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Preface

These exercises accompany G. Cowan, Statistical Data Analysis, Clarendon Press, Oxford, 1998,
referred to in the following as SDA. The exercises and related information can be obtained from
the SDA World Wide Web site, which is currently located at

http://www.pp.rhul.ac.uk/~cowan/sda

In case of an address change, the site can be found by following the catalogue link of Oxford
University Press at

http://www.oup.co.uk/

The exercises, like SDA, are targeted primarily at physics students. Many of the problems
are more general, however, and even those that relate to physics are formulated so as to be
meaningful for most science students. The level of the problems is appropriate for advanced
undergraduate or beginning graduate students, for example as part of a course in experimental
methods or data analysis techniques.

A number of the exercises use short computer programs and data files which can be obtained
from the SDA web site. Some of these require in addition routines from the CERN Program
Library. The exercises and accompanying software are in a state of developement, and changes
are to be expected. It would be greatly appreciated if corrections, suggestions and comments
could be communicated to glen.cowan@cern.ch.

Geneva

January 1998 G.D.C.
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Chapter 1

Fundamental Concepts

Exercise 1.1: Consider a sample space S and assume for a given subset B that P (B) > 0.
Show that the conditional probability

P (A|B) =
P (A ∩B)

P (B)
(1.1)

satisfies the axioms of probability.

Exercise 1.2: Show that

P (A ∪B) = P (A) + P (B)− P (A ∩B) .

(Express A ∪B as the union of three disjoint sets.)

Exercise 1.3: A beam of particles consists of a fraction 10−4 electrons and the rest photons.
The particles pass through a double-layered detector which gives signals in either zero, one or
both layers. The probabilities of these outcomes for electrons (e) and photons (γ) are

P (0 | e) = 0.001 and P (0 | γ) = 0.99899
P (1 | e) = 0.01 P (1 | γ) = 0.001
P (2 | e) = 0.989 P (2 | γ) = 10−5 .

(a) What is the probability for a particle detected in one layer only to be a photon?

(b) What is the probability for a particle detected in both layers to be an electron?

Exercise 1.4: Suppose a random variable x has the p.d.f. f(x). Show that the p.d.f. for y = x2

is

g(y) =
1

2
√
y
f(
√
y) +

1

2
√
y
f(−√

y) . (1.2)

Exercise 1.5: Suppose two independent random variables x and y are both uniformly
distributed between zero and one, i.e. the p.d.f. g(x) is given by

g(x) =

{
1 0 < x < 1

0 otherwise ,
(1.3)
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2 Exercises in Statistical Data Analysis

and similarly for the p.d.f. h(y).

(a) Using SDA equation (1.35), show that the p.d.f. f(z) for z = xy is

f(z) =

{ − log z 0 < z < 1

0 otherwise .
(1.4)

(b) Find the same result using SDA equations (1.37) and (1.38) by defining an additional
function, u = x. First, find the joint p.d.f. of z and u. Integrate this over u to find the
p.d.f. for z.

(c) Show that the cumulative distribution of z is

F (z) = z(1− log z) . (1.5)

Exercise 1.6: Consider a random variable x and constants α and β. Show that

E[αx+ β] = αE[x] + β ,

V [αx+ β] = α2V [x] .
(1.6)

Exercise 1.7: Consider two random variables x and y.

(a) Show that the variance of αx+ y is given by

V [αx+ y] = α2V [x] + V [y] + 2αcov[x, y]

= α2V [x] + V [y] + 2αρσxσy , (1.7)

where α is any constant value, σ2
x = V [x], σ2

y = V [y], and the correlation coefficient is
ρ = cov[x, y]/σxσy.

(b) Using the result of (a), show that the correlation coefficient always lies in the range
−1 ≤ ρ ≤ 1. (Use the fact that the variance V [αx + y] is always greater than or equal to
zero and consider the cases α = ±σy/σx.)

Exercise 1.8: Suppose x = (x1, . . . , xn) is described by the joint p.d.f. f(x), and the variables
y = (y1, . . . , yn) are defined by means of a linear transformation,

yi =
n∑

j=1

Aijxj . (1.8)

Assume that the inverse transformation x = A−1y exists.

(a) Show that the joint p.d.f. for y is given by

g(y) = f(A−1y) |det(A−1)|. (1.9)

(b) Find g(y) for the case where A is orthogonal, i.e. A−1 = AT .



Chapter 2

Examples of Probability Functions

Exercise 2.1: Consider N multinomially distributed random variables n = (n1, . . . , nN ) with
probabilities p = (p1, . . . , pN ) and a total number of trials ntot =

∑N
i=1 ni. Suppose the variable

k is defined as the sum of the first M of the ni,

k =
M∑

i=1

ni, M ≤ N. (2.1)

Use error propagation and the multinomial covariance,

cov[ni, nj ] = δijntotpi(1− pi) + (δij − 1)pipjntot, (2.2)

to find the variance of k. Show that this is equal to the variance of a binomial variable with
p =

∑M
i=1 pi and ntot trials.

Exercise 2.2: Suppose the random variable x is uniformly distributed in the interval [α, β],
with α, β > 0. Find the expectation value of 1/x, and compare the answer to 1/E[x] using
α = 1, β = 2.

Exercise 2.3: Consider the exponential p.d.f.,

f(x; ξ) =
1

ξ
e−x/ξ , x ≥ 0 . (2.3)

(a) Show that the corresponding cumulative distribution is given by

F (x) = 1− e−x/ξ , x ≥ 0 . (2.4)

(b) Show that the conditional probability to find a value x between x0 and x0 + x′ given that
x > x0 is equal to the (unconditional) probability to find x less than x′, i.e.

P (x ≤ x0 + x′|x ≥ x0) = P (x ≤ x′) . (2.5)

(c) Cosmic ray muons produced in the upper atmosphere enter a detector at sea level, and some
of them come to rest in the detector and decay. The time difference t between entry into the
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4 Exercises in Statistical Data Analysis

detector and decay follows an exponential distribution, and the mean value of t is the mean
lifetime of the muon (approximately 2.2 µS). Explain why the time that the muon lived prior
to entering the detector does not play a role in determining the mean lifetime.

Exercise 2.4: Suppose y follows a Gaussian distribution with mean µ and variance σ2.

(a) Show that

x =
y − µ

σ
(2.6)

follows the standard Gaussian ϕ(x) (i.e. having a mean of zero and unit variance).

(b) Show that the cumulative distributions F (y) and Φ(x) are equal, i.e.

F (y) = Φ

(
y − µ

σ

)
. (2.7)

Exercise 2.5: (a) Show that if y is Gaussian distributed with mean µ and variance σ2, then
x = ey follows the log-normal p.d.f.,

f(x;µ, σ2) =
1√
2πσ2

1

x
exp

(
−(log x− µ)2

2σ2

)
. (2.8)

(b) Find the expectation value and variance of x by explicitly computing the integrals

E[x] =

∫
x f(x;µ, σ2) dx ,

V [x] =

∫
(x− E[x])2 f(x;µ, σ2) dx .

(2.9)

(c) Compare the variance from (b) to the approximate result obtained by error propagation with
V [y] = σ2. Under what conditions is the approximation valid? (Recall that y and hence also σ2

are dimensionless.)

Exercise 2.6: Show that the cumulative χ2 distribution for n degrees of freedom can be
expressed as

Fχ2(x;n) = P

(
x

2
,
n

2

)
, (2.10)

where P is the incomplete gamma function,

P (n, x) =
1

Γ(n)

∫ x

0
e−t tn−1 dt . (2.11)



Chapter 3

The Monte Carlo Method

For these exercises you will need a random number generator to produce random values uniformly
distributed between zero and one. A simple FORTRAN example is given in the file random.f.
This routine is mainly for pedagogical purposes and simple applications. More sophisticated
routines such as RANMAR or RANLUX can be found in the CERN Program Library.

Exercise 3.1: (a) Using random.f or another random number generator, write a short program
to generate 10000 random values uniformly distributed between zero and one, and display the
result as a histogram with 100 bins.

