1(a) [4 marks] The exponentially distributed time measurements, t_{1}, \ldots, t_{n}, and the Gaussian distributed calibration measurement y are all independent, so the likelihood is simply the product of the corresponding pdfs:

$$
L(\tau, \lambda)=\prod_{i=1}^{n} \frac{1}{\tau+\lambda} e^{-t_{i} /(\tau+\lambda)} \frac{1}{\sqrt{2 \pi} \sigma} e^{-(y-\lambda)^{2} / 2 \sigma^{2}}
$$

The log-likelihood is therefore

$$
\ln L(\tau, \lambda)=-n \ln (\tau+\lambda)-\frac{1}{\tau+\lambda} \sum_{i=1}^{n} t_{i}-\frac{(y-\lambda)^{2}}{2 \sigma^{2}}+C
$$

where C represents terms that do not depend on the parameters and therefore can be dropped. Differentiating $\ln L$ with respect to the parameters gives

$$
\begin{aligned}
& \frac{\partial \ln L}{\partial \tau}=-\frac{n}{\tau+\lambda}+\frac{\sum_{i=1}^{n} t_{i}}{(\tau+\lambda)^{2}} \\
& \frac{\partial \ln L}{\partial \lambda}=-\frac{n}{\tau+\lambda}+\frac{\sum_{i=1}^{n} t_{i}}{(\tau+\lambda)^{2}}+\frac{y-\lambda}{\sigma^{2}}
\end{aligned}
$$

Setting the derivatives to zero and solving for τ and λ gives the ML estimators,

$$
\begin{aligned}
& \hat{\tau}=\frac{1}{n} \sum_{i=1}^{n} t_{i}-y \\
& \hat{\lambda}=y
\end{aligned}
$$

1(b) [4 marks] The variances of $\hat{\lambda}$ and $\hat{\tau}$ and their covariance are

$$
\begin{aligned}
V[\hat{\lambda}] & =V[y]=\sigma^{2} \\
V[\hat{\tau}] & =V\left[\frac{1}{n} \sum_{i=1}^{n} t_{i}-y\right]=\frac{1}{n^{2}} \sum_{i=1}^{n} V\left[t_{i}\right]+V[y]=\frac{(\tau+\lambda)^{2}}{n}+\sigma^{2} \\
\operatorname{cov}[\hat{\tau}, \hat{\lambda}] & =\operatorname{cov}\left[\frac{1}{n} \sum_{i=1}^{n} t_{i}-y, y\right]=-V[y]=-\sigma^{2}
\end{aligned}
$$

For the covariance we used the fact that t_{i} and y are independent and thus have zero covariance.
$\mathbf{1}(\mathbf{c})$ [$\mathbf{3}$ marks] The standard deviations of $\hat{\tau}$ and $\hat{\lambda}$ can be determined from the contour of $\ln L(\tau, \lambda)=\ln L_{\max }-1 / 2$, as shown in Fig. 1. The standard can be approximated by the distance from the maximum of $\ln L$ to the tangent line to the contour (in either direction).

Figure 1: Illustration of the method to find $\sigma_{\hat{\tau}}$ and $\sigma_{\hat{\lambda}}$ from the contour of $\ln L(\tau, \lambda)=\ln L_{\text {max }}-1 / 2$ (see text).

If λ were to be known exactly, then the standard deviation of $\hat{\tau}$ would be less. This can be seen from Fig. 1, for example, since the distance one need to move τ away from the maximum of $\ln L$ to get to $\ln L_{\max }-1 / 2$ would be less if λ were to be fixed at $\hat{\lambda}$.
$\mathbf{1}(\mathbf{d})$ [5 marks] The second derivatives of $\ln L$ are

$$
\begin{aligned}
\frac{\partial^{2} \ln L}{\partial \tau^{2}} & =\frac{n}{(\tau+\lambda)^{2}}-\frac{2 \sum_{i=1}^{n} t_{i}}{(\tau+\lambda)^{3}} \\
\frac{\partial^{2} \ln L}{\partial \lambda^{2}} & =\frac{n}{(\tau+\lambda)^{2}}-\frac{2 \sum_{i=1}^{n} t_{i}}{(\tau+\lambda)^{3}}-\frac{1}{\sigma^{2}} \\
\frac{\partial^{2} \ln L}{\partial \tau \partial \lambda} & =\frac{n}{(\tau+\lambda)^{2}}-\frac{2 \sum_{i=1}^{n} t_{i}}{(\tau+\lambda)^{3}}
\end{aligned}
$$

