Statistics course outline Hypotheses, test statistics

Lecture 1 Suppose the result of a measurement is & = (331, ce ,a:n)

. e.g. events from e*e™ collisions; for each event measure
1. Probability

T = ber of charged particl duced
2. Random variables, probability densities, etc. 1 7 Himber oF charged particies produce

3. Brief catalogue of probability densities T2 = mean P of particles

4 The Monte Carlo method 3 = number of ‘jets’ (according to some algorithm)

Ty = ...
Lecture 2

.. Z follows some joint pdf in an n-dimensional space, which depen
1. Statistical tests

2. Fisher discriminants, neural networks, etc.
3. Goodness-of-fit tests
4. The significance of a signal HYPOTHESIS

on the type of event produced, i.e. efe™ — qg, ete” — WW, et
That is, the joint pdf f(f) is specified by a certain

5. Introduction to parameter estimation
i.e. predicted probability densities f(Z|Hy), f(Z|H1), etc.

Lecture 3 (Note sloppy but traditional notation: usually Hy, Hi, ...not r.v

1. The method of maximum likelihood (ML)
2. Variance of ML estimators
3. The method of least squares (LS)

4. Interval estimation, setting limits

Simple hypothesis: f(f) completely specified,
Composite hypothesis: form of f(a_f ; 0) given, parameter 6 unkr

Usually awkward to work with multidimensional Z,
= construct test statistic of lower dimension (e.g. scalar), (Z):
compactify data,

try not to lose ability to discriminate bewteen hypotheses.

I

The statistic ¢ then has pdfs g(t|Hy), g(t|Hy), ...
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Critical region, errors of 1st and 2nd kind An example with particle selection

Consider a test statistic ¢ following g(t|H 0), g(t|H 1), . Suppose we obtain 70 energy loss measurements for a particle in -

drift chamber, construct £ = truncated mean of the measuremen

a(t)

Lou and suppose we know the particles are either electrons or pions:
accept Hy i reject Hy
15 r
= 2
g(t|H0) e t(:ut
1r g(tiH,) s L accept Hy i reject Hy
05 | . Hy = clectron (signal) . 9(tiHo)
. I g(tiHy)
. | L H{ = pion (background)
0 1 2 3 4 5 05 r
t
0 : T———=
L. . . . . . 0 1 2 3 4
Define a critical region where £ is not likely to occur if Hy is true,
t
e.g. for the case above, t > t.y. Select electrons by requiring ¢ < teyt. The selection efficiencies
. . o . . . . ( ] t .
If observed value t is in critical region, reject Hy, otherwise ‘accept’. Eo = /_21; g(t‘e) dt=1— o

Probability to reject Hy if it is true (error of 1st kind): / ;
cut
= [ g(t|m)dt = 8
o0

Loose cut: most e accepted, lots of 7 background

o= /t g(t|Hp) dt  (significance level)

Probability to accept Hy if H1 is true (error of 2nd kind): Tight cut: low signal efficiency, pure sample

feu Fractions of e, 7 may be unknown; £ follows
B = /_(xf g(t‘Hl) dt (1 — B = power) y

f(t;ae) = aeg(tle) + (1 — ae)g(t|m)

— estimate @, (for now assume @e, @ = 1 — @, known)
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Purity of selected sample

For a measured value €, what is the probability to be /77

acg(tle) + ar g(t|m)
(Bayes’ theorem)

B ar g(t|m)
hlmlt) = ac g(tle) + ar g(t|m)

Bayesian: degree of belief that this particle is e or 7

Frequentist: fraction of particles at given ¢ which are e/7

— here both approaches make sense

Often want purity of selected sample:
pe — P(e|t < tcut)

number of electrons with ¢ < eyt

number of all particles with £ < t¢yt

B ftest qog(tle)dt
- %(acg(tle) + (1 — ac)g(t|m))dt

_ tlewt helt) f(t) dt
e f(E) dt

= clectron probability averaged over interval (—OO, tcut]
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The Neyman—Pearson lemma

Consider a multidimensional test statistic £ = (t1y .oy tm);
hypotheses H( (‘signal’) and Hq (‘background’).

What is the optimal choice of the critical region (i.e. cuts)?

