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Outline for Monday – Thursday  

Monday 9 March 
 GC:  probability, random variables and related quantities 
 KC:  parameter estimation, bias, variance, max likelihood 

Tuesday 10 March 
 KC:  building statistical models, nuisance parameters 
 GC:  hypothesis tests I, p-values, multivariate methods 

Wednesday 11 March 
 KC:  hypothesis tests 2, composite hyp., Wilks’, Wald’s thm. 
 GC:  asympotics 1, Asimov data set, sensitivity 

Thursday 12 March:   
 KC:  confidence intervals, asymptotics 2 
 GC:  unfolding 

(GC = Glen Cowan, KC = Kyle Cranmer) 
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Some statistics books, papers, etc.  
G. Cowan, Statistical Data Analysis, Clarendon, Oxford, 1998 
R.J. Barlow, Statistics: A Guide to the Use of Statistical Methods in 
the Physical Sciences, Wiley, 1989 
Ilya Narsky and Frank C. Porter, Statistical Analysis Techniques in 
Particle Physics, Wiley, 2014.   
L. Lyons, Statistics for Nuclear and Particle Physics, CUP, 1986 
F. James., Statistical and Computational Methods in Experimental 
Physics, 2nd ed., World Scientific, 2006 
S. Brandt, Statistical and Computational Methods in Data 
Analysis, Springer, New York, 1998 (with program library on CD) 
J. Beringer et al. (Particle Data Group), Review of Particle Physics, 
Phys. Rev. D86, 010001 (2012) ; see also pdg.lbl.gov sections on 
probability, statistics, Monte Carlo 
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Theory ↔ Statistics ↔ Experiment 

+ simulation 
of detector 
and cuts 

Theory (model, hypothesis): Experiment: 

+ data 
selection 
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Data analysis in particle physics  
Observe events (e.g., pp collisions) and for each, measure 
a set of characteristics: 

 particle momenta, number of muons, energy of jets,... 

Compare observed distributions of these characteristics to  
predictions of theory.  From this, we want to: 

   Estimate the free parameters of the theory: 

   Quantify the uncertainty in the estimates: 

   Assess how well a given theory stands in agreement  
   with the observed data: 

 
To do this we need a clear definition of PROBABILITY 
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A definition of probability  
Consider a set S with subsets A, B, ... 

Kolmogorov 
axioms (1933) 

From these axioms we can derive further properties, e.g. 
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Conditional probability, independence 

Also define conditional probability of A given B (with P(B) ≠ 0): 

E.g. rolling dice: 

Subsets A, B independent if: 

If A, B independent, 

N.B. do not confuse with disjoint subsets, i.e., 
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Interpretation of probability 
I.  Relative frequency 

 A, B, ... are outcomes of a repeatable experiment  

cf. quantum mechanics, particle scattering, radioactive decay... 

II.  Subjective probability 
 A, B, ... are hypotheses (statements that are true or false)  

•   Both interpretations consistent with Kolmogorov axioms. 
•   In particle physics  frequency interpretation often most useful, 
but subjective probability can provide more natural treatment of  
non-repeatable phenomena:   
     systematic uncertainties, probability that Higgs boson exists,... 
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Bayes’ theorem 
From the definition of conditional probability we have, 

and 

but , so 

Bayes’ theorem 

First published (posthumously) by the 
Reverend Thomas Bayes (1702−1761) 

An essay towards solving a problem in the 
doctrine of chances, Philos. Trans. R. Soc. 53 
(1763) 370; reprinted in Biometrika, 45 (1958) 293. 



G. Cowan  Weizmann Statistics Workshop, 2015 / GDC  Lecture 1 10 

The law of total probability 

Consider a subset B of  
the sample space S, 

B ∩ Ai 

Ai 

B 

S 

divided into disjoint subsets Ai 
such that ∪i Ai = S, 

→ 

→ 

→ law of total probability 

Bayes’ theorem becomes 
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An example using Bayes’ theorem 
Suppose the probability (for anyone) to have a disease D is: 

← prior probabilities, i.e., 
     before any test carried out 

Consider a test for the disease:  result is + or -	



← probabilities to (in)correctly 
     identify a person with the disease 

← probabilities to (in)correctly 
     identify a healthy person 

Suppose your result is +.  How worried should you be?	



