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Outline for Monday – Thursday  

Monday 9 March 
 GC:  probability, random variables and related quantities 
 KC:  parameter estimation, bias, variance, max likelihood 

Tuesday 10 March 
 KC:  building statistical models, nuisance parameters 
 GC:  hypothesis tests I, p-values, multivariate methods 

Wednesday 11 March 
 KC:  hypothesis tests 2, composite hyp., Wilks’, Wald’s thm. 
 GC:  asympotics 1, Asimov data set, sensitivity 

Thursday 12 March:   
 KC:  confidence intervals, asymptotics 2 
 GC:  unfolding 

(GC = Glen Cowan, KC = Kyle Cranmer) 
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Recap of frequentist statistical tests 
Consider test of a parameter µ, e.g., proportional to cross section. 

Result of measurement is a set of numbers x. 

To define test of µ, specify critical region wµ, such that probability 
to find x ∈ wµ is not greater than α (the size or significance level): 

(Must use inequality since x may be discrete, so there may not  
exist a subset of the data space with probability of exactly α.) 

Equivalently define a p-value pµ such that the critical region  
corresponds to pµ < α.  

Often use, e.g., α = 0.05. 

If observe x ∈ wµ, reject µ. 
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Test statistics and p-values 
Often construct a test statistic, qµ, which reflects the level 
of agreement between the data and the hypothesized value µ. 

For examples of statistics based on the profile likelihood ratio, 
see, e.g., CCGV, EPJC 71 (2011) 1554;  arXiv:1007.1727. 

Usually define qµ such that higher values represent increasing  
incompatibility with the data, so that the p-value of µ is: 

Equivalent formulation of test:  reject µ if pµ < α. 

pdf of qµ assuming µ observed value of qµ 
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Confidence interval from inversion of a test 

Carry out a test of size α for all values of µ. 

The values that are not rejected constitute a confidence interval 
for µ at confidence level CL = 1 – α. 

 The confidence interval will by construction contain the 
 true value of µ with probability of at least 1 – α. 

The interval depends on the choice of the critical region of the test.  

Put critical region where data are likely to be under assumption of 
the relevant alternative to the µ that’s being tested. 

    Test µ = 0, alternative is µ > 0:  test for discovery. 

    Test µ =  µ0, alternative is µ = 0:  testing all µ0 gives upper limit. 
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p-value for discovery 
Large q0 means increasing incompatibility between the data 
and hypothesis, therefore p-value for an observed q0,obs is 

will get formula for this later 

From p-value get  
equivalent significance, 
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Prototype search analysis  
Search for signal in a region of phase space; result is histogram 
of some variable x giving numbers: 
 
 
Assume the ni are Poisson distributed with expectation values 

signal 

where 

background 

strength parameter 
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Prototype analysis (II) 
Often also have a subsidiary measurement that constrains some 
of the background and/or shape parameters: 
 
 
Assume the mi are Poisson distributed with expectation values 

nuisance parameters (θs, θb,btot) 
Likelihood function is 



The profile likelihood ratio 
Base significance test on the profile likelihood ratio: 

G. Cowan  

maximizes L for 
specified µ	


maximize L	


The likelihood ratio of point hypotheses gives optimum test   
(Neyman-Pearson lemma). 

 The profile LR hould be near-optimal in present analysis  
 with variable µ and nuisance parameters θ. 
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Test statistic for discovery 
Try to reject background-only (µ = 0) hypothesis using 

i.e. here only regard upward fluctuation of data as evidence  
against the background-only hypothesis. 

Note that even though here physically µ ≥ 0, we allow  
to be negative.  In large sample limit its distribution becomes 
Gaussian, and this will allow us to write down simple  
expressions for distributions of our test statistics. 

