Statistical Inference for Particle and Astro Physics Problems on parameter estimation

The first two problems below are from an a 2012 University of London exam on Statistical Data Analsyis

PART MARKS

- 1. An experiment yields n time values, t_1, \dots, t_n , and a calibration value y, all of which are independent. The time measurements are all exponentially distributed with a mean of $\tau + \lambda$ and the calibration measurement, y, follows a Gaussian distribution with a mean λ and standard deviation σ . Suppose that σ is known and we want to estimate τ and λ .
 - (a) Write down the likelihood function for τ and λ , and show that the Maximum Likelihood (ML) estimators for these parameters are

$$\hat{\tau} = \frac{1}{n} \sum_{i=1}^{n} t_i - y$$

and

$$\hat{\lambda} = y. ag{10}$$

(b) Find the variances of $\hat{\tau}$ and $\hat{\lambda}$, and the covariance $\text{cov}[\hat{\tau},\hat{\lambda}]$. Use the fact that the variance of an exponentially distributed variable is equal to the square of its mean. [10]

(c) Show using a sketch how a contour of constant log-likelihood can be used to determine the standard deviations of $\hat{\tau}$ and $\hat{\lambda}$.

Explain qualitatively how you would expect the variance of $\hat{\tau}$ to be different if the parameter λ were to be known exactly.

(d) Show that the (co)variances of $\hat{\tau}$ and $\hat{\lambda}$ obtained from the matrix of second derivatives of the log-likelihood are the same as those found in (c). Use the fact that the inverse of a 2×2 matrix

$$A = \left(\begin{array}{cc} a & b \\ c & d \end{array} \right)$$

is

$$A^{-1} = \frac{1}{ad - bc} \begin{pmatrix} d & -b \\ -c & a \end{pmatrix}.$$
 [10]

[10]

PART MARKS

2. A measurement yields two values, n_a and n_b , which are independent and Poisson distributed with mean values v_a and v_b , respectively. From these parameters we define the total mean, v, and asymmetry parameter, α , as

$$v = v_a + v_b$$
,

$$\alpha = \frac{v_a - v_b}{v_a + v_b} .$$

Recall that the Poisson distribution is $P(n; v) = v^n e^{-v} / n!$.

(a) Write down the likelihood function in terms of ν and α and find the Maximum Likelihood (ML) estimators for these parameters.

[10]

(b) Estimate the variance of $\hat{\alpha}$ as a function of ν and α using error propagation.

[10]

(c) Consider the Bayesian approach to inference about ν and α , and suppose we take the prior pdf for the parameters to be

$$\pi(v,\alpha) \propto 1/\sqrt{v}$$
.

Find as a proportionality the joint posterior pdf for v and α given n_a and n_b .

Show that v and α are independent, and that the marginal posterior pdfs follow

$$p(v | n_a, n_b) \propto v^{(n_a + n_b - 1/2)} e^{-v}$$

$$p(\alpha \mid n_{a}, n_{b}) \propto (1 + \alpha)^{n_{a}} (1 - \alpha)^{n_{b}}.$$
 [14]

(d) Find the posterior modes for ν and α . Comment on how these relate to the corresponding ML estimators.

[6]