Exercise 3.2: Modify the histogram from Exercise 3.1 to have only 5 bins and N = 100 entries.
The generated histogram can be regarded as an observation of a multinomially distributed vector
(n1, . . . , n5), with parameters N = 100 and pi = 0.2 for i = 1, . . . , 5.

(a) By placing the code to generate the histogram in a loop, modify the program to repeat
the Monte Carlo experiment 100 times, each time with a different seed value. (As long as
the program is not terminated after each experiment, a new seed will be used automatically.)
Produce a histogram of the value of any bin ni (e.g. for i = 3) after each experiment. This should
follow a binomial distribution with mean Npi = 20 and standard deviation

√
Npi(1− pi) = 4.

(b) Produce a scatter plot (two-dimensional histogram) for the values of any two bins ni and
nj . These should have a covariance cov[ni, nj ] = −Npipj = −4 or a correlation coefficient
ρ = −4/42 = −0.25.

If you are using the HBOOK histogram package from the CERN Program Library, you can use
the routine HUNPAK to unpack the values (n1, . . . , n5) after each experiment.

Exercise 3.3: Consider a sawtooth p.d.f.,

f(x) =

{ 2x
x2
max

0 < x < xmax ,

0 otherwise .
(3.1)

(a) Use the transformation method to find the function x(r) to generate random numbers
according f(x), cf. Section 3.2. Implement the method in a short computer program and make
a histogram of the results. (Use e.g. xmax = 1.)

(b) Write a program to generate random numbers according to the sawtooth p.d.f. using the
acceptance-rejection technique, cf. Section 3.3. Plot a histogram of the results.
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6 Exercises in Statistical Data Analysis

Exercise 3.4: The purpose of this exercise is to generate random numbers according to a
Gaussian p.d.f. A number of algorithms exist for this purpose, implemented, for example, in the
routine RNORMX from the CERN library. A simple algorithm suitable for pedagogical purposes
is based on the central limit theorem: a sum of random variables becomes Gaussian in the limit
that the number of terms in the sum is large, as long as none of the terms make up a significant
fraction of the sum (cf. SDA Chapter 10).

(a) Suppose x is uniformly distributed in [0, 1] and consider the sum of n independent x values,

y =
n∑

i=1

xi . (3.2)

Show that the expectation value of y is n/2 and the variance is n/12. Show that, as a
consequence, the variable

z =

∑n
i=1 xi − n

2√
n/12

. (3.3)

has a mean of zero and unit standard deviation.

(b) Write a computer program to generate values z as defined in (a) for arbitrary values of n.
Make histograms of 10000 values of z for n = 0, . . . , 20. At what point does the distribution
appear approximately Gaussian? A convenient choice for a simple Gaussian generator is n = 12.
Comment on the limitations of such an algorithm. Optional: Derive the explicit form of the
p.d.f. of z for n = 2.

Exercise 3.5: The variable t follows an exponential distribution with mean τ = 1 and x is
Gaussian distributed with mean µ = 0 and standard deviation σ = 0.5. Write a Monte Carlo
program to generate values of

y = t+ x . (3.4)

Here the value t could represent the true decay time of an unstable particle, and the value x
the measurement error, so that y represents the measured decay time. Make a histogram of the
values. Modify the program to investigate the cases τ ≪ σ and τ ≫ σ.

3.6: Consider a random variable x distributed according to the Cauchy (Breit-Wigner) p.d.f.,

f(x) =
1

π

1

1 + x2
. (3.5)

(a) Show that if r is uniformly distributed in [0, 1], then

x(r) = tan[π(r − 1

2
)] (3.6)

follows the Cauchy p.d.f.

(b) Using the result from (a), write a computer program to generate Cauchy distributed random
numbers. Generate 10000 values and display the result as a histogram.



The Monte Carlo Method 7

(c) Modify the program in (b) to generate repeated experiments each consisting of n independent
Cauchy distributed values for e.g. n = 10. For each sample, compute the sample mean
x = 1

n

∑n
i=1 xi. Compare a histogram of x with the original histogram of x. (See also Exercise

10.6.)

Exercise 3.7: A photomultiplier is a device capable of detecting individual photons as
illustrated in Fig. 3.1.1 A photon strikes the photocathode, where there is a certain probability
for it to eject an electron (called a photoelectron). The photoelectron is accelerated in an
electric field towards an electrode (called a dynode). In the collision with the first dynode, the
photoelectron can liberate further electrons. These are accelerated towards the second dynode,
where more electrons are produced. This continues through a series of stages until the electrons
produced at the final dynode are collected.

incident
photon

photocathode

dynodes anodephotoelectron

secondary electrons

Figure 3.1: Schematic drawing of a photomultiplier tube.

The number of electrons produced at the ith dynode for each incoming electron can be
modeled as a Poisson variable ni with mean value νi, which in general can be different for each
stage. Suppose the photomultiplier has N dynodes. The number of electrons nout produced
at the final stage for a single incident photoelectron has an expectation value (the gain of the
photomultiplier),

νout = E[nout] =
N∏

i=1

νi (3.7)

(a) Write a Monte Carlo program to determine the distribution of the number of electrons nout

at the end of N = 6 dynodes produced by a single initial photoelectron, with ν = 3.0 for each
dynode. (Poisson random numbers can be generated with the routine RNPSSN from the CERN
program library. A partial solution is given in the program pmt.f.) Run the program to simulate
M = 1000 initial photoelectrons and make a histogram of nout. Estimate the mean νout and
variance V [nout] = σ2

out by calculating the sample mean,

nout =
1

M

M∑

i=1

nout,i (3.8)

1For a more detailed description see e.g. C. Grupen, A. Böhrer and L. Smolik, Particle Detectors, Cambridge
University Press, Cambridge, 1996.



8 Exercises in Statistical Data Analysis

and sample variance

s2out =
1

M − 1

M∑

i=1

(nout,i − nout)
2 . (3.9)

(The sample mean and variance are described further in SDA Chapter 5.) Compare the sample
mean to the value from equation (3.7). Compare the sample variance (or standard deviation)
to the value that one would obtain from a Poisson variable of mean νout. Explain qualitatively
why the standard deviation of nout is much larger than in the Poisson case.

(b) One would like the standard deviation of nout to be small in order to be able to determine
as accurately as possible the number of initial photoelectrons (and thus estimate the number
of incident photons). In some applications one would like to have the standard deviation
small enough to distinguish between 1 and 2 photoelectrons; hence one tries to have a relative
resolution, i.e. the ratio of standard deviation to mean, less than unity. One way of achieving
this is to increase the mean number of electrons produced at the first dynode. This can be done
by increasing the voltage so that the photoelectrons collide with a higher energy, and also by
using a metal with a low work function, i.e. a high probability for secondary electron emission.

Modify the program from (a) so that the mean for the first dynode is larger, e.g. ν1 = 6. Run
the program and estimate the ratio of standard deviation to mean of nout. Explain qualitatively
why this gives a better resolution than in the case with all νi equal. Why does it not help much
to increase the gain of the dynodes in the later stages of the photomultiplier?

(c) Try to extend the program to simulate N = 12 dynodes. You will quickly find out that
it requires too much computing time to simulate the collision of each electron with each
dynode. Instead, run the program for N = 6 with enough events to obtain a good estimate
of the distribution of nout (e.g. at least M ≈ 104 events in a histogram with 50 bins from
0 ≤ nout ≤ 5000). Generate numbers which follow this distribution using any method, e.g.
acceptance-rejection. For each electron obtained after the first six dynodes, generate in a similar
way the number of electrons that it produces in the next six. For the first six stages, use a
distribution of nout based on ν1 = 6 and the rest of the νi = 3; for the last six, take all νi = 3.



Chapter 4

Statistical Tests

Exercise 4.1: Charged particles traversing a gas volume produce ionization, the mean amount
of which depends on the type of particle in question. Suppose a test statistic t based on ionization
measurements has been constructed such that it follows a Gaussian distribution centered about 0
for electrons and about 2 for pions, with a standard deviation equal to unity for both hypotheses.
A test is constructed to select electrons by requiring t < 1.

(a) What is the significance level of the test (i.e. the probability to accept an electron).

(b) What is the power of the test against the hypothesis that the particle is a pion. What is the
probability that a pion will be accepted as an electron?