G. Cowan  
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Bayes’ theorem example (cont.) 
The probability to have the disease given a + result is 

i.e. you’re probably OK! 

Your viewpoint:  my degree of belief that I have the disease is 3.2%. 

Your doctor’s viewpoint:  3.2% of people like this have the disease.	



← posterior probability 

G. Cowan  
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Frequentist Statistics − general philosophy  
In frequentist statistics, probabilities are associated only with 
the data, i.e., outcomes of repeatable observations (shorthand:     ). 

 Probability = limiting frequency 

Probabilities such as 

 P (Higgs boson exists),  
 P (0.117 < αs < 0.121),  

etc. are either 0 or 1, but we don’t know which. 
The tools of frequentist statistics tell us what to expect, under 
the assumption of certain probabilities, about hypothetical 
repeated observations. 

A hypothesis is is preferred if the data are found in a region of 
high predicted probability (i.e., where an alternative hypothesis 
predicts lower probability). 
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Bayesian Statistics − general philosophy  
In Bayesian statistics, use subjective probability for hypotheses: 

posterior probability, i.e.,  
after seeing the data 

prior probability, i.e., 
before seeing the data 

probability of the data assuming  
hypothesis H (the likelihood) 

normalization involves sum  
over all possible hypotheses 

Bayes’ theorem has an “if-then” character:  If your prior 
probabilities were π (H), then it says how these probabilities 
should change in the light of the data. 

 No general prescription for priors (subjective!) 
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Random variables and probability density functions 
A random variable is a numerical characteristic assigned to an 
element of the sample space; can be discrete or continuous. 

Suppose outcome of experiment is continuous value x  

→ f (x) = probability density function (pdf) 

Or for discrete outcome xi with e.g. i = 1, 2, ... we have 

x must be somewhere 

probability mass function 

x must take on one of its possible values 

G. Cowan  
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Cumulative distribution function 
Probability to have outcome less than or equal to x is 

cumulative distribution function 

Alternatively define pdf with 
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Other types of probability densities 
Outcome of experiment characterized by several values, 
e.g. an n-component vector, (x1, ... xn)  

Sometimes we want only pdf of some (or one) of the components 

→  marginal pdf  

→  joint pdf  

Sometimes we want to consider some components as constant 

→  conditional pdf  

x1, x2 independent if  

G. Cowan  
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Distribution, likelihood, model 
Suppose the outcome of a measurement is x. (e.g., a number of  
events, a histogram, or some larger set of numbers). 

The probability density (or mass) function or ‘distribution’ of x, 
which may depend on parameters θ, is: 

P(x|θ)       (Independent variable is x; θ is a constant.) 

If we evaluate P(x|θ) with the observed data and regard it as a 
function of the parameter(s), then this is the likelihood: 

We will use the term ‘model’ to refer to the full function P(x|θ) 
that contains the dependence both on x and θ. 

L(θ) = P(x|θ)         (Data x fixed; treat L as function of θ.) 
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Bayesian use of the term ‘likelihood’ 
We can write Bayes theorem as 

where L(x|θ) is the likelihood.   It is the probability for x given 
θ, evaluated with the observed x, and viewed as a function of θ. 

Bayes’ theorem only needs L(x|θ) evaluated with a given data  
set (the ‘likelihood principle’). 

For frequentist methods, in general one needs the full model. 

For some approximate frequentist methods, the likelihood  
is enough. 
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The likelihood function for i.i.d.*. data 

Consider n independent observations of x:  x1, ..., xn,  where  
x follows f (x; θ).  The joint pdf for the whole data sample is: 

In this case the likelihood function is 

(xi constant) 

* i.i.d. = independent and identically distributed 
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Functions of a random variable 
A function of a random variable is itself a random variable. 

Suppose x follows a pdf f(x), consider a function a(x). 

What is the pdf g(a)? 

dS = region of x space for which 
a is in [a, a+da]. 

For one-variable case with unique 
inverse this is simply 

→ 



G. Cowan  Weizmann Statistics Workshop, 2015 / GDC  Lecture 1 22 

Functions without unique inverse 

If inverse of a(x) not unique,  
include all dx intervals in dS  
which correspond to da: 

Example: 
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Functions of more than one r.v. 