The Neyman-Pearson lemma states: to get the highest purity for
a given efficiency, (i.e. highest power for a given significance level

choose the acceptance region such that

g(ﬂH0>
g(ﬂﬂﬁ

where ¢ = constant which determines the efficiency.

> c,

(For a proof see Brandt Chapter 8.) Value of ¢ left open; choose

this depending on what efficiency you want.

Equivalently, the optimal scalar test statistic is

. _ 9(t[Hy)
g(t|Hy)’

called the likelihood ratio for simple hypotheses Hy and Hj.
Requiring 7 > ¢ gives maximum purity for a given efficiency.

N.B. any monotonic function of 7 is just as good.
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Constructing a test statistic Linear test statistic

n
Example: Hy = ete™ — WW — hadrons (usually four jets) Ansatz: t(a_f) = Y a;x; = alz
1=1
Hi = e¢te” — qq — hadrons (usually two jets) A choice of @ gives certain pdfs g(t‘H()), g(t‘Hl).
For each event measure & = (a:l, ce ,xn). Choose the @; to maximize ‘separation’ between g(t|H0), g(t|1

According to Neyman—Pearson, to select WWs we should cut on ,
— Must define ‘separation’.

L J(&[Ho) . |
t(:l:) = == We have the expectation values and covariances,
f(@|Hy)
= [z, (& Hy) d7,
but we need to know f(Z|Hp) and f(Z|H1). ()i = [ 24 (7 H) 42,
In practice, get these from Monte Carlo event generator: (Vk>ij = /(x — Hk)z’ (a: — /Lk)j f(f|Hk) dx,
Generate events, for each, obtain Z and enter into k=0,1 (hypothesis),

n-dimensional histogram. If e.g. M bins per component, L
o n t,7=1,...,m  (component of Z).
total number of cells in Z-space = M

_ R N ' ' Similarly for mean and variance of ¢(),
Approximate f(x|H ) by probability to be in corresponding cell,

i.e. determine M™ parameters. But 1 is potentially large! v = [t(Z)f(Z|Hy) dE = (_I’Tﬁk.

= prohibitively large number of cells to populate with MC data. Zi = [(¢t(%) — Tk)2 f(Z|Hy) dZ = al'V,.d.

Compromise solution: '
We should require:

Make Ansatz for form of ¢(Z) with fewer parameters;
determine the parameters (e.g. using MC) to give best large ‘TO - T1|’

discrimination between Ho and H;. small 2(2), 32 (pdfs tightly concentrated about their means
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Linear test statistic (continued)

Fisher defines as a measure of separation

— (7'0 - 7'1)2
J =
(@) >3+ X2
The numerator of J (5) is
(1o —11)* = P a;a;j(po — p1)i(po — p1);

= % aa;B; =d Ba
—”Zlaiaj ij—a a .
%,]=

The denominator is
20—1—2 :ijélaiaj(VoJer)ij:a Wa.

This o J (_,) a' Ba separation between classes
is gives a) = - = . —
alrwa separation within classes

8J — — —
Set —— =0 = ado W ' (jig— ji)
ﬁai
This defines Fisher’s linear discriminant function,

determined up to a scale factor for d.

R.A. Fisher, Ann. Fugen. 7 (1936) 179.

Neural networks (1)

Used in neurobiology, pattern recognition, financial forecasting ..

here, neural nets are just a type of test statistic.

Suppose we take t(f) to have the form

t(f) =S (CLO + 'il aixi)
1=
where s(u) = (1 + e_“)_l (the ‘activation function’)

This is the single-layer perceptron.

S() is monotic = equivalent to linear t(f)

X1
O t(x)
/I\
output node (could
Xn

be more than one)
/]\

input layer
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Neural networks (2) Neural networks (3)

Generalize this to the multilayer perceptron: Parameters usually determined by minimizing an error function,
€ = Eyf(t — 1)) + Eif(t — 1),

where £, t() are target values, e.g. 0 and 1 for logistic sigmoi

7

cf. least squares principle with Fisher discriminant.

