
Statistical Data Analysis
Problem sheet #9 solutions

1(a) The likelihood function is given by the binomial distribution evaluated with the single
observed value n and regarded as a function of the unknown parameter θ:

L(θ) =
N !

n!(N − n)!
θn(1− θ)N−n .

The log-likelihood function is therefore

lnL(θ) = n ln θ + (N − n) ln(1− θ) + C ,

where C represents terms not depending on θ. Setting the derivative of lnL equal to zero,

∂ lnL

∂θ
=

n

θ
− N − n

1− θ
= 0 ,

we find the ML estimator to be

θ̂ =
n

N
.

1(b) We are given the expectation and variance of a binomial distributed variable as E[n] = Nθ
and V [n] = Nθ(1− θ). Using these results we find the expectation value of θ̂ to be

E[θ̂] = E

[

n

N

]

=
E[n]

N
=

Nθ

N
= θ ,

and therefore the bias is b = E[θ̂]− θ = 0. Similarly we find the variance to be

V [θ̂] = V

[

n

N

]

=
1

N2
V [n] =

Nθ(1− θ)

N2
=

θ(1− θ)

N
.

1(c) Suppose we observe n = 0 for N = 10 trials. The upper limit on θ at a confidence level of
CL = 1−α is the value of θ for which there is a probability α to find as few events as we found
or fewer, i.e.,

α = P (n ≤ 0;N, θ) =
N !

0!(N − 0)!
θ0(1− θ)N−0 .

Solving for θ gives the 95% CL upper limit

θup = 1− α1/N = 1− 0.051/10 = 0.26 .

1(d) To find the Jeffreys prior we need the second derivative of lnL,
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∂2 lnL

∂θ2
= − n

θ2
− N − n

(1− θ)2
.

The expected Fisher information is therefore

I(θ) = −E

[

∂2 lnL

∂θ2

]

=
Nθ

θ2
+

N(1− θ)

(1− θ)2
=

N

θ
+

N

1− θ
=

N

θ(1− θ)
.

The Jeffreys prior is therefore

π(θ) ∝ 1
√

θ(1− θ)
.

Using this in Bayes theorem to find the posterior pdf gives

p(θ|n) ∝ L(n|θ)π(θ) ∝ θn(1− θ)N−n

√

θ(1− θ)
= θn−1/2(1− θ)N−n−1/2 .

1(e) To find a Bayesian upper limit on θ one simply integrates the posterior pdf so that a
specified probability 1− α is contained below θup, i.e.,

1− α =

∫ θup

0

p(θ|n) dθ ,

solving for θup gives the upper limit.

A frequentist upper limit as found in (c) is a function of the data designed to be greater than
the true value of the parameter with a fixed probability (the confidence level) regardless of the
parameter’s actual value. A Bayesian interval can be regarded as reflecting a range for the
parameter where it is believed to lie with a fixed probability (the credibility level). Note that
with the Jeffreys prior, one may not necessary use the degree of belief interpretation of the
interval, but rather take it to have a certain probability to cover the true θ (which in general
will depend on θ).
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2(a) The variables x and y are independent, so the likelihood function is given by the product
of the two pdfs, i.e.,

L(θ1, θ2) = f(x|θ1, θ2)g(y|θ2) =
1

2πσ2
exp

[

−(x− θ1 − θ2)
2

2σ2
− (y − θ2)

2

2σ2

]

.

The log-likelihood function is therefore

lnL(θ1, θ2) = −1

2

(x− θ1 − θ2)
2

σ2
− 1

2

(y − θ2)
2

σ2
+ C ,

where C = − ln 2πσ2 is a constant (i.e., does not depend on θ1 or θ2) and thus can be dropped.

2(b) To find the ML estimators we set the derivatives of lnL with respect to the parameters
equal to zero:

∂ lnL

∂θ1
= −1

2

2(x− θ1 − θ2)(−1)

σ2
= 0 , (1)

∂ lnL

∂θ2
= −1

2

2(x− θ1 − θ2)(−1)

σ2
− 1

2

(y − θ2)(−1)

σ2
= 0 . (2)

From Eq. (2) we get θ1 + θ2 = x, and from this the first term in Eq. (2) is zero. We therefore
find the ML estimators

θ̂1 = x− y ,

θ̂2 = y .

2(c) From the pdfs of x and y given we can see the expectation values and variances are

E[x] = θ1 + θ2 ,

E[y] = θ2 ,

V [x] = V [y] = σ2 .

The expectation values of θ̂1 and θ̂2 are

E[θ̂1] = E[x− y] = E[x]− E[y] = θ1 + θ2 − θ2 = θ1 ,

E[θ̂2] = E[y] = θ2 ,

and therefore we see that both estimators are unbiased. The variances of θ̂1 and θ̂2 are
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V [θ̂1] = V [x− y] = V [x] + V [y] = 2σ2 ,

V [θ̂2] = V [y] = σ2 ,

and the covariance of θ̂1 and θ̂2 is

cov[θ̂1, θ̂2] = cov[x− y, y] = cov[x, y]− cov[y, y] = 0− V [y] = −σ2 .

Combining the ingredients above gives the correlation coefficient

ρ =
cov[θ̂1, θ̂2]

√

V [θ̂1]V [θ̂2]
=

−σ2

√
σ2 × 2σ2

= − 1√
2
.

2(d) Figure 1 shows a contour of the log-likelihood lnL(θ, θ2) = lnLmax− 1/2, which is centred
about the ML estimators (θ̂1, θ̂2). The standard deviations are determined from the distance
from the ML estimators to the tangent lines to the contour. (In the large sample limit the contour
is symmetric so the distance to either tangent line can be used.) The negative correlation is
indicated by the tilt of the contour from upper left to lower right.

Figure 1: The standard deviations
σ
θ̂1

and σ
θ̂2

are determined from
the tangent lines to the contour of
lnL(θ1, θ2) = lnLmax − 1/2.

2(e) From Eq. (2) above setting the derivative of lnL with respect to θ2 equal to zero we have

x− θ − θ2
σ2

+
y − θ2
σ2

= 0 .

Treating θ1 as fixed and solving for θ2 gives the profiled value

ˆ̂
θ2(θ1) =

x+ y − θ1
2

.

The profile likelihood Lp(θ1) is defined by evaluating L(θ1, θ2) with
ˆ̂
θ2(θ1) as found above. After

dropping constant terms we find
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lnLp(θ1) = − 1

2σ2

[

(

x− θ1 −
x+ y − θ1

2

)2

+

(

y − x+ y − θ1
2

)2
]

= − 1

2σ2

[

(

x

2
− y

2
− θ1

2

)2

+

(

y

2
− x

2
+

θ1
2

)2
]

= −1

4

x− y − θ1)
2

σ2
.

The derivatives of lnLp are

∂ lnLp

∂θ1
=

1

2

x− y − θ1
σ2

,

∂2 lnLp

∂θ21
= − 1

2σ2
.

Using the profile likelihood to find the Fisher information therefore gives

I(θ) = −E

[

∂2 lnLp

∂θ21

]

=
1

2σ2

Using this to determine (approximately) the variance thus gives the same as the exact result
found above

V [θ̂1] ≈ I−1(θ) = 2σ2 .
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