Consider r.v.s and a function  

dS = region of x-space between (hyper)surfaces defined by 
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Functions of more than one r.v. (2) 

Example:  r.v.s x, y > 0 follow joint pdf f(x,y), 

consider the function z = xy.  What is g(z)? 

→ 

(Mellin convolution) 
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More on transformation of variables 

Consider a random vector with joint pdf  

Form n linearly independent functions  

for which the inverse functions  exist. 

Then the joint pdf of the vector of functions is 

where J is the  

Jacobian determinant: 

For e.g. integrate over the unwanted components. 
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Expectation values 
Consider continuous r.v. x with pdf  f (x).   

Define expectation (mean) value as 

Notation (often):                         ~ “centre of gravity” of pdf.  

For a function y(x) with pdf g(y),  

(equivalent) 

Variance: 

Notation: 

Standard deviation: 

σ ~ width of pdf, same units as x. 

G. Cowan  
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Quantile, median, mode 

G. Cowan  

The quantile or α-point xα of a random variable x is inverse of the  
cumulative distribution ,i.e., the value of x such that  

The special case x1/2 is called the median, med[x], i.e., the value  
of x such that P(x ≤ x1/2) = 1/2. 

The mode of a random variable is the value is the value 
with the maximum probability, or at the maximum of the pdf. 

For a monotonic transformation x → y(x), one has yα = y(xα). 

For a nonlinear transformation x → y(x), in general  
mode[y] ≠ y(mode[x]) 
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Moments of a random variable  

G. Cowan  

The nth algebraic moment of (continuous) x is defined as:  

First (n=1) algebraic moment is the mean: 

The nth cemtral moment of x is defined as:  

Second central moment is the variance: 
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Covariance and correlation 
Define covariance cov[x,y] (also use matrix notation Vxy) as   

Correlation coefficient (dimensionless) defined as 

If x, y, independent, i.e.,  ,   then 

→ x and  y, ‘uncorrelated’ 

N.B. converse not always true. 

G. Cowan  
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Correlation (cont.)  

G. Cowan  
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Error propagation  

which quantify the measurement errors in the xi.  

Suppose we measure a set of values  

and we have the covariances 

Now consider a function 

What is the variance of  

The hard way:  use joint pdf to find the pdf   

then from g(y) find V[y] = E[y2] - (E[y])2.  

Often not practical,  may not even be fully known. 
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Error propagation (2)  
Suppose we had  

in practice only estimates given by the measured 

Expand to 1st order in a Taylor series about  

since 

To find V[y] we need E[y2] and E[y]. 
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Error propagation (3) 

Putting the ingredients together gives the variance of 
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Error propagation (4) 
If the xi are uncorrelated, i.e.,  then this becomes 

Similar for a set of m functions  

or in matrix notation  where 
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Error propagation (5) 
The ‘error propagation’ formulae tell us the  
covariances of a set of functions 
                                                    in terms of  
the covariances of the original variables.  

Limitations:  exact only if  linear. 
Approximation breaks down if function  
nonlinear over a region comparable 
in size to the σi. 

N.B.  We have said nothing about the exact pdf of the xi, 
e.g., it doesn’t have to be Gaussian. 

x 

y(x) 

σx 

σy 

x σx 

? 

y(x) 
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Error propagation − special cases 

→ 

→ 

That is, if the xi are uncorrelated: 
 add errors quadratically for the sum (or difference), 
 add relative errors quadratically for product (or ratio).  

But correlations can change this completely... 
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Error propagation − special cases (2) 

Consider with 

Now suppose ρ = 1.  Then 

i.e. for 100% correlation, error in difference → 0. 
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Some distributions 
Distribution/pdf  Example use in HEP 
Binomial   Branching ratio 
Multinomial   Histogram with fixed N 
Poisson   Number of events found 
Uniform   Monte Carlo method 
Exponential   Decay time 
Gaussian   Measurement error 
Chi-square   Goodness-of-fit 
Cauchy   Mass of resonance 
Landau   Ionization energy loss 
Beta    Prior pdf for efficiency 
Gamma   Sum of exponential variables 
Student’s t   Resolution function with adjustable tails 
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Binomial distribution 
Consider N independent experiments (Bernoulli trials): 

outcome of each is ‘success’ or ‘failure’, 
probability of success on any given trial is p. 

