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Lecture 2
1  Probability  (90 min.)

Definition, Bayes’ theorem, probability densities 
and their properties, catalogue of pdfs, Monte Carlo 

2  Statistical tests  (90 min.)
general concepts, test statistics, multivariate methods,
goodness-of-fit tests

3  Parameter estimation  (90 min.)
general concepts, maximum likelihood, variance of 
estimators, least squares

4  Interval estimation  (60 min.)
setting limits

5  Further topics  (60 min.)
systematic errors, MCMC
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The data stream
Experiment records a mixture of events of different types, each
with different  numbers of particles, kinematic properties, ...  

We are usually interested in events of a single type, in a search to 
see if they exist at all and/or to identify them for further study.
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For each reaction we consider we will have a hypothesis for the
pdf of     , e.g., 

Statistical tests (in a particle physics context)
Suppose the result of a measurement for an individual event 
is a collection of numbers

x1 = number of muons,

x2 = mean pt of jets,

x3 = missing energy, ...

     follows some n-dimensional joint pdf, which depends on 
the type of event produced, i.e., was it 

etc.

Often call H0 the signal hypothesis (the event type we want);
H1, H2, ... are background hypotheses.
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Selecting events
Suppose we have a data sample with two kinds of events,
corresponding to hypotheses H0 and H1 and we want to select 
those of type H0.

Each event is a point in     space.  What ‘decision boundary’ 
should we use to accept/reject events as belonging to event type 
H0?

accept
H0

H1

Perhaps select events
with ‘cuts’:
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Other ways to select events

Or maybe use some other sort of decision boundary:

accept
H0

H1

accept

H0

H1

linear or nonlinear

How can we do this in an ‘optimal’ way?
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Test statistics
Construct a ‘test statistic’ of lower dimension (e.g. scalar)

We can work out the pdfs

Goal is to compactify data without losing ability to discriminate
between hypotheses.

Decision boundary is now a 
single ‘cut’ on t.

This effectively divides the sample 
space into two regions where we either:
        accept H0 (acceptance region) 
        or reject it (critical region).
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Significance level and power of a test

Probability to reject H0 if it is true  (error of the 1st kind):

(significance level)

Probability to accept H0 if H1 is true (error of the 2nd kind):

( power)
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Efficiency of event selection

Signal efficiency, i.e., probability to 
accept event which is signal, 

Background efficiency, i.e., probability
to accept background event, 

Expected number of signal events:  s = s s L

Expected number of background events: b = b b L

s, b = signal, background cross sections; L = integrated luminosity
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Purity of event selection
Suppose only one background type b; overall fractions of signal
and background events are s and b (prior probabilities).

Suppose we select events with t < tcut.  What is the
‘purity’ of our selected sample?

Here purity means the probability to be signal given that
the event was accepted.  Using Bayes’ theorem we find:

So the purity depends on the prior probabilities as well as on the
signal and background efficiencies.
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Constructing a test statistic
How can we select events in an ‘optimal way’?

Neyman-Pearson lemma (proof in Brandt Ch. 8) states:

To get the lowest b for a given s (highest power for a given 
significance level), choose acceptance region such that

where c is a constant which determines s.

Equivalently, optimal scalar test statistic is

N.B. any monotonic function of this is just as good.
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Purity vs. efficiency — optimal trade-off
Consider selecting n events:

expected numbers s from signal, b from background;

→ n ~ Poisson (s + b)

Suppose b is known and goal is to estimate s with minimum 
relative statistical error.

Take as estimator:

Variance of Poisson variable equals its mean, therefore

→

So we should maximize 

equivalent to maximizing product of signal efficiency  purity.
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Why Neyman-Pearson doesn’t always help

The problem is that we usually don’t have explicit formulae for
the pdfs

Instead we may have Monte Carlo models for signal and 
background processes, so we can produce simulated data,
and enter each event into an n-dimensional histogram.

Use e.g. M bins for each of the n dimensions, total of Mn cells.

But n is potentially large, →  prohibitively large number of cells 
to populate with Monte Carlo data.

Compromise:  make Ansatz for form of test statistic
with fewer parameters; determine them (e.g. using MC) to 
give best discrimination between signal and background.
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Linear test statistic

Ansatz:

→  Fisher:  maximize

Choose the parameters a1, ..., an so that the pdfs
have maximum ‘separation’.  We want:

s b

t

g (t) b

large distance  between 
mean values, small widths

s
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Determining coefficients for maximum separation

We have 

where

In terms of mean and variance of this becomes
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Determining the coefficients (2)
The numerator of J(a) is  

and the denominator is 

‘between’ classes

‘within’ classes

→ maximize 
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Fisher discriminant

Setting

accept
H0

H1

Corresponds to a linear
decision boundary.

gives Fisher’s linear discriminant function:
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Fisher discriminant for Gaussian data
Suppose

and covariance matrices V0 = V1 = V for both.  