µ̂
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p-value for discovery 
Large q0 means increasing incompatibility between the data 
and hypothesis, therefore p-value for an observed q0,obs is 

will get formula for this later 

From p-value get  
equivalent significance, 
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Expected (or median) significance / sensitivity 

When planning the experiment, we want to quantify how sensitive 
we are to a potential discovery, e.g., by given median significance 
assuming some nonzero strength parameter µ ′. 

So for p-value, need f(q0|0), for sensitivity, will need f(q0|µ ′),  

f (q0|0) f (q0|µ′) 

med[q0|µ′] 

q0 
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Wald approximation for profile likelihood ratio 
To find p-values, we need: 

For median significance under alternative, need: 

Use approximation due to Wald (1943) 

sample size 
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Noncentral chi-square for -2lnλ(µ) 

If we can neglect the O(1/√N) term, -2lnλ(µ) follows a 
 noncentral chi-square distribution for one degree of freedom 
with noncentrality parameter 

As a special case, if µ′ = µ then Λ = 0 and -2lnλ(µ) follows 
a chi-square distribution for one degree of freedom (Wilks). 
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The Asimov data set 
To estimate median value of -2lnλ(µ), consider special data set 
where all statistical fluctuations suppressed and ni, mi are replaced 
by their expectation values (the “Asimov” data set): 

Asimov value of 
-2lnλ(µ) gives non- 
centrality param. Λ,	

or equivalently, σ	
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Relation between test statistics and 	
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Distribution of q0 

Assuming the Wald approximation, we can write down the full  
distribution of q0 as 

The special case µ′ = 0 is a “half chi-square” distribution:  
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Cumulative distribution of q0, significance 

From the pdf, the cumulative distribution of q0 is found to be  

The special case µ′ = 0 is  

The p-value of the µ = 0 hypothesis is 

Therefore the discovery significance Z is simply 
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Example of a  p-value 
ATLAS, Phys. Lett. B 716 (2012) 1-29 
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Profile likelihood ratio for upper limits 

For purposes of setting an upper limit on µ use 

Note for purposes of setting an upper limit, one does not regard 
an upwards fluctuation of the data as representing incompatibility 
with the hypothesized µ. 

Note also here we allow the estimator for µ  be negative 
(but                  must be positive). 

 
 

where 
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Alternative test statistic for upper limits 
Assume physical signal model has µ > 0, therefore if estimator 
for µ comes out negative, the closest physical model has µ = 0. 

Therefore could also measure level of discrepancy between data  
and hypothesized µ with 

Performance not identical to but very close to qµ (of previous slide). 
qµ  is simpler in important ways. 
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Relation between test statistics and       	

Assuming the Wald approximation for – 2lnλ(µ), qµ and qµ  
both have monotonic relation with µ.  

~ 

And therefore quantiles 
of qµ, qµ can be obtained 
directly from those  
of µ (which is Gaussian). ˆ 

̃ 

~ 
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Distribution of qµ	


Similar results for qµ	
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Similar results for qµ	
̃ 

Distribution of qµ	
̃ 
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Monte Carlo test of asymptotic formula 	


Here take τ = 1. 

Asymptotic formula is  
good approximation to 5σ	

level (q0 = 25) already for 
b ~ 20. 
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Monte Carlo test of asymptotic formulae 	

Significance from asymptotic formula, here Z0 = √q0 = 4,  
compared to MC (true) value. 

For very low b, asymptotic 
formula underestimates Z0. 

Then slight overshoot before 
rapidly converging to MC 
value. 
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Monte Carlo test of asymptotic formulae 	

Asymptotic  f (q0|1)  good already for fairly small samples. 

Median[q0|1] from Asimov data set; good agreement with MC. 
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Monte Carlo test of asymptotic formulae 	

Consider again n ~ Poisson (µs + b), m ~ Poisson(τb) 
Use qµ to find p-value of hypothesized µ values. 

E.g.  f (q1|1) for p-value of µ =1. 

Typically interested in 95% CL, i.e., 
p-value threshold = 0.05, i.e., 
q1 = 2.69 or  Z1 = √q1 =  1.64. 

