDE allows width of kernel to vary, e.g., wide where target pdf is low (few events); narrow where pdf is high.

Advantage of KDE: no training!

Disadvantage of KDE: to evaluate we need to sum N_{event} terms, so if we have many events this can be slow.

Special treatment required if kernel extends beyond range where pdf defined. Can e.g., renormalize the kernels to unity inside the allowed range; alternatively "mirror" the events about the boundary (contribution from the mirrored events exactly compensates the amount lost outside the boundary).

Software in ROOT: RooKeysPdf (K. Cranmer, CPC 136:198,2001)

Classification viewed as a statistical test

Probability to reject H_0 if true (type I error): $\alpha = \int_W f(\mathbf{x}|H_0)d\mathbf{x}$

 α = size of test, significance level, false discovery rate

Probability to accept H_0 if H_1 true (type II error) $\beta = \int_{\overline{W}} f(\mathbf{x}|H_1) d\mathbf{x}$

 $1 - \beta =$ power of test with respect to H_1

Equivalently if e.g. H_0 = background, H_1 = signal, use efficiencies:

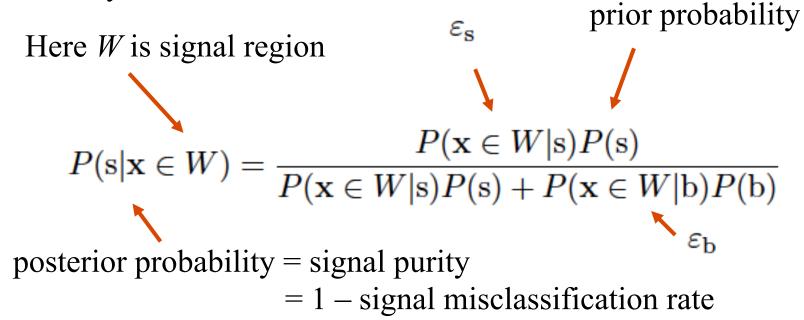
$$\varepsilon_{\rm b} = \int_W f(\mathbf{x}|H_0) = \alpha$$

$$\varepsilon_{\rm s} = \int_W f(\mathbf{x}|H_1) = 1 - \beta = \text{power}$$

Purity / misclassification rate

Consider the probability that an event of signal (s) type classified correctly (i.e., the event selection purity),

Use Bayes' theorem:



Note purity depends on the prior probability for an event to be signal or background as well as on s/b efficiencies.

Network training

The type of each training event is known, i.e., for event a we have:

$$\vec{x}_a = (x_1, ..., x_n)$$
 the input variables, and $t_a = 0, 1$ a numerical label for event type ("target value")

Let w denote the set of all of the weights of the network. We can determine their optimal values by minimizing a sum-of-squares "error function"

$$E(\mathbf{w}) = \frac{1}{2} \sum_{a=1}^{N} |y(\vec{x}_a, \mathbf{w}) - t_a|^2 = \sum_{a=1}^{N} E_a(\mathbf{w})$$

Contribution to error function from each event

Numerical minimization of E(w)

Consider gradient descent method: from an initial guess in weight space $w^{(1)}$ take a small step in the direction of maximum decrease. I.e. for the step τ to $\tau+1$,

$$\mathbf{w}^{(\tau+1)} = \mathbf{w}^{(\tau)} - \eta \nabla E(\mathbf{w}^{(\tau)})$$
learning rate $(\eta > 0)$

If we do this with the full error function E(w), gradient descent does surprisingly poorly; better to use "conjugate gradients".

But gradient descent turns out to be useful with an online (sequential) method, i.e., where we update \mathbf{w} for each training event a, (cycle through all training events): $\mathbf{w}^{(\tau+1)} = \mathbf{w}^{(\tau)} - \eta \nabla E_a(\mathbf{w}^{(\tau)})$

TRISEP 2016 / Statistics Lecture 2

Error backpropagation

Error backpropagation ("backprop") is an algorithm for finding the derivatives required for gradient descent minimization.

The network output can be written y(x) = h(u(x)) where

$$u(\vec{x}) = \sum_{j=0} w_{1j}^{(2)} \varphi_j(\vec{x}), \qquad \varphi_j(\vec{x}) = h \left(\sum_{k=0} w_{jk}^{(1)} x_k \right)$$

where we defined $\phi_0 = x_0 = 1$ and wrote the sums over the nodes in the preceding layers starting from 0 to include the offsets.

So e.g. for event
$$a$$
 we have
$$\frac{\partial E_a}{\partial w_{1j}^{(2)}} = (y_a - t_a) h'(u(\vec{x})) \varphi_j(\vec{x})$$
 derivative of

Chain rule gives all the needed derivatives.

activation function