Using $E\left[t_{i}\right]=\tau+\lambda$ we find the expectation values of the second derivatives,

$$
\begin{aligned}
E\left[\frac{\partial^{2} \ln L}{\partial \tau^{2}}\right] & =\frac{n}{(\tau+\lambda)^{2}}-\frac{2 n(\tau+\lambda)}{(\tau+\lambda)^{3}}=-\frac{n}{(\tau+\lambda)^{2}} \\
E\left[\frac{\partial^{2} \ln L}{\partial \lambda^{2}}\right] & =-\frac{n}{(\tau+\lambda)^{2}}-\frac{1}{\sigma^{2}} \\
E\left[\frac{\partial^{2} \ln L}{\partial \tau \partial \lambda}\right] & =-\frac{n}{(\tau+\lambda)^{2}} .
\end{aligned}
$$

The inverse covariance matrix of the estimators is given by

$$
V_{i j}^{-1}=-E\left[\frac{\partial^{2} \ln L}{\partial \theta_{i} \partial \theta_{j}}\right]
$$

where here we can take, e.g., $\theta_{1}=\tau$ and $\theta_{2}=\lambda$. We are given the formula for the inverse of the corresponding 2×2 matrix, and by substituting in the ingredients we find

$$
V=\left(\begin{array}{cc}
\frac{(\tau+\lambda)^{2}}{n}+\sigma^{2} & -\sigma^{2} \\
-\sigma^{2} & \sigma^{2}
\end{array}\right)
$$

which are the same as what was found in (c).

$$
\xi_{x} 2
$$

// A simple program to generate exponential random numbers and // store them in a histogram; also optionally writes the individual // values to a file.

```
// Glen Cowan
```