Median[q1 |0] gives “exclusion 
sensitivity”. 

Here asymptotic formulae good 
for s = 6, b = 9. 
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Monte Carlo test of asymptotic formulae 	

Same message for test based on qµ. 

qµ and qµ give similar tests to  
the extent that asymptotic 
formulae are valid. 

~ 

~ 
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I.  Discovery sensitivity for counting experiment with b known: 
 

 (a) 
 

 (b)  Profile likelihood  
                   ratio test & Asimov: 

II.  Discovery sensitivity with uncertainty in b, σb: 
 

 (a) 
  
 (b)  Profile likelihood ratio test & Asimov: 

Expected discovery significance for counting  
experiment with background uncertainty 
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 Counting experiment with known background 
Count a number of events n ~ Poisson(s+b), where 

 s = expected number of events from signal, 

 b = expected number of background events. 

Usually convert to equivalent significance: 

To test for discovery of signal compute p-value of s = 0 hypothesis, 

where Φ is the standard Gaussian cumulative distribution, e.g., 
Z > 5 (a 5 sigma effect) means p < 2.9 ×10-7. 

To characterize sensitivity to discovery, give expected (mean 
or median) Z under assumption of a given s. 
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s/√b for expected discovery significance 
For large s + b, n → x ~ Gaussian(µ,σ) , µ = s + b, σ = √(s + b). 

For observed value xobs, p-value of s = 0 is Prob(x > xobs | s = 0),: 

Significance for rejecting s = 0 is therefore 

Expected (median) significance assuming signal rate s is 
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Better approximation for significance 
Poisson likelihood for parameter s is 

So the likelihood ratio statistic for testing s = 0 is 

To test for discovery use profile likelihood ratio: 

For now  
no nuisance  
params. 
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Approximate Poisson significance (continued) 

For sufficiently large s + b, (use Wilks’ theorem),  

To find median[Z|s], let n → s + b (i.e., the Asimov data set): 

This reduces to s/√b for s << b. 
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n ~ Poisson(s+b),  median significance, 
assuming s, of the hypothesis s = 0 

“Exact” values from MC, 
jumps due to discrete data. 
 
Asimov √q0,A good approx. 
for broad range of s, b. 
 
s/√b only good for s « b. 

CCGV, EPJC 71 (2011) 1554, arXiv:1007.1727 
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Extending s/√b to case where b uncertain 
The intuitive explanation of s/√b is that it compares the signal, 
 s, to the standard deviation of n assuming no signal, √b. 

Now suppose the value of b is uncertain, characterized by a  
standard deviation σb. 

A reasonable guess is to replace √b by the quadratic sum of 
√b and σb, i.e., 

This has been used to optimize some analyses e.g. where  
σb cannot be neglected. 
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Profile likelihood with b uncertain 

This is the well studied “on/off” problem:  Cranmer 2005; 
Cousins, Linnemann, and Tucker 2008; Li and Ma 1983,... 

Measure two Poisson distributed values: 

 n ~ Poisson(s+b)         (primary or “search” measurement) 

 m ~ Poisson(τb)  (control measurement, τ known) 

The likelihood function is 

Use this to construct profile likelihood ratio (b is nuisance 
parmeter): 
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Ingredients for profile likelihood ratio 

To construct profile likelihood ratio from this need estimators: 

and in particular to test for discovery (s = 0),  
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Asymptotic significance 
Use profile likelihood ratio for q0, and then from this get discovery 
significance using asymptotic approximation (Wilks’ theorem): 

Essentially same as in: 



Or use the variance of b = m/τ,   
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Asimov approximation for median significance 
To get median discovery significance, replace n, m by their 
expectation values assuming background-plus-signal model: 

 n → s + b 
 m → τb 

,   to eliminate τ: ˆ 
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Limiting cases 
Expanding the Asimov formula in powers of s/b and 
σb

2/b (= 1/τ) gives 

So the “intuitive” formula can be justified as a limiting case 
of the significance from the profile likelihood ratio test evaluated  
with the Asimov data set. 
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Testing the formulae:  s = 5 
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Using sensitivity to optimize a cut 
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Summary on discovery sensitivity 

For large b, all formulae OK. 

