Statistical Data Analysis

Problem sheet 9
Due Monday, 14 December 2015
Problem 1: The binomial distribution is given by

$$
f(n ; N, \theta)=\frac{N!}{n!(N-n)!} \theta^{n}(1-\theta)^{N-n}
$$

where n is the number of 'successes' in N independent trials, with a success probability of θ for each trial. Recall that the expectation value and variance of n are $E[n]=N \theta$ and $V[n]=N \theta(1-\theta)$, respectively. Suppose we have a single observation of n and using this we want to estimate the parameter θ.
$\mathbf{1}(\mathbf{a})$ Find the maximum likelihood estimator $\hat{\theta}$.
$\mathbf{1}(\mathrm{b})$ Show that $\hat{\theta}$ has zero bias and find its variance.
1(c) Suppose we observe $n=0$ for $N=10$ trials. Find the upper limit for θ at a confidence level of $\mathrm{CL}=95 \%$ and evaluate numerically.

1(d) Suppose we treat the problem with the Bayesian approach using the Jeffreys prior, $\pi(\theta) \propto \sqrt{I(\theta)}$, where

$$
I(\theta)=-E\left[\frac{\partial^{2} \ln L}{\partial \theta^{2}}\right]
$$

is the expected Fisher information. Find the Jeffreys prior $\pi(\theta)$ and the posterior pdf $p(\theta \mid n)$ as proportionalities.
1(e) Explain how in the Bayesian approach how one would determine an upper limit on θ using the result from (d). (You do not actually have to calculate the upper limit.)
Explain briefly the differences in the interpretation between frequentist and Bayesian upper limits.

Problem 2: The outcome of a measurement consists of two independent random values, x and y, that follow the pdfs

$$
\begin{aligned}
f\left(x \mid \theta_{1}, \theta_{2}\right) & =\frac{1}{\sqrt{2 \pi} \sigma} e^{-\left(x-\theta_{1}-\theta_{2}\right)^{2} / 2 \sigma^{2}} \\
g\left(y \mid \theta_{2}\right) & =\frac{1}{\sqrt{2 \pi} \sigma} e^{-\left(y-\theta_{2}\right)^{2} / 2 \sigma^{2}}
\end{aligned}
$$

Consider the standard deviation σ (same for x and y) to be known.
2(a) Write down the log-likelihood function for θ_{1} and θ_{2}.
$\mathbf{2 (b)}$ Show that the Maximum-Likelihood estimators for θ_{1} and θ_{2} are

$$
\begin{aligned}
& \hat{\theta}_{1}=x-y \\
& \hat{\theta}_{2}=y
\end{aligned}
$$

2(c) Show that the estimators given above are unbiased. Find their exact variances, their covariance and correlation coefficient.
2(d) Show with the help of a sketch how the standard deviations of $\hat{\theta}_{1}$ and $\hat{\theta}_{2}$ can be determined from a contour of the log-likelihood function. Label all of the relevant features.
2(e) Suppose θ_{1} is the parameter of interest and we regard θ_{2} as a nuisance parameter. Find the profiled value $\hat{\hat{\theta}}_{2}\left(\theta_{1}\right)$ and using this show that the \log of the profile likelihood for θ_{1} can be written

$$
\ln L_{\mathrm{p}}\left(\theta_{1}\right)=-\frac{1}{4} \frac{\left(x-y-\theta_{1}\right)^{2}}{\sigma^{2}}+C
$$

where C represents terms that do not depend on the unknown parameters.
Show that the variance of $\hat{\theta}_{1}$ as determined directly from the second derivative of the profile likelihood is the same as found in (c).