(c) Suppose a sample of particles is known to consist of 99% pions and 1% electrons. What is
the purity of the electron sample selected by t < 1?

(d) Suppose one requires a sample of electrons with a purity of at least 95%. What should the
critical region (i.e. the cut value) of the test be? What is the efficiency for accepting electrons
with this cut value? Equivalently, what is the significance level of the test?

Exercise 4.2: Consider a test statistic t based on a linear combination of input variables
x = (x1, . . . , xn) with coefficients a = (a1, . . . , an),

t(x) =
n∑

i=1

aixi = aTx . (4.1)

Suppose that under two hypotheses H0 and H1, the mean values of x are given by µ0 and µ1, the
covariance matrices are V0 and V1, the means of the statistic t are τ0 and τ1, and the variances
of t are Σ2

0 and Σ2
1 (see SDA Section 4.4.1).

(a) Show that the values of the coefficients a that maximize the separation

J(a) =
(τ0 − τ1)

2

Σ2
0 +Σ2

1

(4.2)

are given by

a ∝ W−1 (µ0 − µ1) , (4.3)

9



10 Exercises in Statistical Data Analysis

where W = V0 + V1. This defines Fisher’s linear discriminant function.

(b) Suppose that V0 = V1 = V and the p.d.f.s for the input variables f(x|H0) and f(x|H1) are
multidimensional Gaussians centered about µ0 and µ1 (cf. SDA equation (4.26)). Take the prior
probabilities of the two hypotheses to be π0 and π1. Using Bayes’ theorem, find the posterior
probabilities P (H0|x) and P (H1|x) as a function of t.

(c) Show that by generalizing the test statistic to include an offset,

t(x) = a0 +
n∑

i=1

aixi , (4.4)

the posterior probability P (H0|x) can be expressed as

P (H0|x) =
1

1 + e−t
, (4.5)

where the offset a0 is given by

a0 = − 1

2
µT
0 V −1 µ0 + 1

2
µT
1 V −1 µ1 + log

π0
π1

. (4.6)

Exercise 4.3: The number of events having particular kinematic properties observed in electron-
positron collisions can be treated as a Poisson variable. Suppose that for a certain integrated
luminosity (i.e. time of data taking at a given beam intensity), 3.9 events are expected from
known processes and 16 are observed. Compute the P -value for the hypothesis that no new
process is contributing to the number of events. To sum Poisson probabilities, you can use the
relation

m∑

n=0

P (n; ν) = 1− Fχ2(2ν;ndof) , (4.7)

where P (n : ν) is the Poisson probability for n given a mean value ν, and Fχ2 is the cumulative
χ2 distribution for ndof = 2(m+1) degrees of freedom. This can be computed using the routine
PROB from the CERN Program Library or looked up in standard tables.

Exercise 4.4: The file data 1.dat contains a histogram with data; the first two columns are
the bin boundaries, and the third column gives the numbers of entries ni, i = 1, . . . , 20, which
we will treat as Poisson random variables. The files theory 1.dat and theory 2.dat give two
predictions for the expectation values νi = E[ni], and are shown with the data in Fig. 4.1.

(a) Write a computer program to read in the files and to determine the χ2 statistic according
to SDA equation (4.39) for each of the two theories. (A solution is given in compute chi2.f.)

(b) Because many of the bins contain few or no entries, one does not expect the statistic above
to follow the χ2 distribution. Write a computer program to determine the true distribution
assuming the two hypotheses theory 2.dat and theory 2.dat. What are the P -values for the
two theories when the test statistic is computed with the data set from (a)? What would the
P -values be if the one were to assume the usual χ2 distribution? (A partial solution is given in
compute chi2 dist.f.)
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x
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N
(x

)

data
theory 1
theory 2

Figure 4.1: Data from the file
data 1.dat and hypotheses from
theory 1.dat and theory 2.dat.

Exercise 4.5: In an experiment on radioactivity, Rutherford and Geiger counted the number of
alpha decays occurring in fixed time intervals.1 The data are shown in Table 4.1. Assuming that
the source consists of a large number of radioactive atoms and that the probability for any one
of them to emit an alpha particle in a short interval is small, one would expect the number of
decays m in a time interval ∆t to follow a Poisson distribution. Deviations from this hypothesis
would indicate that the decays were not independent. One could imagine, for example, that the
emission of an alpha particle might cause neighboring atoms to decay, resulting in a clustering
of decays in short time periods.

Table 4.1: Data by Rutherford and Geiger on the number of times nm that m alpha decays were observed
in a time interval of ∆t = 7.5 seconds.

m nm m nm

0 57 8 45
1 203 9 27
2 383 10 10
3 525 11 4
4 532 12 0
5 408 13 1
6 273 14 1
7 139 > 14 0

(a) Using the data in Table 4.1, find the sample mean

m =
1

ntot

∑

m

nmm, (4.8)

1E. Rutherford and H. Geiger, The probability variations in the distribution of α particles, Philosophical

Magazine, ser. 6, xx (1910) 698–707.
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and the sample variance,

s2 =
1

ntot − 1

∑

m

nm(m−m)2 , (4.9)

where is nm the number of occurrences of m decays and ntot =
∑

m nm = 2608 is the total
number of time intervals. The sum extends from m = 0 up to the maximum number of decays
observed in an interval (here m = 14). From m and s2, find the index of dispersion,

t =
s2

m
. (4.10)

Since m and s2 are estimators of the mean and variance of m (cf. SDA Chapter 5), and since
these are equal if m is a Poisson variable, one would expect to find t around 1. One can show
that for Poisson distributed m and large ntot, (ntot − 1)t follows a χ2 distribution for ntot − 1
degrees of freedom. Furthermore, for large ntot this becomes a Gaussian distribution with mean
ntot − 1 and variance 2(ntot − 1).

(b) What is the P -value for the hypothesis that m follows a Poisson distribution? What set of
t values should be chosen as representing equal or less agreement with the Poisson hypothesis
than the observed value of t?

(c) Write a Monte Carlo program to generate a large number of data sets each consisting of
ntot = 2608 values of m according to a Poisson distribution. (Poisson random numbers can be
generated with the routine RNPSSN from the CERN library.) For the mean value of m, take m
obtained from the data in Table 4.1. For each data set, determine t and enter its value in a
histogram. From the histogram and the value of t obtained from Rutherford’s data, Determine
the P -value for the Poisson hypothesis. Compare the result to that obtained in (a). (Optional:
Record (ntot − 1)t in a histogram and compare the result with the Gaussian distribution with
mean ntot − 1 and variance 2(ntot − 1).)



Chapter 5

General Concepts of Parameter

Estimation

Exercise 5.1: Consider a random variable x with expectation value µ and variance σ2, and
suppose we have a sample of n observations, x1, . . . , xn. The purpose of this exercise is to show
that the sample mean,

x =
1

n

n∑

i=1

xi, (5.1)

is a consistent estimator for the expectation value µ.

(a) The first step is to prove the Chebyshev inequality,

P (|x− µ| ≥ a) ≤ σ2

a2
, (5.2)

which holds for any positive a as long as the variance of x exists. Do this by recalling the
definition of the variance,

σ2 =

∫ ∞

−∞
(x− µ)2 f(x) dx, (5.3)

where f(x) is the p.d.f. of x. Use the fact that the integral (5.3) would be less if the region of
integration were restricted to |x−µ| ≥ a, and would be even less if in that region, (x−µ)2 were
to be replaced by a2.

(b) Use the Chebyshev inequality to prove the weak law of large numbers, i.e. for any ǫ > 0,

lim
n→∞

P

(∣∣∣∣∣
1

n

n∑

i=1

xi − µ

∣∣∣∣∣ ≥ ǫ

)
= 0. (5.4)

This is equivalent to the statement that x is a consistent estimator for µ, and holds as long as
the variance of x exists.

13



14 Exercises in Statistical Data Analysis

Exercise 5.2: Consider a random variable x of mean µ and variance σ2, for which one has
obtained sample of values x1, . . . , xn.