// RhUL Physics
// 2 December 2006
\#include <iostream>
\#include <fstream>
\#include <cstdlib>
\#include <string>
\#include <cmath>
\#include <TFile.h>
\#include <TH1D.h>
\#include <TRandom3.h>
using namespace std;
int main(int argc, char **argv) \{
// Set up output files, book histograms, add to list of histograms.
TFile* histFile = new TFile("expData.root", "RECREATE");
TList* hList $=$ new TList(); // list of histograms to store
TH1D* hl = new TH1D("h1", "mixture of exponentials", 100, 0.0, 10.0);
hList->Add(h1);
string answer;
ofstream dataFile;
// cout << "Also store individual values in a file? (y/n)" << end;
// in >> answer;
answer = "y";
boob makeDataFile = (answer == "Y" || answer == "Y");
if (makeDataFile) \{ dataFile.open("expData2.txt"); \}
// Create a TRandom object to generate random numbers uniform in 10,1]
// Use the "Marsenne Twister" algorithm of TRandom3
int seed $=12345$;
TRandom* ran $=$ new TRandom3(seed);
// Fill with exponential random numbers.
const double xi $=1.0 ; \quad / /$ mean value of the exponential
cont double xi $=5.0$;
cont double alpha $=0.2$;
int numval $=0$;
// court << "Enter number of values to generate: ";
// din >> numval;
numVal $=200$;
for (int $i=0 ; i<n u m V a l ;++i)\{$
double $r 1=$ ran $->$ Rndm();
double $r 2=r a n->\operatorname{Rndm}() ;$
double x;
if (ri < alpha) \{
$\mathrm{x}=-\mathrm{xil}$ * $\log (\mathrm{r} 2)$;
\}
else \{
x = - xi * $\log (\mathrm{r} 2)$;
) new
\}
h1->Fill(x);
if (makeDataFile) \{ dataFile << $\mathrm{x} \ll$ endl; \}
\}
// Save all histograms and close up.
hList->Write();
histFile->Close();
if (makeDataFile) \{ dataFile.close(); \}
return 0;
\}

```
// A simple C++ program to illustrate the use of ROOT class TMinuit
// for function minimization. The example shows a Maximum Likelihood
// fit for the mean of an exponential pdf in which TMinuit
// minimizes - 2*log(L). The user must specify what to minimize in the
// function fcn, shown in this file below.
// fcn passes back f = -2*ln L by reference; this is the function to minimize.
// The factor of -2 allows MINUIT to get the errors using the same
// recipe as for least squares, i.e., go up from the minimum by 1.
// TMinuit does not allow fcn to be a member function, and the function
// arguments are fixed, so the one of the only ways to bring the data
// into fcn is to declare a pointer to the data (xVecPtr) as global.
// For more info on TMinuit see root.cern.ch/root/html/TMinuit.html .
// Glen Cowan
// RHUL Physics
// 4 December 2006
#include <iostream>
#include <fstream>
#include <cstdlib>
#include <cmath>
#include <string>
#include <vector>
#include <TMinuit.h>
#include <TApplication.h>
#include <TCanvas.h>
#include <TStyle.h>
#include <TROOT.h>
#include <TF1.h>
#include <TAxis.h>
#include <TLine.h>
using namespace std;
// Declare pointer to data as global (not elegant but TMinuit needs this).
vector<double>* xVecPtr = new vector<double>();
// The pdf to be fitted, here an exponential.
// First argument needs to be a pointer in order to plot with the TF1 class.
double expPdf2(double* xPtr, double par[]){
    double x = *xPtr;
    double xi1 = par[0];
    double xi2 = par[1];
    double alpha = par[2];
    double f = 0;
    if ( x >= 0 && xi1 > 0. && xi2 > 0. ) {
        f = alpha * (1.0/xil) * exp(-x/xil) +
            (1.-alpha)*(1.0/xi2) * exp(-x/xi2);
    }
```



```
    // if ( f <= 0. ) {
    // cout << "expPdf2: " << x << " " << xi << " " << f << endl;
    // }
    return f;
}
```

```
//------------------------------------------------------------------------------------
// function to read in the data from a file
void getData(vector<double>* xVecPtr) {
    string infile;
    // cout << "Enter name of input data file: ";
    // cin >> infile;
    infile = "../makeData2/expData2.txt";
    ifstream f;
    f.open(infile.c_str());
    if (f.fail() ){
        cout << "Sorry, couldn't open file" << endl;
        exit(1);
    }
    double x ;
    bool acceptInput = true;
    while ( acceptInput ) {
        f >> x;
        acceptInput = !f.eof();
        if ( acceptInput ) {
            xVecPtr->push_back(x);
        }
    }
    f.close();
}
//-------------------------------------------------------------------------------
// fcn passes back f = - 2*ln(L), the function to be minimized.
void fcn(int& npar, double* deriv, double& f, double par[], int flag){
    vector<double> xVec = *xVecPtr; // xVecPtr is global
    int n = xVec.size();
    double lnL = 0.0;
    for (int i=0; i<n; i++){
        double x = xVec[i];
        double pdf = expPdf2(&x, par);
        if ( pdf > 0.0 ) {
            lnL += log(pdf); // need positive f
        }
        else {
            cout << "WARNING -- pdf is negative!!!" << endl;
        }
    }
    f = -2.0 * lnL; // factor of -2 so minuit gets the errors right
} // end of fon
//---------------------------------------------------------------------------------
int main(int argc, char **argv) {
    TApplication theApp("App", &argc, argv);
    TCanvas* canvas = new TCanvas();
```

/ Set a bunch of parameters to make the plot look nice

```
canvas->SetFillColor(0);
canvas->UseCurrentStyle();
canvas->SetBorderMode(0); // still leaves red frame bottom and right
canvas->SetFrameBorderMode(0); // need this to turn off red hist frame!
gROOT->SetStyle("Plain");
canvas->UseCurrentStyle();
gROOT->ForceStyle();
gStyle->SetOptStat(0);
gStyle->SetTitleBorderSize(0);
gStyle->SetTitleSize(0.04);
gStyle->SetTitleFont(42, "hxy"); // for histogram and axis titles
gStyle->SetLabelFont(42, "xyz"); // for axis labels (values)
gROOT->ForceStyle();
// Read in the data. xVecPtr is global.
```

