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Lecture 3
1  Probability  (90 min.)

Definition, Bayes’ theorem, probability densities 
and their properties, catalogue of pdfs, Monte Carlo 

2  Statistical tests  (90 min.)
general concepts, test statistics, multivariate methods,
goodness-of-fit tests

3  Parameter estimation  (90 min.)
general concepts, maximum likelihood, variance of 
estimators, least squares

4  Interval estimation  (60 min.)
setting limits

5  Further topics  (60 min.)
systematic errors, MCMC
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Parameter estimation
The parameters of a pdf are constants that characterize
 its shape, e.g.

r.v.

Suppose we have a sample of observed values:

parameter

We want to find some function of the data to estimate the 
parameter(s):

←  estimator written with a hat

Sometimes we say ‘estimator’ for the function of x1, ..., xn;
‘estimate’ for the value of the estimator with a particular data set.
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Properties of estimators
If we were to repeat the entire measurement, the estimates
from each would follow a pdf:

biasedlarge
variance

best

We want small (or zero) bias (systematic error):

→  average of repeated estimates should tend to true value.

And we want a small variance (statistical error):

→  small bias & variance are in general conflicting criteria
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An estimator for the mean (expectation value)

Parameter:

Estimator:

We find:

(‘sample mean’)
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An estimator for the variance

Parameter:

Estimator:

(factor of n1 makes this so)

(‘sample
variance’)

We find:

where
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The likelihood function

Consider n independent observations of x:  x1, ..., xn,  where 

x follows f (x; ).  The joint pdf for the whole data sample is:

Now evaluate this function with the data sample obtained and
regard it as a function of the parameter(s).  This is the 
likelihood function:

(xi constant)
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Maximum likelihood estimators
If the hypothesized  is close to the true value, then we expect 
a high probability to get data like that which we actually found.

So we define the maximum likelihood (ML) estimator(s) to be 
the parameter value(s) for which the likelihood is maximum.

ML estimators not guaranteed to have any ‘optimal’
properties, (but in practice they’re very good).
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ML example:  parameter of exponential pdf

Consider exponential pdf,

and suppose we have data,

The likelihood function is

The value of  for which L() is maximum also gives the 
maximum value of its logarithm (the log-likelihood function):
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ML example:  parameter of exponential pdf (2)

Find its maximum from 

→

Monte Carlo test:  
generate 50  values
using  = 1:

We find the ML estimate:

(Exercise:  show this estimator is unbiased.)
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Functions of ML estimators

Suppose we had written the exponential pdf as

i.e., we use  = 1/.  What is the ML estimator for ?

For a function () of a parameter , it doesn’t matter
whether we express L as a function of  or .

The ML estimator of a function () is simply  

So for the decay constant we have

Caveat:   is biased, even though is unbiased.

(bias →0 for n →∞)Can show
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Example of ML:  parameters of Gaussian pdf

Consider independent x1, ..., xn,  with xi ~ Gaussian (,2)

The log-likelihood function is
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Example of ML:  parameters of Gaussian pdf (2)

Set derivatives with respect to , 2 to zero and solve,

We already know that  the estimator for   is unbiased.

But we find, however, so ML estimator

for 2 has a bias, but b→0 for n→∞.  Recall, however, that

is an unbiased estimator for 2.
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Variance of estimators:  Monte Carlo method
Having estimated our parameter we now need to report its
‘statistical error’, i.e., how widely distributed would estimates
be if we were to repeat the entire measurement many times.

One way to do this would be to simulate the entire experiment
many times with a Monte Carlo program (use ML estimate for MC).

For exponential example, from 
sample variance of estimates
we find:

Note distribution of estimates is roughly
Gaussian − (almost) always true for 
ML in large sample limit.
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Variance of estimators from information inequality
The information inequality (RCF) sets a minimum variance bound 
(MVB) for any estimator (not only ML):

Often the bias b is small, and equality either holds exactly or
is a good approximation (e.g. large data sample limit).   Then,

Estimate this using the 2nd derivative of  ln L at its maximum:
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Variance of estimators: graphical method
Expand ln L () about its maximum:

First term is ln Lmax, second term is zero, for third term use 
information inequality (assume equality):

i.e.,

→  to get , change  away from until ln L decreases by 1/2.
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Example of variance by graphical method

ML example with exponential:

Not quite parabolic ln L since finite sample size (n = 50).
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Information inequality for n parameters
Suppose we have estimated n parameters   

The (inverse) minimum variance bound is given by the 
Fisher information matrix:

The information inequality then states that V  I is a positive
semi-definite matrix; therefore for the diagonal elements,

Often use I as an approximation for covariance matrix, 
estimate using e.g. matrix of 2nd derivatives at maximum of L.
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Example of ML with 2 parameters

Consider a scattering angle distribution with x = cos ,

or if xmin < x < xmax, need always to normalize so that 

Example:   = 0.5,  = 0.5, xmin = 0.95, xmax = 0.95, 
generate n = 2000 events with Monte Carlo.
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Example of ML with 2 parameters:  fit result
Finding maximum of ln L(, ) numerically (MINUIT) gives

N.B.  No binning of data for fit,
but can compare to histogram for
goodness-of-fit (e.g. ‘visual’ or 2). 

(Co)variances from (MINUIT routine 
HESSE)
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Two-parameter fit:  MC study
Repeat ML fit with 500 experiments, all with n = 2000 events:

Estimates average to ~ true values;
(Co)variances close to previous estimates;
marginal pdfs approximately Gaussian.
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The ln Lmax  1/2 contour

For large n, ln L takes on quadratic form near maximum:

The contour is an ellipse:
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(Co)variances from ln L contour

→ Tangent lines to contours give standard deviations.

