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Outline for Monday – Thursday  

Monday 9 March 
 GC:  probability, random variables and related quantities 
 KC:  parameter estimation, bias, variance, max likelihood 

Tuesday 10 March 
 KC:  building statistical models, nuisance parameters 
 GC:  hypothesis tests I, p-values, multivariate methods 

Wednesday 11 March 
 KC:  hypothesis tests 2, composite hyp., Wilks’, Wald’s thm. 
 GC:  asympotics 1, Asimov data set, sensitivity 

Thursday 12 March:   
 KC:  confidence intervals, asymptotics 2 
 GC:  unfolding 

(GC = Glen Cowan, KC = Kyle Cranmer) 
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Hypotheses 
A hypothesis H specifies the probability for the data, i.e., the  
outcome of the observation, here symbolically: x. 

 x could be uni-/multivariate, continuous or discrete. 

 E.g. write x ~ f (x|H). 

 x could represent e.g. observation of a single particle,  
 a single event, or an entire “experiment”. 

Possible values of x form the sample space S (or “data space”). 

Simple (or “point”) hypothesis:  f (x|H) completely specified. 

Composite hypothesis:  H contains unspecified parameter(s). 

The probability for x given H is also called the likelihood of 
the hypothesis, written L(x|H). 
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Definition of a test 
Goal is to make some statement based on the observed data 
x as to the validity of the possible hypotheses. 

Consider e.g. a simple hypothesis H0 and alternative H1. 

A test of H0  is defined by specifying a critical region W of the 
data space such that there is no more than some (small) probability 
α, assuming H0 is correct,  to observe the data there, i.e., 

  P(x ∈ W | H0 ) ≤ α 

If x is observed in the critical region, reject H0. 

α is called the size or significance level of the test. 

Critical region also called “rejection” region; complement is 
acceptance region. 
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Definition of a test (2) 
But in general there are an infinite number of possible critical 
regions that give the same significance level α. 

So the choice of the critical region for a test of H0  needs to take 
into account the alternative hypothesis H1. 

Roughly speaking, place the critical region where there is a low  
probability to be found if H0 is true, but high if H1 is true: 
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Rejecting a hypothesis 
Note that rejecting H0 is not necessarily equivalent to the 
statement that we believe it is false and H1 true.  In frequentist 
statistics only associate probability with outcomes of repeatable 
observations (the data). 

In Bayesian statistics, probability of the hypothesis (degree 
of belief) would be found using Bayes’ theorem: 

which depends on the prior probability π(H).  

What makes a frequentist test useful is that we can compute 
the probability to accept/reject a hypothesis assuming that it 
is true, or assuming some alternative is true. 
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Type-I, Type-II errors  
Rejecting the hypothesis H0 when it is true is a Type-I error.   

The maximum probability for this is the size of  the test: 

 P(x ∈ W | H0 ) ≤ α	



But we might also accept H0 when it is false, and an alternative  
H1 is true. 

This is called a Type-II error, and occurs with probability 

 P(x ∈ S - W | H1 ) = β 

One minus this is called the power of the test with respect to 
the alternative H1: 

 Power = 1 - β 
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Choosing a critical region 
To construct a test of a hypothesis H0, we can ask what are the  
relevant alternatives for which one would like to have a high power. 

 Maximize power wrt H1 = maximize probability to 
            reject H0 if H1 is true. 

Often such a test has a high power not only with respect to a  
specific point alternative but for a class of alternatives.   
E.g., using a measurement x ~ Gauss (µ, σ) we may test 

 H0 : µ = µ0 versus the composite alternative H1 : µ > µ0 

We get the highest power with respect to any µ > µ0  by taking  
the critical region x ≥ xc where the cut-off xc is determined by  
the significance level such that  

   α = P(x ≥xc|µ0). 
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Τest of µ = µ0 vs. µ > µ0  with  x ~ Gauss(µ,σ) 

Standard Gaussian quantile 

Standard Gaussian 
cumulative distribution 
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Choice of critical region based on power (3) 

But we might consider µ < µ0 as 
well as µ > µ0 to be viable 
alternatives, and choose the 
critical region to contain both 
high and low x (a two-sided test). 