In practice, replace expectation values by averages of training da

from Monte Carlo. (Adjusting parameters = network ‘learning’.)

hidden layer

In general this can be tricky; fortunately, programs like JETNET
m : : ( : )
The output is defined by t( ;E’) s ( ag + 3 a;h; ( j’)) : do it for you, e.g. with ‘error back-propogation’.
1=1

. : . For more information see
where the h; are functions of the nodes in the previous layer,

L. Lonnblad et al., Comput. Phys. Commun. 70 (1992) 167;
hz(f) =S (wio + %1 wijxj) . C. Peterson, et al., Comput. Phys. Commun. 81 (1994) 185;
= C.M. Bishop, Neural Networks for Pattern Recognition,
a;, Wi; = weights (connection strengths) Clarendon Press, Oxford (1995);
John Hertz, et al., Introduction to the Theory of Neural
Computation, Addison-Wesley, New York (1991);
B. Miiller et al., Neural Networks: an Introduction, 2nd editi
Springer, Berlin (1995).

Easy to generalize to arbitrary number of layers.

Feed-forward net: values of a node depend only on earlier layers,
usually only on previous layer — ‘network architecture’

More nodes — neural net gets closer to optimal t(a‘:’),

but more parameters need to be determined.
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Neural networks (4)

An example with WW event selection

(Garrido, Juste and Martinez, ALEPH 96-144)
The input variables:

Shaded histograms: WW (signal)

Open histograms: qg (background)

02 - 02 ¢ 02 ¢
015 £ 015 £ 015 £
o1 [ = ot |
005 [ 005 0.05 [
R 0 Bl o ELesfi1L,
0 05 1 o 05 1 0 05 1
10g(Yss) 10g(Yzs) LOG(V 54 sase)
0.2
0.15 [ 0.2

0.1 [~

o EF 1D o My L
[} 0.5 1 0 0.5 1

05 1
10g(IMgeof”) Sphericity Planarity
02 02 ¢ 0.2
0.15 ; 0.15 ;
0.1 ; 0.1 ;
0.05 ; 0.05 ;
o b i, e = = E
0 0.5 1 0 0.5 1 0 05 1
Log(Aplanarity) Thrust Min(Eje)

The neural network output:

0 01 02 03 04 05 06 07 08 09 1
Neuron Output

Choosing the input variables

Why not use all of the available input variables?
Fewer inputs — fewer parameters to be adjusted,

— parameters better determined for finite training data.

Some inputs may be highly correlated — drop all but one.

Some inputs may contain little or no discriminating power

between the hypotheses — drop them.

NN exploits higher moments of joint pdf f(Z|H),

but these may not be well modeled in training data.

— better to have simpler £(Z) where you can

‘understand what it’s doing’.

Recall that the purpose of the statistical test is usually
to select objects for further study; e.g. select WW events,

then measure their properties (e.g. particle multiplicity).

= avoid input variables that are correlated with the
properties of the selected objects which you want to study.

(Not always easy; correlations may not be well known.)
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Testing goodness-of-fit

Suppose hypothesis H predicts f(Z|H ) for some vector
of data Z = (:Ul, Cen ,:L‘n).
We observe a single point in Z-space: Tops.

What can we say about the validity of H in light of the data?

— Decide what part of Z-space represents less compatibility with

H than does the observed point Zops. (Not unique!)

Lj Z more compatible with H

A
/L the observed data, Zobs

4
X less com-

patible with H < (hyper)surface of equal com-

patibility between & and H

> Tj
Usually construct test statistic t(f) whose value reflects

level compatibility between T and H | e.g.

low ¢ — data more compatible with H;
high t — data less compatible with H .

Since pdf f(Z|H ) known, the pdf g(¢|H ) can be determined.

P-values

Express ‘goodness-of-fit” by giving the P-value (also called

observed significance level or confidence level):

P = probability to observe data & (or t(Z)) having equal
or lesser compatibility with H as Zops (or t(Zops))

This is not the ‘probability’ that H is true!

In classical statistics we never talk about P(H ).
In Bayesian statistics, treat H as a random variable;

use Bayes’ theorem (here symbolically) to obtain

P(t|H)x(H)
P = 1 b4 1) e(H) dH

where 7T(H ) is the prior probability for H ; normalize
by integrating (or summing) over all possible hypotheses.
For now stick with classical approach, i.e. our final answer

is the P-value.

N.B. No alternative hypotheses mentioned.

N.B. P-value is a random variable. Previously considered

significance level was a constant, specified before the test.