(a) Suppose the mean µ has been estimated using the sample mean, x = 1

n

∑n
i=1 xi. Show that

the sample variance,

s2 =
1

n− 1

n∑

i=1

(xi − x)2 =
n

n− 1
(x2 − x2) , (5.5)

is an unbiased estimator of the variance σ2. (Use the fact that E[xixj ] = µ2 for i 6= j and
E[x2i ] = µ2 + σ2 for all i.)

(b) Suppose that the mean µ is known. Show that

S2 =
1

n

n∑

i=1

(xi − µ)2 = x2 − µ2 (5.6)

is an unbiased estimator for σ2.

Exercise 5.3: (a) Show that the variance of s2 (5.5) is

V [s2] = E[s4]− (E[s2])2 =
1

n

(
µ4 − n− 3

n− 1
µ2
2

)
, (5.7)

where µk = E[(x − µ)k] is the kth central moment of x. To do this, first show that s2 can be
written as

s2 =
1

n− 1

n∑

i=1

x2i − 1

n(n− 1)

n∑

i,j=1

xixj . (5.8)

Then show that the expectation value of s4 is

E[s4] =
1

(n− 1)2

n∑

i,j=1

E[x2ix
2
j ] −

2

n(n− 1)2

n∑

i,j,k=1

E[xixjx
2
k] +

1

n2(n− 1)2

n∑

i,j,k,l=1

E[xixjxkxl].

(5.9)

Count how many terms in each sum give the algebraic moments µ′
4 or µ′

2
2. Note that the rest of

the terms all contain at least one power of µ. Express the result in terms of central moments µ2

and µ4 by setting the terms with µ equal to zero. Subtract the value of (E[s2])2 from Exercise
(5.2) to obtain the final result.

(b) Find the variance of s2 for the case where x follows a Gaussian distribution. Use the fact
that the fourth central moment of a Gaussian is µ4 = 3σ4.



Chapter 6

The Method of Maximum Likelihood

Exercise 6.1: (a) Find the maximum-likelihood estimators for the mean µ and variance σ2 of
a Gaussian p.d.f. based on a sample of n observations, x1, . . . , xn.

(b) Find the expectation values and variances of the estimators by relating µ̂ and σ̂2 to the
estimators x and s2 given in SDA Chapter 2.

(c) Find the approximate inverse covariance matrix (valid for large samples) by computing

(V −1)ij = −E

[
∂2 logL

∂θiθj

]
, (6.1)

where θi and θj (i, j = 1, 2) represent µ and σ2. Invert V −1 to find the covariance matrix, and
compare the diagonal elements (i.e. the variances) to the exact values found in (b). Note that
the answers from (b) and (c) agree in the large sample limit.

Exercise 6.2: Consider a binomially distributed variable n, the number of successes observed in
N trials, where the probability of success in a single trial is p. What is the maximum-likelihood
estimator for p given a single observation of n? Show that p̂ is unbiased and find its variance.
Show that the variance of p̂ is equal to the minimum variance bound (see SDA equation (6.16)).

Exercise 6.3: (a) Consider again a binomial variable with probabilities p and q = 1− p for the
outcomes of each trial. Using the estimator for p from Exercise 6.2, construct the ML estimator
α̂ for the asymmetry

α = p− q = 2p− 1 , (6.2)

and find its standard deviation σα̂.

(b) Suppose that one is trying to measure a very small asymmetry, expected to be at the level
of α ≈ 10−3. How many trials is it necessary to observe in order to have the standard deviation
σα̂ at least a factor of three smaller than this?

Exercise 6.4: Consider a single observation of a Poisson distributed variable n. What is the
maximum-likelihood estimator of the mean ν? Show that the estimator is unbiased and find its
variance. Show that the variance of ν̂ is equal to the minimum variance bound.

15
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Exercise 6.5: Early evidence supporting the Standard Model of particle physics was provided by
the observation of a difference in the cross sections σR and σL for inelastic scattering of right (R)
or left (L) hand polarized electrons on a deuterium target. For a given integrated luminosity L
(proportional to the electron beam intensity and time of data taking), the numbers of scattering
events of each type are Poisson variables, nR and nL, with means νR and νL. The means are
related to the cross sections by νR = σRL and νL = σLL, and the experiment is set up such
that the luminosity L is equal for both cases. Using the result from Exercise 6.4, construct an
estimator α̂ for the polarization asymmetry,

α =
σR − σL
σR + σL

. (6.3)

Using error propagation, find the standard deviation σα̂ as a function of α and νtot = νR + νL.
Compare this to the corresponding quantity from Exercise 6.3. The asymmetry was expected
to be at the level of 10−4. How many scattering events must be observed so that σα̂ is a factor
of ten smaller than this? (The number of is so large that the events could not be recorded
individually, but rather the output current of the detector was measured. See C.Y. Prescott et
al., Parity non-conservation in inelastic electron scattering, Phys. Lett. B77 (1978) 347.)

Exercise 6.6: A random variable x follows a p.d.f. f(x; θ) where θ is an unknown parameter.
Consider a sample x = (x1, . . . , xn) used to construct an estimator θ̂(x) for θ (not necessarily
the ML estimator). Prove the Rao-Cramér-Frechet (RCF) inequality,

V [θ̂] ≥

(
1 + ∂b

∂θ

)2

−E
[
∂2 logL
∂θ2

] , (6.4)

where b = E[θ̂]− θ is the bias of the estimator. This will require several steps:

(a) First, prove the Cauchy–Schwarz inequality, which states that for any two random variables
u and v,

V [u]V [v] ≥ (cov[u, v])2, (6.5)

where V [u] and V [v] are the variances and cov[u, v] the covariance. Use that fact that the
variance of αu+ v must be greater than or equal to zero for any value of α. Then consider the
special case α = (V [v]/V [u])1/2.

(b) Use the Cauchy–Schwarz inequality with

u = θ̂,

v =
∂

∂θ
logL,

(6.6)

where L = fjoint(x; θ) is the likelihood function, which is also the joint p.d.f. for x. Write (6.5)

so as to express a lower bound on V [θ̂]. Note that here we are treating the likelihood function
as a function of x, i.e. it is regarded as a random variable.
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(c) Assume that differentiation with respect to θ can be brought outside the integral to show
that

E

[
∂

∂θ
logL

]
=

∫
. . .

∫
fjoint(x; θ)

∂

∂θ
log fjoint(x; θ) dx1 . . . dxn = 0. (6.7)

The form of the RCF inequality that we will derive depends on this assumption, which is true
in most cases of interest. (It is fulfilled as long as the limits of integration do not depend on θ.)
Use (6.7) with (6.5) and (6.6) to show that

V [θ̂] ≥

(
E
[
θ̂ ∂ logL

∂θ

])2

E

[(
∂ logL
∂θ

)2] . (6.8)

(d) Show that the numerator of (6.8) can be expressed as

E

[
θ̂
∂ logL

∂θ

]
= 1 +

∂b

∂θ
, (6.9)

and that in a similar way the denominator is

E

[(
∂ logL

∂θ

)2
]
= −E

[
∂2 logL

∂θ2

]
. (6.10)

Again assume that the order of differentiation with respect to θ and integration over x can be
reversed. Prove (6.4) by putting together the ingredients from (c) and (d).

Exercise 6.7: Write a computer program to generate samples of n values t1, . . . , tn according
to an exponential distribution

f(t; τ) =
1

τ
e−t/τ , t ≥ 0 . (6.11)

(a) Show that the ML estimator for τ is given by the sample mean τ̂ = 1

n

∑n
i=1 ti. Generate

1000 samples with τ = 1 and n = 10. Evaluate τ̂ for each sample, and make a histogram of the
results. Compare the mean of the τ̂ values with the true value τ = 1.

(b) Suppose the p.d.f. for t had been parametrized in terms of λ = 1/τ , i.e.

f(t;λ) = λ e−λt , t ≥ 0 . (6.12)

Show that the ML estimator for λ is λ̂ = 1/
∑n

i=1 ti. Modify the program in (a) to include a
histogram of the estimates λ̂ from the Monte Carlo experiments. Compare the mean value of λ̂
to the true value λ = 1. Determine numerically the bias b = E[λ̂]− λ for n = 5, 10, 100.