For this case we can show that the Fisher discriminant is 
equivalent to using the likelihood-ratio, and thus gives the 
maximum purity for a given efficiency.

is multivariate Gaussian with mean values

For non-Gaussian data this no longer holds, but linear
discriminant function may be simplest practical solution.

Can try to transform data so as to better approximate
Gaussian before constructing Fisher discrimimant.



G. Cowan Lectures on Statistical Data Analysis Lecture 2  page 18

Nonlinear test statistics

The optimal decision boundary may not be a hyperplane,

→  nonlinear test statistic

accept

H0

H1Multivariate statistical methods

are a Big Industry:

Particle Physics can benefit from progress in Machine Learning.

Neural Networks,

Support Vector Machines,

Kernel density methods,

...
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Introduction to neural networks

Used in neurobiology, pattern recognition, financial forecasting, ...
Here, neural nets are just a type of test statistic.

Suppose we take t(x) to have the form logistic
sigmoid

This is called the 
single-layer perceptron.

s(·) is monotonic 
→ equivalent to linear t(x)
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The activation function

The activation function function s(t) is often taken to be
a logistic sigmoid: 
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The multi-layer perceptron

Generalize from one layer 
to the multilayer perceptron:

The values of the nodes in the 
intermediate (hidden) layer are

and the network output is given by 

weights (connection strengths)
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Neural network discussion

Easy to generalize to arbitrary number of layers.

Feed-forward net:  values of a node depend only on earlier layers,
usually only on previous layer (“network architecture”).

More nodes → neural net gets closer to optimal t(x), but
more parameters need to be determined.

Parameters usually determined by minimizing an error function,

where t (0) , t (1) are target values, e.g., 0 and 1 for logistic sigmoid.

Expectation values replaced by averages of training data (e.g. MC).

In general training can be difficult; standard software available.
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Neural network example from LEP II

Signal:  ee → WW    (often 4 well separated hadron jets)

Background:  ee → qqgg  (4 less well separated hadron jets)

←  input variables based on jet
structure, event shape, ...
none by itself gives much separation.

Neural network output does better...

(Garrido, Juste and Martinez, ALEPH 96-144)
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Why not use all of the available input variables?

Fewer inputs → fewer parameters to be adjusted,
 → parameters better determined for finite training data.

Some inputs may be highly correlated → drop all but one.

Some inputs may contain little or no discriminating power 
between the hypotheses → drop them.

NN exploits higher moments (nonlinear features) of joint pdf
f(x|H), but these may not be well modeled in training data.

 Better to have simper t(x) where you can ‘understand
what it’s doing’.

Neural network discussion (2)
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Neural network discussion (3)
Recall that the purpose of the statistical test is usually to select
objects for further study; e.g. select WW events, then measure
their properties (e.g. particle multiplicity).

Need to avoid input variables that are correlated with the
properties of the selected objects that you want to study.
(Not always easy; correlations may be poorly known.)

Some NN references:
L. Lönnblad et al., Comp. Phys. Comm., 70 (1992) 167;

C. Peterson et al., Comp. Phys. Comm., 81 (1994) 185;

C.M. Bishop, Neural Networks for Pattern Recognition, 
OUP (1995);

John Hertz et al., Introduction to the Theory of Neural
Computation, Addison-Wesley, New York (1991).
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Testing goodness-of-fit

Suppose hypothesis H predicts pdf 

observations

for a set of

We observe a single point in this space:

What can we say about the validity of H in light of the data?

Decide what part of the 
data space represents less 
compatibility with H than 
does the point      less 

compatible
with H

     more 
compatible
with H

(Not unique!)
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p-values

where  (H) is the prior probability for H.

Express ‘goodness-of-fit’ by giving the p-value for H:

p = probability, under assumption of H, to observe data with 
equal or lesser compatibility with H relative to the data we got. 

This is not the probability that H is true!

In frequentist statistics we don’t talk about P(H) (unless H 
represents a repeatable observation). In Bayesian statistics we do; 
use Bayes’ theorem to obtain

For now stick with the frequentist approach; 
result is p-value, regrettably easy to misinterpret as P(H).
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p-value example:  testing whether a coin is ‘fair’

i.e. p = 0.0026 is the probability of obtaining such a bizarre
result (or more so) ‘by chance’, under the assumption of H.

Probability to observe n heads in N coin tosses is binomial:

Hypothesis H:  the coin is fair (p = 0.5).

