Statistical Statistical Inference for Particle and Astro Physics
Solutions to problem on exponential fit

1(a) [4 marks] The exponentially distributed time measurements, t1,...,%,, and the Gaussian

distributed calibration measurement y are all independent, so the likelihood is simply the product
of the corresponding pdfs:
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The log-likelihood is therefore
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where C represents terms that do not depend on the parameters and therefore can be dropped.
Differentiating In L with respect to the parameters gives
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Setting the derivatives to zero and solving for 7 and A gives the ML estimators,
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1(b) [4 marks] The variances of A and 7 and their covariance are
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For the covariance we used the fact that ¢; and y are independent and thus have zero covariance.

1(c) [4 marks] The standard deviations of # and X can be determined from the contour of
InL(7,\) = InLpax — 1/2, as shown in Fig. 1. The standard can be approximated by the
distance from the maximum of In L to the tangent line to the contour (in either direction).
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3T K% to find o; and o5 from the contour of
2 T In L(7,A) = In Lyyax — 1/2 (see text).

If \ were to be known exactly, then the standard deviation of 7 would be less. This can be seen
from Fig. 1, for example, since the distance one need to move 7 away from the maximum of In L
to get to In Lyyax — 1/2 would be less if A were to be fixed at A.

1(d) [4 marks]| The second derivatives of InL are
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Using Et;] = 7 + A we find the expectation values of the second derivatives,
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The inverse covariance matrix of the estimators is given by
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where here we can take, e.g., 01 = 7 and 6§ = X\. We are given the formula for the inverse of the
corresponding 2 X 2 matrix, and by substituting in the ingredients we find
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which are the same as what was found in (c).