For small b, s/√b and s/√(b+σb
2) overestimate the significance. 

 Could be important in optimization of searches with 
 low background. 

Formula maybe also OK if model is not simple on/off experiment,  
e.g., several background control measurements (checking this). 

Simple formula for expected discovery significance based on 
profile likelihood ratio test and Asimov approximation: 
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The Look-Elsewhere Effect 

Gross and Vitells, EPJC 70:525-530,2010, arXiv:1005.1891 

Suppose a model for a mass distribution allows for a peak at 
a mass m with amplitude µ.	


The data show a bump at a mass m0. 

How consistent is this 
with the no-bump (µ = 0) 
hypothesis? 
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Local p-value 
First, suppose the mass m0 of the peak was specified a priori. 

Test consistency of bump with the no-signal (µ = 0) hypothesis  
with e.g. likelihood ratio  

where “fix” indicates that the mass of the peak is fixed to m0. 

The resulting p-value  

gives the probability to find a value of tfix at least as great as 
observed at the specific mass m0 and is called the local p-value. 
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Global p-value 
But suppose we did not know where in the distribution to 
expect a peak. 

What we want is the probability to find a peak at least as  
significant as the one observed anywhere in the distribution. 

Include the mass as an adjustable parameter in the fit, test  
significance of peak using 

(Note m does not appear 
in the µ = 0 model.) 
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Distributions of tfix, tfloat 

For a sufficiently large data sample, tfix ~chi-square for 1 degree 
of freedom (Wilks’ theorem). 

For tfloat there are two adjustable parameters, µ and m, and naively 
Wilks theorem says tfloat ~ chi-square for 2 d.o.f. 

In fact Wilks’ theorem does 
not hold in the floating mass 
case because on of the 
parameters (m) is not-defined 
in the µ = 0 model. 

So getting tfloat distribution is 
more difficult. 

Gross and Vitells 
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Approximate correction for LEE 
We would like to be able to relate the p-values for the fixed and 
floating mass analyses (at least approximately). 

Gross and Vitells show the p-values are approximately related by 

where 〈N(c)〉 is the mean number “upcrossings” of   
tfix = -2ln λ  in the fit range based on a threshold 

and where Zlocal = Φ-1(1 – plocal) is the local significance. 
So we can either carry out the full floating-mass analysis (e.g.  
use MC to get p-value), or do fixed mass analysis and apply a  
correction factor (much faster than MC). 

Gross and Vitells 
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Upcrossings of -2lnL 

〈N(c)〉 can be estimated  
from  MC (or the real  
data) using a much lower  
threshold c0: 

Gross and Vitells 

The Gross-Vitells formula for the trials factor requires 〈N(c)〉, 
the mean number  “upcrossings” of tfix = -2ln λ in the fit range based  
on a threshold c = tfix= Zfix

2. 
  

In this way 〈N(c)〉 can be 
estimated without need of 
large MC samples, even if  
the the threshold c is quite 
high. 
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Multidimensional look-elsewhere effect 
Generalization to multiple dimensions:  number of upcrossings 
replaced by expectation of Euler characteristic: 

Applications:  astrophysics (coordinates on sky), search for 
resonance of unknown mass and width, ... 
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Vitells and Gross, Astropart. Phys. 35 (2011) 230-234; arXiv:1105.4355 



Remember the Look-Elsewhere Effect is when we test a single 
model (e.g., SM) with multiple observations, i..e, in mulitple 
places. 