Suppose we toss the coin N = 20 times and get n = 17 heads.

Region of data space with equal or lesser compatibility with 
H relative to n = 17 is:  n = 17, 18, 19, 20, 0, 1, 2, 3.  Adding
up the probabilities for these values gives:
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The significance of an observed signal
Suppose we observe n events; these can consist of:

nb events from known processes (background)
ns events from a new process (signal)

If ns, nb are Poisson r.v.s with means s, b, then n = ns + nb

is also Poisson, mean = s + b:

Suppose b = 0.5, and we observe nobs = 5.  Should we claim
evidence for a new discovery?  

    Give p-value for hypothesis s = 0:
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The significance of a peak

Suppose we measure a value 
x for each event and find:

Each bin (observed) is a
Poisson r.v., means are
given by dashed lines.

In the two bins with the peak, 11 entries found with b = 3.2.
The p-value for the s = 0 hypothesis is:
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The significance of a peak (2)

But... did we know where to look for the peak?

→  give P(n ≥ 11) in any 2 adjacent bins

Is the observed width consistent with the expected x resolution?

→  take x window several times the expected resolution

How many bins  distributions have we looked at?

 → look at a thousand of them, you’ll find a 10-3 effect

Did we adjust the cuts to ‘enhance’ the peak?

 → freeze cuts, repeat analysis with new data

How about the bins to the sides of the peak... (too low!)

Should we publish????
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Making a discovery

Often compute p-value of the ‘background only’ hypothesis H0 using 
test variable related to a characteristic of the signal.

p-value  = Probability to see data as incompatible with 
H0, or more so, relative to the data observed.

Requires definition of ‘incompatible with H0’

HEP folklore:  claim discovery if  p-value equivalent to a 5 
fluctuation of Gaussian variable (one-sided)  

Actual p-value at which discovery becomes believable 
will depend on signal in question (subjective)

Why not do Bayesian analysis?

Usually don’t know how to assign meaningful prior
probabilities
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Pearson’s 2 statistic

Test statistic for comparing observed data

(ni independent) to predicted mean values

For ni ~ Poisson(i) we have V[ni] = i, so this becomes 

(Pearson’s 2 
statistic)

2 = sum of squares of the deviations of the ith measurement from 
the ith prediction, using i as the ‘yardstick’ for the comparison.
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Pearson’s 2 test

If ni are Gaussian with mean i and std. dev. i, i.e., ni ~ N(i , i
2), 

then Pearson’s 2 will follow the 2 pdf (here for 2 = z):

If the ni are Poisson with i >> 1 (in practice OK for i > 5)
then the Poisson dist. becomes Gaussian and therefore Pearson’s
2 statistic here as well follows the 2 pdf.

The 2 value obtained from the data then gives the p-value:
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The ‘2 per degree of freedom’

Recall that for the chi-square pdf for N degrees of freedom,

This makes sense:  if the hypothesized i are right, the rms 

deviation of ni from i is i, so each term in the sum contributes ~ 1.

One often sees 2/N reported as a measure of goodness-of-fit.
But...  better to give 2and N separately.  Consider, e.g.,

i.e. for N large, even a 2 per dof only a bit greater than one can
imply a small p-value, i.e., poor goodness-of-fit.
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Pearson’s 2 with multinomial data

If is fixed, then we might model ni ~ binomial 

I.e. with pi = ni / ntot. ~ multinomial.

In this case we can take Pearson’s 2 statistic to be

If all pi ntot >> 1 then this will follow the chi-square pdf for

N1 degrees of freedom.
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Example of a 2 test

← This gives

for N = 20 dof.

Now need to find p-value, but... many bins have few (or no)
entries, so here we do not expect 2 to follow the chi-square pdf.
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Using MC to find distribution of 2 statistic 

The Pearson 2 statistic still reflects the level of agreement 
between data and prediction, i.e., it is still a ‘valid’ test statistic.

To find its sampling distribution, simulate the data with a
Monte Carlo program:

Here data sample simulated 106

times.  The fraction of times we 
find 2 > 29.8 gives the  p-value:

p = 0.11

If we had used the chi-square pdf
we would find p = 0.073.
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Wrapping up lecture 2

Main ideas of statistical tests and related issues for HEP:
Discriminate between event types (hypotheses),
determine selection efficiency, sample purity, etc.

Some methods for constructing a test statistic
Linear:  Fisher discriminant
Nonlinear:  Neural networks

Goodness-of-fit tests
p-value (not same as P(H0)!),

2 =  (data  prediction)2 / variance.
Often 2 ~ chi-square pdf → use to get p-value.

Next we turn to:  parameter estimation


