Statistical Analysis of Data
Problem sheet #5

Please send by the announced due date to Glen Cowan, Physics Dept., Royal Holloway,
University of London, Egham, Surrey, TW20 0EX, or e-mail to g.cowan@rhbnc.ac.uk.

Exercise 5.1: Consider a single observation of a Poisson distributed variable n. What is the
maximum-likelihood estimator of the mean v? Show that the estimator is unbiased and find its
variance. Show that the variance of ¥ is equal to the minimum variance bound.

Exercise 5.2: Early evidence supporting the Standard Model of particle physics was provided by
the observation of a difference in the cross sections o and o7, for inelastic scattering of right (R)
or left (L) hand polarized electrons on a deuterium target. For a given integrated luminosity L
(proportional to the electron beam intensity and time of data taking), the numbers of scattering
events of each type are Poisson variables, ng and ny,, with means vg and v1,. The means are
related to the cross sections by vg = orL and vy, = op L, and the experiment is set up such
that the luminosity L is equal for both cases. Using the result from Exercise 5.1, construct an
estimator & for the polarization asymmetry,

o=R_L (1)

OR + 01,
Using error propagation, find the standard deviation o4 as a function of a and vt = vr + V1.
The asymmetry was expected to be at the level of 10*. How many scattering events must
be observed so that o4 is a factor of ten smaller than this? (The number of is so large that
the events could not be recorded individually, but rather the output current of the detector
was measured. See C.Y. Prescott et al., Parity non-conservation in inelastic electron scattering,

Phys. Lett. B77 (1978) 347.)

Exercise 5.3: One of the earliest determinations of Avogadro’s number was based on Brownian
motion. The experimental set-up shown in Fig. 1 was used by Jean Perrin ! to observe particles
of mastic (a substance used in varnish) suspended in water.

lens
emulsion
cover

focal plane z \ / Figure 1: Experimental set-up
of lens —’—‘l—— I\ | of Jean Perrin for observing the

i number of particles suspended in
water as a function of height.

The particles were spheres of radius r = 0.52 um and had a density of 1.063 g/cm3, i.e. 0.063
g/cm? greater than that of water. By viewing the particles through the microscope, only those
in a layer approximately 1 pym thick were in focus; particles outside this layer were not visible.

!Jean Perrin, Mouvement brownien et réalité moléculaire, Ann. Chimie et Physique, & série, 18 (1909) 1-114;
Les Atomes, Flammarion, Paris, 1991 (first edition, 1913); Brownian Movement and Molecular Reality, in Mary-Jo
Nye, ed., The Question of the Atom, Tomash, Los Angeles, 1984.



By adjusting the microscope lens, the focal plane could be moved vertically. Photographs were
taken at 4 different heights z, (the lowest height is arbitrarily assigned a value z = 0) and the
number of particles n(z) counted. The data are shown in Table 1.

Table 1: Perrin’s data on the number of mastic particles observed at different heights z in an emulsion.

height z (pm) number of particles n
0 1880
6 940
12 530
18 305

The gravitational potential energy of a spherical particle of mastic in water is given by

4
E= 3 73 Ap gz, (2)

where Ap = pmastic — Pwater = 0.063 g/cm? is the difference in densities and g = 980 cm/s? is
the acceleration of gravity. Statistical mechanics predicts that the probability for a particle to
be in a state of energy F is proportional to

P(E) o e P/FT (3)

where k is Boltzmann’s constant and 7' the absolute temperature. The particles should therefore
be distributed in height according to an exponential law, where the number n observed at z can
be treated as a Poisson variable with a mean v(z). By combining (2) and (3), this is found to
be

(4)

4r3 Ap gz
v(z) = vyexp )

where v is the expected number of particles at z = 0.

(a) Write a computer program to determine the parameters k¥ and vy with the method of
maximum likelihood. Use the data given in Table 1 to construct the log-likelihood function
based on Poisson probabilities (cf. SDA Section 6.10),

N
log L(vo, k) =Y _(nilogv; — vy), (5)
i=1
where N = 4 is the number of measurements. For the temperature use T' = 293 K.

(b) From the value you obtain for &, determine Avogadro’s number using the relation

Na = R/k, (6)

where R is the gas constant. The value used by Perrin was R = 8.32 x 107 erg/mol K.



(c) Instead of maximizing the log-likelihood function (5), estimate vy and k by minimizing

N
n; .
X5 (vo, k) = 2 Z (nZ logﬁ + 0 — nl> . (7)
i=1 ‘

Use the value of x% to evaluate the goodness-of-fit (cf. SDA Section 6.11). Comment on possible
systematic errors in Perrin’s determination of Njy.

Exercise 5.4 (optional): A random variable z follows a p.d.f. f(z;0) where 0 is an unknown

parameter. Consider a sample x = (z1,...,%,) used to construct an estimator 9(x) for 6 (not
necessarily the ML estimator). Prove the Rao-Cramér-Frechet (RCF) inequality,
2
A 1+ %)
Vg > (7 (8)
= logL]’
—F [ 55t

A

where b = E[f] — 6 is the bias of the estimator. This will require several steps:

(a) First, prove the Cauchy—Schwarz inequality, which states that for any two random variables
u and v,
V[u]Vv] > (covu,v])?, (9)

where V[u] and V[v] are the variances and cov[u,v] the covariance. Use that fact that the
variance of au + v must be greater than or equal to zero for any value of a. Then consider the
special case a = (V[v]/V[u])'/2.

(b) Use the Cauchy—Schwarz inequality with

~

u = 0,
9 (10)
vo= % log L,

where L = fioint(x; 0) is the likelihood function, which is also the joint p.d.f. for x. Write (9) so

as to express a lower bound on V[f]. Note that here we are treating the likelihood function as
a function of x, i.e. it is regarded as a random variable.

(c) Assume that differentiation with respect to € can be brought outside the integral to show
that

0 0
E [% logL] = /.../fjoint(x; 9)%logfjoint(x;0) dz; ...dz, = 0. (11)
The form of the RCF inequality that we will derive depends on this assumption, which is true
in most cases of interest. (It is fulfilled as long as the limits of integration do not depend on 6.)
Use (11) with (9) and (10) to show that



Vg > M (12)
B [(252)]

(d) Show that the numerator of (12) can be expressed as

E[éalogL] ab

— i 1
50 L+ 59 (13)

and that in a similar way the denominator is

dlog L\ 2 9?log L
El( 85 )] :—El 80§ ] (14)

Again assume that the order of differentiation with respect to 6 and integration over x can be
reversed. Prove (8) by putting together the ingredients from (c) and (d).