Exercise 6.8: The license plates of taxis in Geneva are numbered from one up to the total
number Ntaxi. N observations of taxi licenses are made yielding numbers n1, . . . nN .

(a) Construct the maximum-likelihood estimator for the total number of taxis. (This is a well-
known example where the ML estimator is biased and not efficient. The difficulty stems from
the fact that the range of possible data values depends on the parameter.)
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(b) Propose a better estimator for the number of taxis. Give its expectation value and variance.

Exercise 6.9: Consider N independent Poisson variables n1, . . . , nN , with mean values
ν1, . . . , νN . Suppose the mean values are related to a controlled variable x according to relation
of the form,

ν(x) = θa(x), (6.13)

where θ is an unknown parameter and a(x) is an arbitrary known function. The N values of νi
are thus given by ν(xi) = θa(xi), where the values x1, . . . , xN are assumed to be known. Show
that the ML estimator for θ is given by

θ̂ =

∑N
i=1 ni∑N

i=1 a(xi)
. (6.14)

Show that θ̂ is unbiased and that its variance is given by the minimum variance bound (cf.
Exercise 6.6).

Exercise 6.10: An example of the situation described in Exercise 6.7 is provided by
(anti)neutrino-nucleon scattering. According to the quark-parton model, the cross sections for
the reactions νN → µ−X and νN → µ+X are given by

σ(νN → µ−X) =
G2ME

π

(
〈q〉+ 1

3
〈q〉
)

≡ θνE

σ(νN → µ+X) =
G2ME

π

(
1

3
〈q〉+ 〈q〉

)
≡ θνE,

(6.15)

where E is the energy of the incoming (anti)neutrino, M = 0.938 GeV is the mass of the target
nucleon and G = 1.16× 10−6 GeV−2 is the Fermi constant. Here the variable x corresponds to
the energy E, and the parameters on the right-hand sides of (6.15) correspond to two different
parameters, θν and θν .

Suppose data are collected N different values of E. At each energy, the expected number of
events is given by

νi = σ(Ei) ε(Ei)Li, (6.16)

where σ(Ei) is the anti(neutrino) cross section at energy Ei, Li is the integrated luminosity, and
ε(Ei) is the probability for the detector to register the event (the efficiency), which is in general
a function of the energy. For purposes of this exercises, we will assume that the energies Ei and
corresponding integrated luminosities Li and efficiencies εi ≡ ε(Ei) are known without error.
(Assume in addition that there are no background events.)

Determine the ML estimators for the parameters θν and θν , and from them find estimators
for 〈q〉 and 〈q〉. In the context of the quark-parton model, these correspond to the fraction
of the nucleon’s momentum carried by quarks and antiquarks, respectively. Determine the
fraction of the momentum carried by particles other than quarks and antiquarks (i.e. gluons),
〈g〉 = 1− 〈q〉 − 〈q〉.
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Exercise 6.11: One of the earliest determinations of Avogadro’s number was based on Brownian
motion. The experimental set-up shown in Fig. 6.1 was used by Jean Perrin 1 to observe particles
of mastic (a substance used in varnish) suspended in water.

z

lens

focal plane
of lens

cover
emulsion

Figure 6.1: Experimental set-up
of Jean Perrin for observing the
number of particles suspended in
water as a function of height.

The particles were spheres of radius r = 0.52 µm and had a density of 1.063 g/cm3, i.e. 0.063
g/cm3 greater than that of water. By viewing the particles through the microscope, only those
in a layer approximately 1 µm thick were in focus; particles outside this layer were not visible.
By adjusting the microscope lens, the focal plane could be moved vertically. Photographs were
taken at 4 different heights z, (the lowest height is arbitrarily assigned a value z = 0) and the
number of particles n(z) counted. The data are shown in Table 6.1.

Table 6.1: Perrin’s data on the number of mastic particles observed at different heights z in an emulsion.

height z (µm) number of particles n

0 1880
6 940
12 530
18 305

The gravitational potential energy of a spherical particle of mastic in water is given by

E =
4

3
πr3∆ρ gz, (6.17)

where ∆ρ = ρmastic − ρwater = 0.063 g/cm3 is the difference in densities and g = 980 cm/s2 is
the acceleration of gravity. Statistical mechanics predicts that the probability for a particle to
be in a state of energy E is proportional to

P (E) ∝ e−E/kT , (6.18)

where k is Boltzmann’s constant and T the absolute temperature. The particles should therefore
be distributed in height according to an exponential law, where the number n observed at z can
be treated as a Poisson variable with a mean ν(z). By combining (6.17) and (6.18), this is found
to be

1Jean Perrin, Mouvement brownien et réalité moléculaire, Ann. Chimie et Physique, 8e série, 18 (1909) 1-114;
Les Atomes, Flammarion, Paris, 1991 (first edition, 1913); Brownian Movement and Molecular Reality, in Mary-Jo
Nye, ed., The Question of the Atom, Tomash, Los Angeles, 1984.
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ν(z) = ν0 exp

(
−4πr3∆ρ gz

3kT

)
, (6.19)

where ν0 is the expected number of particles at z = 0.

(a) Write a computer program to determine the parameters k and ν0 with the method of
maximum likelihood. Use the data given in Table 6.1 to construct the log-likelihood function
based on Poisson probabilities (cf. SDA Section 6.10),

logL(ν0, k) =
N∑

i=1

(ni log νi − νi), (6.20)

where N = 4 is the number of measurements. For the temperature use T = 293 K.

(b) From the value you obtain for k, determine Avogadro’s number using the relation

NA = R/k, (6.21)

where R is the gas constant. The value used by Perrin was R = 8.32× 107 erg/mol K.

(c) Instead of maximizing the log-likelihood function (6.20), estimate ν0 and k by minimizing

χ2
P(ν0, k) = 2

N∑

i=1

(
ni log

ni

νi
+ νi − ni

)
, (6.22)

where νi = ν(zi) depends on ν0 and k through equation (6.19). Use the value of χ2
P to evaluate

the goodness-of-fit (cf. SDA Section 6.11). Comment on possible systematic errors in Perrin’s
determination of NA.



Chapter 7

The Method of Least Squares

Exercise 7.1: Galileo’s studies of motion included experiments with a ball and an inclined
ramp. The ball’s trajectory is made horizontal before it falls over the edge, as shown in Fig. 7.1.
The horizontal distance d from the edge to the point of impact is measured for different values
of the initial height of the ball h. Five data points obtained by Galileo in 1608 are shown in
Table 7.1.1

h

d

Figure 7.1: The configuration
of the ball and ramp experiment
performed by Galileo.

Table 7.1: Galileo’s data on horizontal distance before impact d for five values of the starting height h.
The units are punti (points); one punto is slightly less than 1 mm.

h d

1000 1500
828 1340
800 1328
600 1172
300 800

Assume the heights h are known with negligible error, and that the horizontal distances d can be
regarded as independent Gaussian random variables with standard deviations of σ = 15 punti.

1See Stillman Drake and James Maclachlan, Galileo’s discovery of the parabolic trajectory, Scientific American

232 (March 1975) 102; Stillman Drake, Galileo at Work, University of Chicago Press, Chicago (1978).
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(It is not actually known how Galileo estimated the measurement uncertainties, but 1–2% is
plausible.) In addition, we know that if h = 0, then the horizontal distance d will be zero, i.e.
if the ball is started at the very edge of the ramp, it will fall straight down to the floor.

(a) Consider relations between h and d of the form

d = αh (7.1)

and

d = αh+ βh2. (7.2)

Find the least-squares estimators for the parameters α and β. What are the values of the
minimized χ2 and the P -values for the two hypotheses?

(b) Assume a relation of the form

d = αhβ . (7.3)

Write a computer program to perform a least squares fit of α and β. Note that this is a nonlinear
function of the parameters and must be solved numerically. A solution using the MINUIT
minimization routines from the CERN library is given in fit galileo.f, fcn galileo.f.

(c) Galileo regarded the motion as the superposition of horizontal and vertical components,
where the horizontal motion is of constant speed, and the vertical speed is zero at the lower
edge of the ramp, but then increases in direct proportion to the time. Show that this leads to a
relation of the form

d = α
√
h . (7.4)

Find the least squares estimate for α and the value of the minimized χ2. What is the P -value
for this hypothesis?