New critical region now  
gives reasonable power  
for µ < µ0, but less power  
for µ > µ0 than the original  
one-sided test. 
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No such thing as a model-independent test 
In general we cannot find a single critical region that gives the 
maximum power for all possible alternatives (no “Uniformly 
Most Powerful” test).  

In HEP we often try to construct a test of 

 H0 : Standard Model (or “background only”, etc.) 

such that we have a well specified “false discovery rate”, 

 α = Probability to reject H0 if it is true, 

and high power with respect to some interesting alternative,  

 H1 : SUSY, Z′, etc. 

But there is no such thing as a “model independent” test.  Any 
statistical test will inevitably have high power with respect to 
some alternatives and less power with respect to others. 
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p-values 
Suppose hypothesis H predicts pdf  
observations 

for a set of 

We observe a single point in this space: 

What can we say about the validity of H in light of the data? 

Express level of compatibility by giving the p-value for H: 

p = probability, under assumption of H, to observe data with  
equal or lesser compatibility with H relative to the data we got.  

This is not the probability that H is true! 

Requires one to say what part of data space constitutes lesser 
compatibility with H than the observed data (implicitly this 
means that region gives better agreement with some alternative). 
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Significance from p-value 
Often define significance Z as the number of standard deviations 
that a Gaussian variable would fluctuate in one direction 
to give the same p-value. 

1 - TMath::Freq 

TMath::NormQuantile 

Weizmann Statistics Workshop, 2015 / GDC  Lecture 2 

E.g. Z = 5 (a “5 sigma effect”) corresponds to p = 2.9 × 10-7. 
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Using a p-value to define test of H0 

One can show the distribution of the p-value of H, under  
assumption of H, is uniform in [0,1]. 

So the probability to find the p-value of H0, p0, less than α is 

Weizmann Statistics Workshop, 2015 / GDC  Lecture 2 

We can define the critical region of a test of H0 with size α as the  
set of data space where p0 ≤ α. 

Formally the p-value relates only to H0, but the resulting test will 
have a given power with respect to a given alternative H1. 
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The Poisson counting experiment 
Suppose we do a counting experiment and observe n events. 

 Events could be from signal process or from background –  
 we only count the total number. 

Poisson model:   

s = mean (i.e., expected) # of signal events 

b = mean # of background events 

Goal is to make inference about s, e.g., 

     test s = 0 (rejecting H0 ≈ “discovery of signal process”) 

     test all non-zero s  (values not rejected =  confidence interval) 

In both cases need to ask what is relevant alternative hypothesis. 



G. Cowan  Weizmann Statistics Workshop, 2015 / GDC  Lecture 2 16 

Poisson counting experiment: discovery p-value 
Suppose b = 0.5 (known), and we observe nobs = 5.   

Should we claim evidence for a new discovery?   

    Give p-value for hypothesis s = 0: 
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Poisson counting experiment: discovery significance 

In fact this tradition should be 
revisited:  p-value intended to 
quantify probability of a signal-
like fluctuation assuming 
background only; not intended to 
cover, e.g., hidden systematics, 
plausibility signal model, 
compatibility of data with signal, 
“look-elsewhere effect”  
(~multiple testing), etc. 

Equivalent significance for p = 1.7 × 10-4:   

Often claim discovery if Z > 5 (p < 2.9 × 10-7, i.e., a “5-sigma effect”) 
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Example setting for statistical tests:   
the Large Hadron Collider 

Counter-rotating proton beams 
in 27 km circumference ring 

pp centre-of-mass energy 14 TeV 

Detectors at 4 pp collision points: 
 ATLAS 
 CMS 
 LHCb     (b physics) 
 ALICE   (heavy ion physics) 

general purpose 
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The ATLAS detector 

2100 physicists 
37 countries  
167 universities/labs 

25 m diameter 
46 m length 
7000 tonnes 
~108 electronic channels 
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A simulated SUSY event 

high pT 
muons 

high pT jets  
of hadrons 

missing transverse energy 

p p 

G. Cowan  
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Background events 

This event from Standard  
Model ttbar production also 
has high  pT jets and muons, 
and some missing transverse 
energy. 