Define discrete r.v. n = number of successes (0 ≤ n ≤  N). 

Probability of a specific outcome (in order), e.g. ‘ssfsf’ is 

But order not important; there are 

ways (permutations) to get n successes in N trials, total  
probability for n is sum of probabilities for each permutation. 
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Binomial distribution  (2) 
The binomial distribution is therefore 

random 
variable 

parameters 

For the expectation value and variance we find: 
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Binomial distribution  (3) 
Binomial distribution for several values of the parameters: 

Example:  observe N decays of W±,  the number n of which are  
W→µν is a binomial r.v., p = branching ratio. 
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Multinomial distribution 
Like binomial but now m outcomes instead of two, probabilities are 

For N trials we want the probability to obtain: 

n1 of outcome 1, 
n2 of outcome 2, 

 … 
nm of outcome m. 

This is the multinomial distribution for 
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Multinomial distribution (2) 
Now consider outcome i as ‘success’, all others as ‘failure’. 

→ all ni individually binomial with parameters N, pi 

for all i 

One can also find the covariance to be 

Example:   represents a histogram 

with m bins, N total entries, all entries independent. 
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Poisson distribution 
Consider binomial n in the limit 

→ n follows the Poisson distribution: 

Example:  number of scattering events 
n with cross section σ found for a fixed 
integrated luminosity, with 
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Uniform distribution 
Consider a continuous r.v. x with -∞ < x < ∞ .  Uniform pdf is: 

N.B.  For any r.v. x with cumulative distribution F(x), 
y = F(x) is uniform in [0,1]. 

Example:  for π0 → γγ, Eγ is uniform in [Emin, Emax], with 
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Exponential distribution 
The exponential pdf for the continuous r.v. x is defined by: 

Example:  proper decay time t of an unstable particle 

(τ = mean lifetime) 

Lack of memory (unique to exponential): 
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Gaussian distribution 
The Gaussian (normal) pdf for a continuous r.v. x is defined by: 

Special case: µ = 0, σ2 = 1   (‘standard Gaussian’): 

(N.B. often µ, σ2 denote 
mean, variance of any 
r.v., not only Gaussian.) 

If y ~ Gaussian with µ, σ2, then  x = (y - µ) /σ  follows ϕ (x). 



G. Cowan  Weizmann Statistics Workshop, 2015 / GDC  Lecture 1 48 

Gaussian pdf and the Central Limit Theorem 
The Gaussian pdf is so useful because almost any random 
variable that is a sum of a large number of small contributions 
follows it.  This follows from the Central Limit Theorem: 

For n independent r.v.s xi with finite variances σi
2, otherwise 

arbitrary pdfs, consider the sum 

Measurement errors are often the sum of many contributions, so 
frequently measured values can be treated as Gaussian r.v.s. 

In the limit n → ∞, y is a Gaussian r.v. with 
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Central Limit Theorem (2) 
The CLT can be proved using characteristic functions (Fourier 
transforms), see, e.g., SDA Chapter 10. 

Good example:  velocity component vx of air molecules. 

OK example:  total deflection due to multiple Coulomb scattering. 
(Rare large angle deflections give non-Gaussian tail.) 

Bad example:  energy loss of charged particle traversing thin 
gas layer.  (Rare collisions make up large fraction of energy loss, 
cf. Landau pdf.) 

For finite n, the theorem is approximately valid to the 
extent that the fluctuation of  the sum is not dominated by 
one (or few) terms.  

Beware of measurement errors with non-Gaussian tails. 
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Multivariate Gaussian distribution 
Multivariate Gaussian pdf for the vector  

are column vectors,  are transpose (row) vectors,  

For n = 2 this is 

where ρ = cov[x1, x2]/(σ1σ2) is the correlation coefficient. 



G. Cowan  Weizmann Statistics Workshop, 2015 / GDC  Lecture 1 51 

Chi-square (χ2) distribution 
The chi-square pdf for the continuous r.v. z  (z ≥ 0) is defined by 

n = 1, 2, ... =  number of ‘degrees of 
                       freedom’ (dof) 

For independent Gaussian xi, i = 1, ..., n, means µi, variances σi
2, 

follows χ2 pdf with n dof. 