If H true, then (for continuous &) P is uniform in [0, 1].
If H not true, then pdf of P is (usually) peaked closer to 0.
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An example of a goodness-of-fit test

Probability to observe ny, heads in /N coin tosses is:

N!
— Ny 1 — N—ny
nh!(N — nh)! Pn ( ph)

f(nh7 Pn, N)

Hypothesis H : the coin is fair (p, = py = 0.9)
Take as goodness-of-fit statistic £ = \nh — %‘

We toss the coin N = 20 times and get 17 heads, i.e. tops = 7.
Region of t-space with equal or lesser compatibility:

t>7

P-value = P(ny, = 0,1,2,3,17,18,19 or 20) = 0.0026
So does this mean H is false? P-value does not answer this

question; it only gives the probability of obtaining such a level of

discrepancy (or higher) with [ as that observed.

J

P-value = probability of obtaining such a bizarre result ‘by chance’.

A philosophical objection (but not a real problem):

Could have defined experiment to end after at least 3
heads and tails; in ours this happened to occur after 20 tosses.

In such an experiment, the P-value is 0.00072!

Pragmatist’s solution: ‘repetition of experiment’ taken to mean

repetition with same number of trials per experiment.

The significance of an observed signal

Suppose we observe T events; these can consist of:

Ny, events from known processes (background)

Mg events from new processes (signal)

If ny,, ng are Poisson r.v.s with means 1, Vg, = N = Ng + Ny
is also Poisson, mean v = 1 + 4, (cf. SDA Chapter 10):

(VS + Vb)n e_(Vs‘H’b)

P(n;vs,m) = —

Suppose 1, = 0.5 and we observe nps = O.
Should we claim evidence for a new discovery?
Hypothesis H: vs = 0, i.e. only background present.

P-value = P(n > nops)

= % P(n;vs =0,1)

N=MNgbs

L _
n=0 n!

—1.7%x107*

(# P(Vs = O)!)
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The significance of a peak

Suppose in addition to counting events, we measure X for each.

10 T

N(x)

— data

8 [~ expected background < Histogram of observed and

1 expected data. Each bin

20

is a Poisson variable.

In the 2 bins with peak, 11 entries found, v, = 3.2,
Pn>111,=32,1,=0)=50x 1074

But. .. did we know where to look for the peak?
— give P(n > 11) in any 2 adjacent bins.
Is the observed width consistent with the expected o resolution?
— take & window several times expected resolution
How many bins x distributions have we looked at?
— look at a thousand of them, you'll find a 102 effect.
Did we adjust the cuts to ‘enhance’ the peak?
— freeze cuts, repeat analysis with new data.

How about the bins to the sides of the peak ... (too low!)
Should we publish??7?
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Pearson’s ¥ 2 test

Test statistic for comparing observed data 77 = (nl, R () N)

to predicted expectation values I/ = (1/1, Ce I/N):

If n; are independent Poisson r.v.s with means v/;,
and all ; not too small (rule of thumb: all v; > ),
then X2 will follow the chi-square pdf for /N dof.
The observed X2 then gives a P-value:

P=[5f(zN)dz
where f(z N ) is the chi-square pdf for [N degrees of freedom.

Recall for chi-square pdf, E[Z] =N,

— often give X2 / N as measure of level of agreement

Better to give x2, N separately ...
x2 =15, N =10 — P-value = 0.13
x> =150, N = 100 — P-value = 9.0 x 10

N
If nyot = X My is fixed, n; are binomial, p; = V; / Nitot,
1=

(ni - pintot)2
=1 Piltot

will follow chi-square for N — 1 dof (all p;nges >> 1).
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Example of XZ test

10 T

N(x)

— data
8 [ --- expected background 1 — This giVGS

*Hlmﬂ = 29.8 for N = 20 dof.

20

But. .. many bins have few (or no) entries,

— here X2 will not follow chi-square pdf.

Pearson’s X2 still usable as a test statistic, but

to compute P-value first get f(?) from Monte Carlo:
Generate 1; from Poisson, mean v;, 1 = 1, ..., IV,
compute XZ, record in histogram,

repeat experiment many times (here 109).