Exercise 7.2: Consider a least-squares fit to a histogram with yi entries in bins i = 1, . . . , N ,
and predicted values

λi(θ) = n

∫ xmax

i

xmin

i

f(x;θ)dx , (7.5)

where f(x;θ) depends on unknown parameters θ. Suppose that one replaces the total number of
entries n by a parameter ν, and that this is adjusted simultaneously with the other parameters
when minimizing

χ2(θ, ν) =
N∑

i=1

(yi − λi(θ, ν))
2

σ2
i

. (7.6)

(a) Show that taking σ2
i = λi leads to the estimator
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ν̂LS = n+
χ2
min

2
(7.7)

for the total number of entries.

(b) Show that using σ2
i = yi (modified least squares) gives the estimator

ν̂MLS = n− χ2
min . (7.8)

Exercise 7.3: Consider an LS fit to a histogram with yi entries in bins i = 1, . . . , N , with
predicted values λi(θ). Suppose the total number of entries n is treated as a constant, so that
the yi are multinomially distributed.

(a) What is the covariance matrix Vij = cov[yi, yj ]? Why does the inverse of this matrix not
exist?

(b) Consider the fit using only the first N − 1 bins. Find the inverse covariance matrix, and
show that this is equivalent to fitting to all N bins but without consideration of the correlations.

Exercise 7.4: Suppose that a data sample of size n has resulted in measurements of N
quantities y1, . . . , yN , which are to be used in a least-squares fit of some unknown parameters.
If the measurements are correlated, one requires the inverse covariance matrix V −1 in order to
construct the χ2. Often this is obtained by first determining the matrix of correlation coefficients,
ρij = Vij/(σiσj), e.g. by means of a Monte Carlo calculation.

(a) Recall that for efficient estimators, the inverse covariance matrix is proportional to the sample
size n. Show that if this is the case, then the matrix of correlation coefficients is independent of
the sample size.

(b) Show that the inverse covariance matrix is given by

(V −1)ij =
(ρ−1)ij
σiσj

. (7.9)

(Start with the identity

δij =
∑

k

(V −1)ikVkj

=
∑

k

(V −1)ikρkjσkσj .
(7.10)

Multiply both sides of (7.10) by ρ−1 and sum over the appropriate indices to obtain (7.9).)

Exercise 7.5: Consider two partially overlapping samples of a random variable x, with n and
m observations, c of which are common to both. Suppose the variance of x V [x] = σ2 is known.
Consider the sample means

y1 =
1

n

n∑

i=1

xi (7.11)
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and

y2 =
1

m

m∑

i=1

xi . (7.12)

(a) Show that the covariance is

cov[y1, y2] =
cσ2

nm
. (7.13)

(b) Using the results of Section 7.6, find the weighted average of y1 and y2 and its variance (or
standard deviation).

Exercise 7.6: The astronomer Claudius Ptolemy performed experiments on the refraction of
light using a circular copper disk submerged to its center in water, as illustrated in Fig. 7.2.
Angles of refraction θr for 8 values of the angle of incidence θi obtained by Ptolemy around 140
a.d. are shown in Table 7.2.2

θ

θ

i

r

incident ray

refracted ray

air

water

copper disc
Figure 7.2: The apparatus used by
Ptolemy to investigate the refraction
of light.

Table 7.2: Angles of incidence and refraction (in degrees).

θi θr
10 8
20 15 1

2

30 22 1

2

40 29
50 35
60 40 1

2

70 45 1

2

80 50

For purposes of this exercise we will take the angles of incidence to be known with negligible
error and treat the angles of reflection as independent Gaussian variables with standard

2From Olaf Pedersen and Mogens Pihl, Early Physics and Astronomy: A Historical Introduction, MacDonald
and Janes, London, 1974.
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deviations of σ = 1

2

◦. (This is a reasonable guess given that the angles are reported to the
nearest half degree. Note that we can absorb an error in θi into an effective error in θr.)

(a) The correct law of refraction was not discovered until the 17th century. Until then, a
commonly used hypothesis was

θr = αθi, (7.14)

although it is reported that Ptolemy preferred the formula

θr = αθi − βθ2i . (7.15)

Find the LS estimates of the parameters for both hypotheses and determine the minimized χ2.
Comment on the goodness-of-fit for both hypotheses. Is it plausible that all of the numbers are
based on actual measurements?3

(b) The law of refraction discovered by Snell in 1621 is

θr = sin−1
(
sin θi
r

)
, (7.16)

where r = nr/ni is the ratio of indices of refraction of the two media. Determine the LS estimate
for r and find value of the minimized χ2. Comment on the validity of the Gaussian assumption
for θr with σ = 1

2

◦.

Exercise 7.7: Consider again the problem of Exercise 6.5: N independent Poisson variables
n = (n1, . . . , nN ) have mean values ν = (ν1, . . . , νN ), where the means are related to a controlled
variable x by a relation of the form

ν(x) = θa(x). (7.17)

(a) Consider first the LS method, where the denominators in the χ2 use the variances σ2
i = νi.

Show that the LS estimator for θ is given by

θ̂ =



∑N

i=1
n2

i

a(xi)∑N
i=1 a(xi)




1/2

. (7.18)

By expanding θ̂(n) in a Taylor series to second order about ν and computing the expectation
value, show that the bias of (7.18) is given by

b =
N − 1

2
∑N

i=1 a(xi)
+ O(E[(ni − νi)

3]). (7.19)

(Use cov[ni, nj ] = δijνj for the covariance of independent Poisson variables.)

3See R. Feynman, R. Leighton and M. Sands, The Feynman Lectures on Physics, Vol. I, Addison-Wesley,
Menlo Park, 1963, Section 26-2.
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(b) Repeat (a) using the modified LS method, where the χ2 uses variances based on the observed
values: σ2

i = ni. Show that the MLS estimator for θ is given by

θ̂ =

∑N
i=1 a(xi)∑N
i=1

a(xi)2

ni

, (7.20)

and that its bias is given by

b = − N − 1
∑N

i=1 a(xi)
+ O(E[(ni − νi)

3]). (7.21)

Compare the biases from (a) and (b) to the results of Exercise 7.2.

(c) Estimate the variance θ̂ for both the LS and MLS cases using error propagation.

Note that since it was shown in Exercise 6.5 that the ML estimator for θ is both unbiased
and has minimum variance, the LS and MLS estimators are not preferred here. For sufficiently
large data samples, however, the three methods are very similar; cf. Exercise 7.8.

Exercise 7.8: Consider again Perrin’s data on the number of mastic particles as a function of
height (Exercise 6.5). Determine the LS estimates for Boltzmann’s constant k (and equivalently
Avogadro’s number NA = R/k) and the coefficient ν0 by minimizing

χ2(k, ν0) =
N∑

i=1

(ni − νi(k, ν0))
2

σ2
i

. (7.22)

(a) Take the standard deviation σi of ni to be
√
νi (the usual method of least squares).

(b) Take σi to be
√
ni (the modified method of least squares).

Compare the results from (a) and (b) to the estimates obtained by maximum likelihood in
Exercise 6.5.



Chapter 8

The Method of Moments

Exercise 7.1: Consider a random variable x distributed according to a Gaussian p.d.f. of
unknown mean µ and variance σ2, and suppose we have a sample of values x1, . . . , xn.

(a) Construct estimators for µ and σ2 using the method of moments. Use the functions a1 = x,
a2 = x2, so that the expectation values E[ai(x)] correspond to the first and second algebraic
moments of x.

(b) Compute the expectation values of the estimators µ̂ and σ̂2 from (a). Are the estimators
biased?

Exercise 7.2: Consider ρ0 mesons produced in a particle reaction which decay into two charged
pions (π+π−). The decay angle θ is defined as the angle of the π+ with respect to the original
direction of the ρ, measured in the π+π− rest frame (see Fig. 8.1).

π+

π -

ρ0
θ

laboratory frame c.m. frame

π+

π -

Figure 8.1: The definition of the decay angle θ in the decay ρ0 → π+π−.