→ can easily mimic a  
     SUSY event. 

G. Cowan  
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Physics context of a statistical test 
Event Selection:  the event types in question are both known to exist. 

 Example:  separation of different particle types (electron vs muon) 
 or known event types (ttbar vs QCD multijet). 
 E.g. test H0 : event is background vs. H1 : event is signal. 
 Use selected events for further study. 

 
Search for New Physics:  the null hypothesis is 

 H0 : all events correspond to Standard Model (background only),  

and the alternative is 

 H1 : events include a type whose existence is not yet established 
         (signal plus background)  

Many subtle issues here, mainly related to the high standard of proof 
required to establish presence of a new phenomenon.  The optimal statistical 
test  for a search is closely related to that used for event selection. 
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For each reaction we consider we will have a hypothesis for the 
pdf of     , e.g.,  

Statistical tests for event selection 
Suppose the result of a measurement for an individual event  
is a collection of numbers 

 x1 = number of muons, 

 x2 = mean pT of jets, 

 x3 = missing energy, ... 

     follows some n-dimensional joint pdf, which depends on  
the type of event produced, i.e., was it  

etc. 
E.g. call H0 the background hypothesis (the event type we  
want to reject); H1 is signal hypothesis (the type we want). 

G. Cowan  
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Selecting events 
Suppose we have a data sample with two kinds of events, 
corresponding to hypotheses H0 and H1 and we want to select 
those of type H1. 

Each event is a point in     space.  What ‘decision boundary’ 
should we use to accept/reject events as belonging to event 
types H0 or H1? 

accept 
H1 

H0 

Perhaps select events 
with ‘cuts’: 

G. Cowan  
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Other ways to select events 
Or maybe use some other sort of decision boundary: 

accept 
H1 

H0 

accept 
H1 

H0 

linear or nonlinear 

How can we do this in an ‘optimal’ way? 

G. Cowan  
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Test statistics 
The boundary of the critical region for an n-dimensional data 
space x = (x1,..., xn) can be defined by an equation of the form 

We can work out the pdfs 

Decision boundary is now a 
single ‘cut’ on t, defining 
the critical region. 

So for an n-dimensional 
problem we have a 
corresponding 1-d problem. 

where t(x1,…, xn) is a scalar test statistic. 
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Test statistic based on likelihood ratio  
How can we choose a test’s critical region in an ‘optimal way’? 

 Neyman-Pearson lemma states: 

To get the highest power for a given significance level in a test of 
H0, (background) versus H1, (signal) the critical region should have 

inside the region, and  ≤ c outside, where c is a constant chosen 
to give a test of the desired size. 

Equivalently, optimal scalar test statistic is 

N.B. any monotonic function of this is leads to the same test. 
G. Cowan  
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Classification viewed as a statistical test 

Probability to reject H0 if true (type I error): 

α = size of test, significance level, false discovery rate 

Probability to accept H0 if H1 true (type II error): 

β = power of test with respect to H1  

Equivalently if e.g. H0 = background, H1 = signal, use efficiencies: 
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Purity / misclassification rate 
Consider the probability that an event of signal (s) type 
classified correctly (i.e., the event selection purity),  

Use Bayes’ theorem: 

Here W is signal region 
prior probability 

posterior probability = signal purity  
                                  = 1 – signal misclassification rate 

Note purity depends on the prior probability for an event to be 
signal or background as well as on s/b efficiencies. 
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Neyman-Pearson doesn’t usually help 
We usually don’t have explicit formulae for the pdfs f (x|s), f (x|b), 
so for a given x we can’t evaluate the likelihood ratio 

Instead we may have Monte Carlo models for signal and 
background processes, so we can produce simulated data: 

 generate x ~ f (x|s)     →     x1,..., xN 

 generate x ~ f (x|b)     →     x1,..., xN 
 
This gives samples of “training data” with events of known type. 