→ Angle of ellipse  related to correlation:

Correlations between estimators result in an increase
in their standard deviations (statistical errors).

The ,  plane for the first
MC data set
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Extended ML
Sometimes regard n not as fixed, but as a Poisson r.v., mean .

Result of experiment defined as: n, x1, ..., xn.

The (extended) likelihood function is:

Suppose theory gives  = (θ), then the log-likelihood is 

where C represents terms not depending on θ.
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Extended ML (2)

Extended ML uses more info → smaller errors for 

Example:  expected number of events 

where the total cross section (θ) is predicted as a function of

the parameters of a theory, as is the distribution of a variable x. 

If  does not depend on θ but remains a free parameter,
extended ML gives: 

Important e.g. for anomalous couplings in ee → W+W
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Extended ML example
Consider two types of events (e.g., signal and background) each 
of which predict a given pdf for the variable x:  fs(x) and fb(x).

We observe a mixture of the two event types, signal fraction = , 
expected total number = , observed total number = n.

Let goal is to estimate s, b.

→
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Extended ML example (2)

Maximize log-likelihood in 
terms of s and b:

Monte Carlo example
with combination of
exponential and Gaussian:

Here errors reflect total Poisson
fluctuation as well as that in 
proportion of signal/background.
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Extended ML example:  an unphysical estimate

A downwards fluctuation of data in the peak region can lead
to even fewer events than what would be obtained from
background alone.

Estimate for s here pushed
negative (unphysical).

We can let this happen as 
long as the (total) pdf stays
positive everywhere.
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Unphysical estimators (2) 

Here the unphysical estimator is unbiased and should 
nevertheless be reported, since average of a large number of 
unbiased estimates converges to the true value (cf. PDG).

Repeat entire MC
experiment many times, 
allow unphysical estimates: 
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ML with binned data
Often put data into a histogram:

Hypothesis is where

If we model the data as multinomial (ntot constant),  

then the log-likelihood function is:
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ML example with binned data
Previous example with exponential, now put data into histogram:

Limit of zero bin width → usual unbinned ML.

If ni treated as Poisson, we get extended log-likelihood:
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Relationship between ML and Bayesian estimators

In Bayesian statistics, both θ and x are random variables:

Recall the Bayesian method:

Use subjective probability for hypotheses ();

before experiment, knowledge summarized by prior pdf ();

use Bayes’ theorem to update prior in light of data:

Posterior pdf (conditional pdf for  given x)
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ML and Bayesian estimators (2)
Purist Bayesian:  p(| x) contains all knowledge about .

Pragmatist Bayesian:  p(| x) could be a complicated function,

→ summarize using an estimator 

Take mode of p(| x) ,  (could also use e.g. expectation value)

What do we use for ()?  No golden rule (subjective!), often
represent ‘prior ignorance’ by () = constant, in which case

But... we could have used a different parameter, e.g.,  = 1/,
and if prior () is constant, then () is not!  

‘Complete prior ignorance’ is not well defined.
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The method of least squares
Suppose we measure N values, y1, ..., yN, 
assumed to be  independent Gaussian 
r.v.s with 

Assume known values of the control
variable x1, ..., xN and known variances

The likelihood function is

We want to estimate , i.e., fit the curve to the data points.
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The method of least squares (2)

The log-likelihood function is therefore

So maximizing the likelihood is equivalent to minimizing

Minimum defines the least squares (LS) estimator 

Very often measurement errors are ~Gaussian and so ML
and LS are essentially the same.

Often minimize 2 numerically (e.g. program MINUIT).
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LS with correlated measurements

If the yi follow a multivariate Gaussian, covariance matrix V,

Then maximizing the likelihood is equivalent to minimizing
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Example of least squares fit

Fit a polynomial of order p:
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Variance of LS estimators
In most cases of interest we obtain the variance in a manner
similar to ML.  E.g. for data ~ Gaussian we have

and so

or for the graphical method we 
take the values of  where

1.0



G. Cowan Lectures on Statistical Data Analysis Lecture 3  page 38

Two-parameter LS fit
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Goodness-of-fit with least squares

The value of the 2 at its minimum is a measure of the level
of agreement between the data and fitted curve:

It can therefore be employed as a goodness-of-fit statistic to
test the hypothesized functional form (x; ).

We can show that if the hypothesis is correct, then the statistic 
t = 2

min follows the chi-square pdf,

where the number of degrees of freedom is 

       nd  = number of data points  number of fitted parameters
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Goodness-of-fit with least squares (2)

The chi-square pdf has an expectation value equal to the number 
of degrees of freedom, so if 2

min ≈  nd the fit is ‘good’.

More generally, find the p-value:

E.g. for the previous example with 1st order polynomial (line),

whereas for the 0th order polynomial (horizontal line),

This is the probability of obtaining a 2
min as high as the one

we got, or higher, if the hypothesis is correct.
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Wrapping up lecture 3

No golden rule for parameter estimation, construct so as to have
desirable properties (small variance, small or zero bias, ...)

Most important methods:
Maximum Likelihood,
Least Squares

Several methods to obtain variances (stat. errors) from a fit
Analytically
Monte Carlo
From information equality / graphical method

Finding estimator often involves numerical minimization
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Extra slides for lecture 3

Goodness-of-fit vs. statistical errors

Fitting histograms with LS

Combining measurements with LS



G. Cowan Lectures on Statistical Data Analysis Lecture 3  page 43

Goodness-of-fit vs. statistical errors
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Goodness-of-fit vs. stat. errors (2)
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LS with binned data
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LS with binned data (2)
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LS with binned data — normalization
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LS normalization example
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Using LS to combine measurements
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Combining correlated measurements with LS
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Example: averaging two correlated measurements
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Negative weights in LS average