Since the ρ0 has spin 1 and the pions have spin 0, one can show that the distribution of cos θ
has the form

f(cos θ; η) =
1

2
(1− η) +

3

2
η cos2 θ, (8.1)

where the spin-alignment parameter η can take on values in the range − 1

2
≤ η ≤ 1.

27
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(a) Suppose that n values of cos θ have been measured for ρ0 mesons produced in a certain
reaction. Construct an estimator η̂ for the spin alignment using the method of moments, by
using the function a = x2. Why is it not possible to construct an estimator using a = x?

(b) Determine the expectation value and variance of η̂.



Chapter 9

Statistical Errors, Confidence

Intervals and Limits

Exercise 9.1: Suppose an estimator θ̂ is Gaussian distributed about the parameter’s true value
θ with a standard deviation σθ̂. Assume that σθ̂ is known.

(a) Sketch the functions uα(θ) and vβ(θ) defining the confidence belt (cf. SDA Section 9.2).

(b) Show that the central confidence interval for θ at a confidence level 1− γ is given by

[θ̂ − σθ̂Φ
−1(1− γ/2), θ̂ + σθ̂Φ

−1(1− γ/2)], (9.1)

where Φ−1 is the quantile of the standard Gaussian.

Exercise 9.2: (a) Consider n observations of an exponentially distributed variable x with mean
ξ. The ML estimator for ξ (see SDA (6.6)) is given by

ξ̂ =
1

n

n∑

i=1

xi (9.2)

and the p.d.f. for ξ̂ (cf. SDA equation (10.25)) is

g(ξ̂; ξ) =
nn

(n− 1)!

ξ̂n−1

ξn
e−nξ̂/ξ. (9.3)

(a) Show that the curves defining the confidence belt, uα(ξ) and vβ(ξ), are given by

uα(ξ) =
ξ

2n
F−1
χ2 (1− α; 2n),

vβ(ξ) =
ξ

2n
F−1
χ2 (β; 2n),

(9.4)

where F−1
χ2 is the quantile of the χ2 distribution. Use the fact that the cumulative χ2 distribution

can be related to the incomplete gamma function P (n, x) by (cf. Exercise 2.5)
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Fχ2(2x; 2n) = P (n, x) ≡
∫ x

0
e−ttn−1dt. (9.5)

Make a sketch of uα(ξ) and vβ(ξ) using α = β = 0.159 and n = 5. (Quantiles of the χ2

distribution can be looked up in standard tables or obtained from the routine CHISIN from the
CERN program library.)

(b) Find the confidence interval [a, b] as a function of the estimate ξ̂, the sample size n and the
confidence levels α and β. Suppose the estimate is ξ̂ = 1.0. Sketch this on the plot of uα(ξ) and
vβ(ξ). Evaluate a and b for n = 5, α = β = 0.159. Compare the result to the interval obtained

from plus or minus one standard deviation about the estimate ξ̂.

Exercise 9.3: Show that the upper and lower limits for the parameter p of a binomial
distribution are

plo =
nF−1

F [α; 2n, 2(N − n+ 1)]

N − n+ 1 + nF−1
F [α; 2n, 2(N − n+ 1)]

pup =
(n+ 1)F−1

F [1− β; 2(n+ 1), 2(N − n)]

(N − n) + (n+ 1)F−1
F [1− β; 2(n+ 1), 2(N − n)]

.

(9.6)

Here the confidence levels for the upper and lower limits are 1 − α and 1 − β, respectively, n
is the number of successes observed in N trials, and F−1

F is the quantile of the F distribution.
This is defined by the p.d.f.

f(x;n1, n2) =

(
n1

n2

)n1/2 Γ( 1
2
(n1 + n2))

Γ( 1
2
n1)Γ(

1

2
n2)

xn1/2−1
(
1 +

n1

n2
x

)−(n1+n2)/2

, (9.7)

where x > 0 and n1 and n2 are integer parameters (degrees of freedom). Use the fact that the
cumulative binomial distribution is related to the cumulative distribution FF (x) for n1 = 2(n+1)
and n2 = 2(N − n) degrees of freedom by 1

n∑

k=0

N !

k!(N − k)!
pk (1− p)N−k = 1 − FF

[
(N − n)p

(n+ 1)(1− p)
; 2(n+ 1), 2(N − n)

]
. (9.8)

Quantiles of the F distribution can be obtained from standard tables or computed with
the routine ffinv. Equations (9.6) are implemented in the routines binomlo, binomup and
binomint.

Exercise 9.4: In an antineutrino-nucleon scattering experiment with the Gargamelle bubble
chamber at CERN, events were selected having only hadrons (from the neutral-current proccess
νµN → νµX) or with hadrons and a muon (the charged-current procces νµN → µ+X). Out of
a sample of 212 events, 64 were classified as neutral current (NC) and 148 as charged current
(CC). Estimate the probability for an event to be NC and find the 68.3% central confidence

1Use of the F distribution for evaluating binomial confidence intervals is due to A. Hald, Statistical Theory
with Engineering Applications, John Wiley, New York, 1952.
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interval. Find the corresponding estimator and interval for the ratio of probabilities for NC and
CC events.2

Exercise 9.5: In an experiment investigating particle collisions, 10 events are selected as being
of a certain type, say, having a high value of some property x. Out of the 10 high-x events, 2
are found to contain muons.

(a) Find the 68.3% central confidence interval for the binomial parameter p for high-x events to
contain muons. Express the answer as p = p̂+c

−d where p̂ is the ML estimate for p and [p̂−c, p̂+d]
is the confidence interval. (The routine binomint can be used.)

(b) Compare the interval from (a) to p̂± σ̂p̂, where σ̂p̂ is the estimate of the standard deviation
of p̂.

(c) A common mistake is to regard the number 10 of high-x events as a random variable and to
include its variance in the error for p̂ (e.g. using error propagation). Why is this not the correct
approach?

Exercise 9.6: Suppose that to produce the events in Exercise 9.5, the total amount of data
collected corresponded to an integrated luminosity of L = 1 pb−1 (known with a negligible
error). The total number of events produced of a given type can be regarded as a Poisson
variable n with mean value ν = σL, where σ is the production cross section. (Why is the
Poisson distribution appropriate?)

(a) Find the 68.3% central confidence intervals for the expected numbers of events νx and νxµ
for events with high x and high x with muons, given nx = 10 and nxµ = 2 events observed.
What are the corresponding confidence intervals for the production cross sections, σx and σxµ?

(b) Compare the confidence intervals from (a) to intervals constructed as plus or minus one
standard deviation about the estimate of the corresponding parameter.

(c) Suppose that in a separate experiment with an integrated luminosity of L′ = 100 pb−1,
n′
x = 1173 high-x events are observed. This experiment, however, is unable to identify muons.

Construct the log-likelihood function for the parameters σx and p = σxµ/σx using the data nx,
nxµ and n′

x. Show that the ML estimator for p does not depend on n′
x. Does it make sense that

the result of the second experiment has no impact on the estimate of p?

(d) Suppose the original experiment had not measured the number of high-x events but had
only reported the number of high-x events with muons. Using only the two results nxµ = 2 and
n′
x = 1173, construct the log-likelihood function for σx and p. From this find the ML estimators.

Use error propagation to estimate the standard deviation of p̂, and compare the interval p̂± σ̂p̂
to the intervals from Exercises 9.5 (a) and (b). Optional: How would you go about constructing
a confidence interval for p in this case?

Exercise 9.7: A Particle created in an interaction is emitted at a certain angle with respect
to the z axis, as shown in Fig. 9.1. A detector located a distance d from the interaction point
measures the particle’s position x perpendicular to the z direction. The angle θ is defined as
the angle between the z axis and the projection of the particle’s trajectory into the (x, z) plane.
Suppose the measured value x can be regarded as a Gaussian variable centered about the true
value and having a standard deviation σx.

2In the actual experiment, small background corrections were included; see F.J. Hasert et al., Observation
of neutrino-like interactions without muon or electron in the Gargamelle neutrino experiment, Phys. Lett. 46B

(1973) 138.
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θ
z

d

x

detector

scattered particle

Figure 9.1: The definition of
the scattering angle θ from the
trajectory projected into the (x, z)
plane.