Can be expensive (1 fully simulated LHC event ~ 1 CPU minute). 
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Approximate LR from histograms 
Want t(x) = f (x|s)/ f(x|b) for x here 

N (x|s) ≈ f (x|s) 

N (x|b) ≈ f (x|b) 

N
(x
|s
)!

N
(x
|b
)!

One possibility is to generate 
MC data and construct 
histograms for both 
signal and background. 
 
Use (normalized) histogram  
values to approximate LR: 

x!

x!

Can work well for single  
variable. 
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Approximate LR from 2D-histograms 
Suppose problem has 2 variables.  Try using 2-D histograms: 

Approximate pdfs using N (x,y|s), N (x,y|b) in corresponding cells. 
But if we want M bins for each variable, then in n-dimensions we 
have Mn cells; can’t generate enough training data to populate. 

 → Histogram method usually not usable for n > 1 dimension. 

signal back- 
ground 
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Strategies for multivariate analysis 

Neyman-Pearson lemma gives optimal answer, but cannot be 
used directly, because we usually don’t have f (x|s), f (x|b). 

Histogram method with M bins for n variables requires that 
we estimate Mn parameters (the values of the pdfs in each cell), 
so this is rarely practical. 

A compromise solution is to assume a certain functional form 
for the test statistic t (x) with fewer parameters; determine them 
(using MC) to give best separation between signal and background. 

Alternatively, try to estimate the probability densities f (x|s) and  
f (x|b) (with something better than histograms) and use the  
estimated pdfs to construct an approximate likelihood ratio. 
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Multivariate methods 
Many new (and some old) methods: 

 Fisher discriminant 
 Neural networks 
 Kernel density methods 
 Support Vector Machines 
 Decision trees 
  Boosting 
  Bagging   

 
New software for HEP, e.g., 
TMVA , Höcker, Stelzer, Tegenfeldt, Voss, Voss, physics/0703039 
StatPatternRecognition, I. Narsky, physics/0507143  
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Resources on multivariate methods 

C.M. Bishop, Pattern Recognition and Machine Learning, 
Springer, 2006 

T. Hastie, R. Tibshirani, J. Friedman, The Elements of 
Statistical Learning, 2nd ed., Springer, 2009 

R. Duda, P. Hart, D. Stork, Pattern Classification, 2nd ed., 
Wiley, 2001 
A. Webb, Statistical Pattern Recognition, 2nd ed., Wiley, 2002. 

Ilya Narsky and Frank C. Porter, Statistical Analysis 
Techniques in Particle Physics, Wiley, 2014. 

朱永生 （编著），实验数据多元统计分析， 科学出版社，  
北京，2009。 
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Linear test statistic 

Suppose there are n input variables:  x = (x1,..., xn).   
 

Consider a linear function: 

For a given choice of the coefficients w = (w1,..., wn) we will 
get pdfs f (y|s) and f (y|b) : 
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Linear test statistic 

Fisher:  to get large difference between means and small widths  
for f (y|s) and f (y|b),  maximize the difference squared of the 
expectation values divided by the sum of the variances: 

Setting ∂J / ∂wi = 0 gives: 

, 
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The Fisher discriminant 

The resulting coefficients wi define a Fisher discriminant. 

Coefficients defined up to multiplicative constant; can also 
add arbitrary offset, i.e., usually define test statistic as 

Boundaries of the test’s 
critical region are surfaces  
of constant y(x), here linear  
(hyperplanes): 
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Fisher discriminant for Gaussian data 

Suppose the pdfs of the input variables, f (x|s) and f (x|b), are both  
multivariate Gaussians with same covariance but different means: 

f (x|s)  = Gauss(µs, V) 

f (x|b)  = Gauss(µb, V) 
Same covariance  
Vij = cov[xi, xj] 

In this case it can be shown  
that the Fisher discriminant is 

i.e., it is a monotonic function of the likelihood ratio and thus 
leads to the same critical region.  So in this case the Fisher 
discriminant provides an optimal statistical test. 
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The activation function 
For activation function h(·) often use logistic sigmoid: 
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Overtraining 
Including more parameters in a classifier makes its decision boundary  
increasingly flexible, e.g., more nodes/layers for a neural network. 