 getData(xVecPtr);
 // Initialize minuit, set initial values etc. of parameters.
const int npar $=3$; // the number of parameters
TMinuit minuit(npar);
minuit. SetFCN(fon);
double par[npar]; // the start values
double stepSize[npar]; // step sizes
double minVal[npar]; // minimum bound on parameter
double maxVal[npar]; // maximum bound on parameter
string parName[npar];
$\operatorname{par}[0]=1.0 ; \quad / /$ a guess
$\operatorname{par}[1]=5.0$;
par[2] $=0.2$;
stepSize[0] = 0.1; // take e.g. 0.1 of start value
stepSize[1] $=0.5$;
stepsize[2] $=0.02$;
minval[0] $=0.001$; // if min and max values $=0$, parameter is unbounded.
maxVal[0] $=100000000$;
minval[1] $=0.001 ; / /$ if min and max values $=0$, parameter is unbounded.
$\operatorname{maxVal}[1]=100000000$;
minVal[2] = 0.;
maxVal[2] = 1.;
parName[0] = "xil";
parName[1] = "xi2";
parName[2] = "alpha";
for (int $i=0 ; i<n p a r ; i++)\{$
minuit. DefineParameter(i, parName[i].c_str(),
par[i], stepSize[i], minVal[i], maxVal[i]);
\}
// Do the minimization!
minuit.Migrad(); // Minuit's best minimization algorithm
double outpar[npar], err[npar];
for (int $i=0$; $i<n p a r ; i++$) $\{$
minuit.GetParameter(i,outpar[i],err[i]);
\}
cout << "fitted values and errors using mnpout..." << endl;

```
        for (int i=0; i<npar; i++){
        TString nam;
        double val;
        double err;
        double xlolim, xuplim;
        int iuint;
    minuit.mnpout(i, nam, val, err, xlolim, xuplim, iuint);
    cout << i << " " << nam << " " << val << " " << err << endl;
    }
    cout << endl;
    cout << "covariance and correlation coefficients..." << endl;
    double covmat[npar][npar];
    minuit.mnemat(&covmat[0][0], npar);
    for (int i=0; i<npar; i++){
        for (int j=0; j<npar; j++){
            double sigma_i = sqrt(covmat[i][i]);
            double sigma_j = sqrt(covmat[j][j]);
            double rho = covmat[i][j]/(sigma_i*sigma_j);
            cout << i << " " << j << " " << covmat[i][j]<< " " << rho << endl;
    }
}
// Plot the result. For this example plot x values as tick marks.
    double xmin = 0.0;
    double xmax = 20.0;
    TF1* func = new TF1("funcplot", expPdf2, xmin, xmax, npar);
    func->SetMinimum(0.);
    func->SetParameters(outpar);
    func->Draw();
    func->SetLineStyle(1); // 1 = solid, 2 = dashed, 3 = dotted
    func->SetLineColor(1); // black (default)
    func->SetLineWidth(1);
    func->GetXaxis()->SetTitle("x");
    func->GetYaxis()->SetTitle("f(x;#xi)");
    vector<double> xVec = *xVecPtr;
    const double tickHeight = 0.03;
    TLine* tick = new TLine();
    for (int i=0; i<xVec.size(); i++){
    tick->DrawLine(xVec[i], 0, xVec[i], tickHeight);
}
cout << "To exit, quit ROOT from the File menu of the plot" << endl;
theApp.Run(true);
canvas->Close();
delete canvas, tick, xVecPtr;
return 0;
```

\}

PARAMETER DEFINITIONS:

FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. MINUIT WARNING IN MIGrad
=============== VARIABLE1 IS AT ITS LOWER ALLOWED LIMIT.
START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-04 FCN=948.685 FROM MIGRAD STATUS=INITIATE 26 CALLS 27 TOTAL EDM = unknown STRATEGY= 1 NO ERROR MATRIX

EXT	PARAMETER		CURRENT GUESS	STEP	FIRST
NO.	NAME	VALUE		ERROR	SIZE

MIGRAD MINIMIZATION HAS CONVERGED.
MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX.
COVARIANCE MATRIX CALCULATED SUCCESSFULLY

PARAMETER CORRELATION COEFFICIENTS

NO.	GLOBAL	1	2	3
1	0.67011	1.000	-0.434	-0.670
2	0.65506	-0.434	1.000	0.655

fitted

shone Nave

$3 \quad 0.78248$-0.670 0.6551 .000

covariance and correlation coefficients...

0	0.0976589	1
1	-0.0819479	-0.434388
2	-0.0192495	-0.67008
0	-0.0819479	-0.434388
1	0.364424	1
2	0.0363498	0.655032
0	-0.0192495	-0.67008
1	0.0363498	0.655032