Note there is no look-elsewhere effect when considering 
exclusion limits.    There we test specific signal models (typically 
once) and say whether each is excluded. 

With exclusion there is, however, the also problematic issue of  
testing many signal models (or parameter values) and thus  
excluding some for which one has little or no sensitivity. 

Approximate correction for LEE should be sufficient, and one  
should also report the uncorrected significance. 

 “There's no sense in being precise when you don't even  
 know what you're talking about.” ––  John von Neumann 
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Summary on Look-Elsewhere Effect 
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Common practice in HEP has been to claim a discovery if the  
p-value of the no-signal hypothesis is below 2.9 × 10-7,  
corresponding to a significance Z = Φ-1 (1 – p) = 5 (a 5σ effect). 

There a number of reasons why one may want to require such 
a high threshold for discovery: 

 The “cost” of announcing a false discovery is high. 

 Unsure about systematics. 

 Unsure about look-elsewhere effect. 

 The implied signal may be a priori highly improbable 
 (e.g., violation of Lorentz invariance). 
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Why 5 sigma? 

Weizmann Statistics Workshop, 2015 / GDC  Lecture 3 



But the primary role of the p-value is to quantify the probability 
that the background-only model gives a statistical fluctuation 
as big as the one seen or bigger. 

It is not intended as a means to protect against hidden systematics 
or the high standard required for a claim of an important discovery. 

In the processes of establishing a discovery there comes a point 
where it is clear that the observation is not simply a fluctuation, 
but an “effect”, and the focus shifts to whether this is new physics 
or a systematic. 

Providing LEE is dealt with, that threshold is probably closer to 
3σ than 5σ. 
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Why 5 sigma (cont.)? 
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Asymptotic distributions of profile LR applied to an LHC search. 

 Wilks: f (qµ |µ) for  p-value of µ. 

 Wald approximation for f (qµ |µ′). 

“Asimov” data set used to estimate median qµ for sensitivity. 

 Gives σ of distribution of estimator for µ. 

Asymptotic formulae especially useful for estimating sensitivity in 
high-dimensional parameter space. 

Can always check with MC for very low data samples and/or 
when precision crucial. 

Implementation in RooStats (KC). 

 Thanks to Louis Fayard, Nancy Andari, Francesco Polci,  
 Marumi Kado for their observations related to allowing a 
 negative estimator for µ. 
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Summary 
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Extra slides 
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Example:  Shape analysis	
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Look for a Gaussian bump sitting on top of: 
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Monte Carlo test of asymptotic formulae 	


G. Cowan  

Distributions of qµ here for µ that gave pµ = 0.05. 
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Using f(qµ|0) to get error bands	


G. Cowan  

We are not only interested in the median[qµ|0]; we want to know 
how much statistical variation to expect from a real data set. 

But we have full f(qµ|0); we can get any desired quantiles. 
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Distribution of upper limit on µ	


G. Cowan  

±1σ (green) and ±2σ (yellow) bands from MC; 

Vertical lines from asymptotic formulae 
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Limit on µ versus peak position (mass)	


G. Cowan  

±1σ (green) and ±2σ (yellow) bands from asymptotic formulae; 

Points are from a single arbitrary data set. 
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Using likelihood ratio Ls+b/Lb	


G. Cowan  

Many searches at the Tevatron have used the statistic 

likelihood of µ = 1 model (s+b) 

likelihood of µ = 0 model (bkg only) 

This can be written 
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Wald approximation for Ls+b/Lb	


G. Cowan  

Assuming the Wald approximation, q can be written as 

i.e. q is Gaussian distributed with  mean and variance of 

To get σ2 use 2nd derivatives of lnL with Asimov data set. 
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Example with Ls+b/Lb	


G. Cowan  

Consider again n ~ Poisson (µs + b), m ~ Poisson(τb) 
b = 20, s = 10, τ = 1. 

So even for smallish data  
sample, Wald approximation 
can be useful; no MC needed. 
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