A “flexible” classifier may conform too closely to the training points;  
the same boundary will not perform well on an independent test  
data sample (→ “overtraining”). 

training sample independent test sample 
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Monitoring overtraining 
If we monitor the fraction of misclassified events (or similar, e.g.,  
error function E(w)) for test and training samples, it will usually  
decrease for both as the boundary is made more flexible: 

error 
rate 

flexibility (e.g., number  
of nodes/layers in MLP) 

test sample 
training sample 

optimum at minimum of 
error rate for test sample 

increase in error rate 
indicates overtraining 
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Neural network example from LEP II 
Signal:  e+e- → W+W-    (often 4 well separated hadron jets) 
Background:  e+e- → qqgg  (4 less well separated hadron jets) 

←  input variables based on jet 
structure, event shape, ... 
none by itself gives much separation. 

Neural network output: 

(Garrido, Juste and Martinez, ALEPH 96-144) 
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Naive Bayes method 
First decorrelate x, i.e., find y = Ax, with cov[yi, yj] = V[yi] δij . 
Pdfs of x and y are then related by 

where 

If nonlinear features of g(y) not too important, estimate using 
product of marginal pdfs: 

Do separately for the two hypotheses s and b (separate matrices 
As and Ab and marginal pdfs gs,i, gb,i).  Then define test statistic as 

Called Naive Bayes classifier. Reduces 
problem of estimating an n-dimensional pdf 
to finding n one-dimensional marginal pdfs. 
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Kernel-based PDE (KDE) 
Consider d dimensions, N training events, x1, ..., xN,  
estimate f (x) with 

Use e.g. Gaussian kernel: 

kernel 
bandwidth  
(smoothing parameter) 

x where we want  
to know pdf 

x of ith training 
event 
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Gaussian KDE in 1-dimension 
Suppose the pdf (dashed line) below is not known in closed form,  
but we can generate events that follow it (the red tick marks): 

Goal is to find an approximation to the pdf using the generated  
date values. 
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Gaussian KDE in 1-dimension (cont.) 
Place a kernel pdf (here a Gaussian) centred around each  
generated event weighted by 1/Nevent: 
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Gaussian KDE in 1-dimension (cont.) 
The KDE estimate the pdf is given by the sum of  
all of the Gaussians: 
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Choice of kernel width 
The width h of the Gaussians is analogous to the bin width 
of a histogram.  If it is too small, the estimator has noise: 
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If width of Gaussian kernels too large, structure is washed out: 

Choice of kernel width (cont.) 
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Various strategies can be applied to choose width h of kernel 
based trade-off between bias and variance (noise). 

 Adaptive KDE allows width of kernel to vary, e.g., wide where 
target pdf is low (few events); narrow where pdf is high. 

Advantage of KDE:  no training!   

Disadvantage of KDE:  to evaluate we need to sum Nevent terms,  
so if we have many events this can be slow. 

Special treatment required if kernel extends beyond range 
where pdf defined.  Can e.g., renormalize the kernels to unity 
inside the allowed range; alternatively “mirror” the events 
about the boundary (contribution from the mirrored events  
exactly compensates the amount lost outside the boundary). 

Software in ROOT:  RooKeysPdf   (K. Cranmer, CPC 136:198,2001) 

KDE discussion 
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Each event characterized by 3 variables,  x, y, z: 
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Test example (x, y, z) 

no cut on z 

z < 0.5 z < 0.25 

z < 0.75 

x

xx

x

y

y

y

y
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Particle i.d. in MiniBooNE 
Detector is a 12-m diameter tank 
of mineral oil exposed to a beam 
of neutrinos and viewed by 1520 
photomultiplier tubes: 

H.J. Yang, MiniBooNE PID, DNP06 

Search for νµ to νe oscillations  
required particle i.d. using  
information from the PMTs. 
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Decision trees 
Out of all the input variables, find the one for which with a 
single cut gives best improvement in signal purity: 

Example by MiniBooNE experiment, 
B. Roe et al., NIM 543 (2005) 577 

where wi. is the weight of the ith event. 

Resulting nodes classified as either 
signal/background. 