(a) Find the central confidence interval at a confidence level 1− γ for the cosine of the angle θ.
Assume that the distance d is known without error.

(b) Take d = 1 m, σx = 1 mm and suppose the measured value is x = 2.0 mm. Find the 68.3%
and 95% central confidence intervals for cos θ.



Chapter 10

Characteristic Functions

Exercise 10.1: Show that the characteristic function of the Gaussian p.d.f.,

f(x;µ, σ2) =
1√
2πσ2

exp

(
−(x− µ)2

2σ2

)
, (10.1)

is given by

φ(k) = exp(iµk − 1

2
σ2k2) . (10.2)

Exercise 10.2: Show that the characteristic function of the exponential p.d.f.,

f(x; ξ) =
1

ξ
e−x/ξ, (10.3)

is given by

φ(k) =
1

1− ikξ
. (10.4)

Exercise 10.3: Show that the characteristic function of the χ2 p.d.f. for n degrees of freedom,

f(z;n) =
1

2n/2Γ(n/2)
zn/2−1e−z/2, (10.5)

is given by

φ(k) = (1− 2ik)−n/2. (10.6)

For this you will need the definition of the gamma function,

Γ(x) =

∫ ∞

0
e−t tx−1 dt. (10.7)
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Exercise 10.4: Suppose the random variables x1, . . . , xn are independent and each follow a
Gaussian distribution of mean µ and variance σ2. As seen in Chapters 5 and 6, the sample
mean

x =
1

n

n∑

i=1

xi (10.8)

can be used as an estimator for the mean µ.

(a) Find the characteristic function for the sample mean.

(b) From this, show that the p.d.f. for x is itself Gaussian, and find its mean and variance.

Exercise 10.5 Using the characteristic function, show that the first four algebraic moments of
the Gaussian distribution are

E[x] = µ

E[x2] = µ2 + σ2

E[x3] = µ3 + 3µσ2

E[x4] = 3(µ2 + σ2)2.

(10.9)

Exercise 10.6: (a) Using the characteristic function, show that the mean and variance of the
χ2 distribution for n degrees of freedom are n and 2n, respectively.

(b) Suppose z follows the χ2 distribution for n degrees of freedom. Show that in the limit of
large n this becomes a Gaussian distribution with mean µ = n and variance σ2 = 2n. To do
this, define the variable

y =
z − n√

2n
, (10.10)

which has a mean of zero and standard deviation of unity. Show that the characteristic function
for y is

φy(k) = e−ik
√

n/2φz

(
k√
2n

)
. (10.11)

Expand the logarithm of φy(k) and retain terms that do not vanish in the limit of large n.
Transform back to the original variable z to obtain the final result.

Exercise 10.7: Suppose n independent random variables x1, . . . , xn each follow a standard
Gaussian distribution, i.e.,

ϕ(xi) =
1√
2π

e−x2

i
/2 (10.12)

for all i, and consider

y =

(
n∑

i=1

x2i

)1/2

. (10.13)
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(a) First consider only one of the xi. By transformation of variables, show that the p.d.f. of
u = x2i is

f(u) =
1√
2πu

e−u/2. (10.14)

This is the χ2 distribution for one degree of freedom.

(b) Show that the characteristic function of u is

φu(k) =
1√

1− 2ik
. (10.15)

(c) Using the addition theorem, find the characteristic function for

v =
n∑

i=1

x2i . (10.16)

(d) Using transformation of variables, show that the p.d.f. for y = (
∑n

i=1 x
2
i )

1/2 is

h(y) =
1

2n/2−1Γ(n/2)
yn−1 e−y/2. (10.17)

This is a special case of the gamma distribution.

(e) Write down the p.d.f. for n = 3. This is the Maxwell-Boltzmann distribution. Suppose the
velocity components of molecules in a gas vx, vy and vz are independent Gaussian variables with
mean values of zero, and standard deviations σ. Write down the p.d.f. for the molecular speed
v = (v2x + v2y + v2z)

1/2.

(f) Write down the p.d.f. for n = 1. That is, if x follows a standard Gaussian, what is the p.d.f.
of y = |x|?
Exercise 10.8: Consider a variable x distributed according to the Cauchy (Breit-Wigner) p.d.f.,

f(x) =
1

π

1

1 + x2
. (10.18)

(a) Show that the characteristic function is

φ(k) = e−|k|. (10.19)

(Use the residue theorem and close the integral in the upper half plane for k > 0, and in the
lower half plane for k < 0.)

(b) Consider a sample of n observations of a Cauchy distributed variable x. Using the addition
theorem with the characteristic function from (a), show that the sample mean x = 1

n

∑n
i=1 xi

also follows the Cauchy p.d.f. This is a rare case where the p.d.f. of x does not change as the
sample size increases, and is related to the fact that the moments of the Cauchy distribution
does not exist.
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Exercise 10.9: The Dirac delta function,

f(x;µ) = δ(x− µ), (10.20)

is defined by

δ(x− µ) = 0 for x 6= µ ,
∫ ∞

−∞
δ(x− µ) dx = 1.

(10.21)

That is, δ(x − µ) has an infinitely sharp peak at x = µ and is zero elsewhere. Find the
characteristic function of δ(x−µ), and use this to obtain an integral representation of the delta
function.



Chapter 11

Unfolding

Exercise 11.1: Consider the detector set-up shown in Fig. 9.1. Suppose the resolution function
for x is Gaussian,

s(x|x′) = 1√
2πσx

exp

[
−(x− x′)2

2σ2
x

]
. (11.1)

Find the resolution function for cos θ = x/
√
x2 + d2.

Exercise 11.2: Consider the Tikhonov regularization function with k = 1 for a histogram
µ = (µ1, . . . , µM ) with equal bin widths,

S(µ) = −
M−1∑

i=1

(µi − µi+1)
2. (11.2)

Find the M ×M matrix G such that S(µ) can be expressed in the form

S(µ) = −
M∑

i,j=1

Gijµiµj = −µTGµ. (11.3)

Exercise 11.3: Consider a histogram of expectation values µ = (µ1, . . . , µM ) and the
corresponding probabilities p = µ/µtot, where µtot =

∑M
i=1 µi.

(a) Show that the Shannon entropy,

H(p) = −
M∑

i=1

pi log pi, (11.4)

is maximum when pi = 1/M for all i. (Use a Lagrange multiplier to impose the constraint∑M
i=1 pi = 1.)

(b) Show that the cross-entropy,

K(p;q) = −
M∑

i=1

pi log
pi

Mqi
, (11.5)
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is maximum when the probabilities p are equal to the reference distribution q.

Exercise 11.4: Consider an observed histogram n = (n1, . . . , nN ), for which the corresponding
expectation values ν = (ν1, . . . , νN ) are related to a true histogram of expectation values
µ = (µ1, . . . , µM ) by ν = Rµ. Assume that the covariance matrix V and response matrix
R are known and that the histograms contain no background.

(a) Construct estimators for µ by maximizing

Φ(µ) = −α

2
χ2(µ) + S(µ)

= −α

2
(n−Rµ)TV −1(n−Rµ) − µTGµ ,

(11.6)

where α is the regularization parameter and the M × M symmetric matrix G is given by a
known set of constants (cf. SDA Section 11.5.1). Show that the estimators µ̂ are given by

µ̂ = (αRTV −1R + 2G)−1αRTV −1n , (11.7)

and find the covariance matrix Uij = cov[µ̂i, µ̂j ].

(b) Now impose the constraint that νtot =
∑N

i=1 νi =
∑N

i=1

∑M
j=1Rijµj be equal to the total

observed number of events ntot =
∑N

i=1 ni. The solution is found by maximizing

ϕ(µ) = −α

2
(n−Rµ)TV −1(n−Rµ) − µTGµ + λ(ntot − νtot) (11.8)

with respect to the parameters µ and the Lagrange multiplier λ. Find the estimators µ̂ and
their covariance matrix.

(c) Construct estimators b̂ for the bias b = E[µ̂]−µ using SDA equation (11.76) for both cases
(a) and (b).