Example:  goodness-of-fit test variable especially in conjunction 
with method of least squares. 
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Cauchy (Breit-Wigner) distribution 
The Breit-Wigner pdf for the continuous r.v. x is defined by 

(Γ = 2, x0 = 0 is the Cauchy pdf.) 

E[x] not well defined,   V[x] →∞. 

x0 = mode (most probable value) 

Γ = full width at half maximum 

Example:  mass of resonance particle, e.g. ρ, K*, φ0, ... 

Γ = decay rate (inverse of mean lifetime) 
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Landau distribution 
For a charged particle with β = v /c traversing a layer of matter 
of thickness d, the energy loss Δ follows the Landau pdf: 

L. Landau, J. Phys. USSR 8 (1944) 201; see also 
W. Allison and J. Cobb, Ann. Rev. Nucl. Part. Sci. 30 (1980) 253. 

+ - + - 	



- + - + 	


β	



d 

Δ	
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Landau distribution  (2) 

Long ‘Landau tail’ 
     →  all moments ∞ 

Mode (most probable  
value) sensitive to β , 
     →  particle i.d. 
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Beta distribution 

Often used to represent pdf  
of continuous r.v. nonzero only 
between finite limits.  
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Gamma distribution 

Often used to represent pdf  
of continuous r.v. nonzero only 
in [0,∞]. 

Also e.g. sum of n exponential 
r.v.s or time until nth event 
in Poisson process ~ Gamma 
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Student's t distribution 

ν = number of degrees of freedom 
      (not necessarily integer) 

ν = 1 gives Cauchy, 

ν → ∞ gives Gaussian. 
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Student's t distribution (2) 
If x ~ Gaussian with µ = 0, σ2 = 1, and  
    z ~ χ2 with n degrees of freedom, then 
    t = x / (z/n)1/2  follows Student's t with ν = n. 

This arises in problems where one forms the ratio of a sample  
mean to the sample standard deviation of Gaussian r.v.s. 

The Student's t provides a bell-shaped pdf with adjustable 
tails, ranging from those of a Gaussian, which fall off very 
quickly, (ν → ∞, but in fact already very Gauss-like for  
ν =  two dozen),  to the very long-tailed Cauchy (ν = 1).  

Developed in 1908 by William Gosset, who worked under 
the pseudonym "Student" for the Guinness Brewery. 
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Characteristic functions 
The characteristic function φx(k) of an r.v. x is defined as the 
expectation value of eikx (~Fourier transform of x): 

Useful for finding moments and deriving properties of sums of r.v.s.  

For well-behaved cases (true in practice), characteristic function 
is equivalent to pdf and vice versa, i.e., given one you can in  
principle find the other (like Fourier transform pairs). 
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Characteristic functions: examples 
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Characteristic functions:  more examples 
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Moments from characteristic function 
Suppose we have a characteristic function φz(k) of a variable z. 

By differentiating m times and evaluating at k = 0 we find: 

where µm′ = E[xm] is the mth algebraic moment of z. 

So if we have the characteristic function we can find the moments  
of an r.v. even if we don’t have an explicit formula for its pdf. 
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Example of moments from characteristic function 
For example, using the characteristic function of a Gaussian 

we can find the mean and variance, 
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Limiting cases of distributions from c.f. 
Characteristic function of the binomial distribution is 

Taking limit p → 0, N → ∞, with ν = pN constant gives 

which is the characteristic function of the Poisson distribution. 

In a similar way one can show that the Poisson distribution with 
mean ν becomes a Gaussian with mean ν and standard 
deviation √ν in the limit ν → ∞. 
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Addition theorem for characteristic functions 
Suppose we have n independent random variables x1,..., xn  
with pdfs  f1(x1),...,fn(xn) and characteristic functions φ1(k),...,φn(k). 

Consider the sum:   Its characteristic function is 

So the characteristic function of a sum is the product of the  
individual characteristic functions. 
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Addition theorem, continued 
The pdf of the sum z can be found from the inverse (Fourier) 
transform: 

Can e.g. show that for n independent xi ~ Gauss(µi, σi), the sum  

Also can be used to prove Central Limit Theorem and solve many 
other problems involving sums of random variables (SDA Ch. 10). 

follows a chi-square distribution for n degrees of freedom. 