Iterate until stop criterion reached 
based on e.g. purity or minimum 
number of events in a node. 
The set of cuts defines the decision 
boundary. 
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Finding the best single cut 
The level of separation within a node can, e.g., be quantified by 
the Gini coefficient, calculated from the (s or b) purity as: 

For a cut that splits a set of events a into subsets b and c, one 
can quantify the improvement in separation by the change in  
weighted Gini coefficients: 

where, e.g.,   

Choose e.g. the cut to the maximize Δ; a variant of this 
scheme can use instead of Gini e.g. the misclassification rate: 
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Decision trees (2) 
The terminal nodes (leaves) are classified a signal or background 
depending on majority vote (or e.g. signal fraction greater than a 
specified threshold). 

This classifies every point in input-variable space as either signal 
or background, a decision tree classifier, with discriminant function 

f(x) = 1 if x in signal region, -1 otherwise 

Decision trees tend to be very sensitive to statistical fluctuations in 
the training sample. 

Methods such as boosting can be used to stabilize the tree. 
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< 
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Monitoring overtraining  

From MiniBooNE 
example: 
Performance stable 
after a few hundred 
trees. 
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A simple example (2D) 
Consider two variables, x1 and x2, and suppose we have formulas 
for the joint pdfs for both signal (s) and background (b) events (in 
real problems the formulas are usually not available). 

     f(x1|x2) ~ Gaussian, different means for s/b, 
    Gaussians have same σ, which depends on x2, 
    f(x2) ~ exponential, same for both s and b, 
    f(x1, x2) =  f(x1|x2) f(x2): 
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Joint and marginal distributions of x1, x2 

background 

signal 

Distribution f(x2) same for s, b. 

So does x2 help discriminate 
between the two event types? 
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Likelihood ratio for 2D example 
Neyman-Pearson lemma says best critical region is determined 
by the likelihood ratio: 

Equivalently we can use any monotonic function of this as 
a test statistic, e.g., 

Boundary of optimal critical region will be curve of constant ln t, 
and this depends on x2! 



G. Cowan  Weizmann Statistics Workshop, 2015 / GDC  Lecture 2 page 85 

Contours of constant MVA output 

Exact likelihood ratio Fisher discriminant 
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Contours of constant MVA output 

Multilayer Perceptron 
1 hidden layer with 2 nodes 

Boosted Decision Tree 
200 iterations (AdaBoost) 

Training samples:  105 signal and 105 background events 
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ROC curve 

ROC = “receiver operating  
characteristic” (term from  
signal processing). 
 
Shows (usually) background  
rejection (1-εb) versus  
signal efficiency εs. 
 
Higher curve is better;  
usually analysis focused on 
a small part of the curve. 
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2D Example:  discussion 
Even though the distribution of x2 is same for signal and 
background, x1 and x2 are not independent, so using x2 as an input 
variable helps. 

Here we can understand why:  high values of x2 correspond to a 
smaller σ for the Gaussian of x1.  So high x2 means that the value 
of x1 was well measured. 

If we don’t consider x2, then all of the x1 measurements are 
lumped together.  Those with large σ (low x2) “pollute” the well 
measured events with low σ (high x2). 

Often in HEP there may be variables that are characteristic of how 
well measured an event is (region of detector, number of pile-up 
vertices,...).  Including these variables in a multivariate analysis 
preserves the information carried by the well-measured events, 
leading to improved performance. 
 
 
 
In this example we can understand why x2 is useful, even 
though both signal and background have same pdf for x2. 
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Summary on multivariate methods 
Particle physics has used several multivariate methods for many years: 

 linear (Fisher) discriminant 
 neural networks 
 naive Bayes   

and has in recent years started to use a few more: 

 boosted decision trees 
 support vector machines 
 kernel density estimation 
 k-nearest neighbour 

The emphasis is often on controlling systematic uncertainties between 
the modeled training data and Nature to avoid false discovery. 

Although many classifier outputs are "black boxes", a discovery 
at 5σ significance with a sophisticated (opaque) method will win the 
competition if backed up by, say, 4σ evidence from a cut-based method. 


