Statistical Analysis of Data Problem sheet #1

Please send by the announced due date to Glen Cowan, Physics Dept., Royal Holloway, University of London, Egham, Surrey, TW20 0EX, or e-mail to g.cowan@rhul.ac.uk.

Exercise 1.1: Show that

$$P(A \cup B) = P(A) + P(B) - P(A \cap B).$$

(Express $A \cup B$ as the union of three disjoint sets.)

Exercise 1.2: A beam of particles consists of a fraction 10^{-4} electrons and the rest photons. The particles pass through a double-layered detector which gives signals in either zero, one or both layers. The probabilities of these outcomes for electrons (e) and photons (γ) are

$$P(0 \mid e) = 0.001$$
 and $P(0 \mid \gamma) = 0.99899$
 $P(1 \mid e) = 0.01$ $P(1 \mid \gamma) = 0.001$
 $P(2 \mid e) = 0.989$ $P(2 \mid \gamma) = 10^{-5}$.

- (a) What is the probability for a particle detected in one layer only to be a photon?
- (b) What is the probability for a particle detected in both layers to be an electron?

Exercise 1.3: Consider a random variable x and constants α and β . Show that

$$E[\alpha x + \beta] = \alpha E[x] + \beta,$$

$$V[\alpha x + \beta] = \alpha^2 V[x].$$
(1)

Exercise 1.4: Consider two random variables x and y.

(a) Show that the variance of $\alpha x + y$ is given by

$$V[\alpha x + y] = \alpha^2 V[x] + V[y] + 2\alpha \text{cov}[x, y]$$
$$= \alpha^2 V[x] + V[y] + 2\alpha \rho \sigma_x \sigma_y , \qquad (2)$$

where α is any constant value, $\sigma_x^2 = V[x]$, $\sigma_y^2 = V[y]$, and the correlation coefficient is $\rho = \cos(x, y)/\sigma_x \sigma_y$.

(b) Using the result of (a), show that the correlation coefficient always lies in the range $-1 \le \rho \le 1$. (Use the fact that the variance $V[\alpha x + y]$ is always greater than or equal to zero and consider the cases $\alpha = \pm \sigma_y/\sigma_x$.)