‘\7\ 01 T T T
é —— chi-square pdf for N =20
0.08 - --- pdffrom Monte Carlo
005 Using pdf from MC gives
P =0.11
0.04
002 Chi-square pdf would give
P =0.073

60
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Parameter estimation: general concepts

Consider 1 independent observations of an r.v. &,
— sample of size N

Equivalently, single observation of an m-dimensional vector:
= (z1,...,2,)

The x; are independent = joint pdf for the sample is
fsample(T) = f(21) f(z2) - - - f(2n)

Task: given a data sample, infer properties of f(a:)

— construct functions of the data to estimate various

properties of f (:I:) (mean, variance, ... )

Often, form of f(ac) hypothesized, value of parameter(s) unknow

— given form of f(ac, 9) and data sample, estimate 0

Statistic = function of the data

Estimator = statistic used to estimate some property of a pdf

notation: estimator for 6 is @ (hat means estimator)

Estimate = an observed value of an estimator (often: Hobs)

N.B. 6(Z) is a function of a (vector) random variable,

= it is itself a random variable, characterized by a pdf g(@)

with an expectation value (mean), variance, etc.
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Estimators Properties of estimators

How do we construct an estimator 9(:13)? Consider the pdf of 8 for a fixed sample size n:
—~ 0.6
c
. ‘e 05
There is no golden rule on how >

04

to construct an estimator. os L
0.2
0.1
Construct estimators to statisfy (in general conflicting) criteria. 0 - . L "
A )
As a start, require consistency: lim 6 = 6 A
n=00 N.B. ¢(6;6,n) depends on true (unknown!) parameter 6.
i.e. as size of sample increases, estimate converges to true value: We don’t know 6, just a single value éobs
, .
. A Properties of é 0,n):
forany € >0, lim P(|0 — 6| > ¢€) = 0. 9(6;6,m)
n—00 R
variance V[f] = 03. (04 = ‘statistical error’)

N.B. convergence in the sense of probability, i.e. no guaranty that A
bias b = KE[f] — 6  (‘systematic error’, depends on n

1 1

For many estimators we will have 05 o¢ —=, b oc —.

Vn’ n

any particular f,pg will be within any given distance of 6.

Sometimes consider mean squared error:
MSE = V[f] + b2

In general, there is a trade-off between bias and variance,

— often require minimum variance among estimators with 0 bia
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Estimator for the mean (expectation value)

Consider n measurements of r.v. , T1,..., T, , we want an

estimator for g = F[z]. Try arithmetic mean of the x;:

X l n
n =1

(the sample mean)
If V[x] finite, & is a consistent estimator for f, i.e.

, 1 n
for any € > 0, h_)m P(‘ZCL’Z’—/,LZE)ZO.
n=r00 ni=1

This is the Weak Law of Large Numbers. Compute expectation value:

1 n 1 n
n =1 [.’B] 'n,zglu K

1 n
EW:EP 2
n =1

— T is an unbiased estimator for pt . Compute variance:

Vi) = ) - (B’ = B[ £ ) (0 £ 2] -2
= %w%l Elziz;) — p*
= Ll 4 ) g = T

where o

Elzizi| = u? fori # § and E[J?ZZ] =p?+o?.

is the variance of , and we used

Estimator for the variance

Suppose mean {4 and variance V' [x] = o2 both unknown.

Estimate 02 with the sample variance:

1 n
2 _ N2 5 2
° ’n—ligl(xz 7) n—l(x z")

Factor of 1/(n — 1) included so that F[s?] = ¢ (i.e. no bias
If = E[x] is known a priori,

1 n _—
S = Fm—p?=at

2

is an unbiased estimator for o2,

Computing the variance of s? (long calculation!) gives

1 —3
2 _ . 2
V[S]—n(m n_luz)

where fi3, is kth central moment (c.g. o = 0°2).

The ptf, can be estimated using

1 n ok
n—1 51(% - 7)

mr =
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Estimator for covariance and correlation coefficient

To estimate the covariance %y = COV[:I:, y], use

_ 1 n . . n . o
ny—n_lgl(wi—w)(yi—y)—n_l( y—TYy

which is unbiased.

For the correlation coefficient p = Y , use
Vay _ iei (@i — 7)(yi — )

1/2
seSy (51 (x5 — 7)% - 5y (g — 9)2) "

S
V(@ —2%) (P — )

T has a bias which goes to zero as m — 00.
In general, pdf g(?"; P, n) is complicated; for Gaussian x, v,

Elr]=p— p(lT;pQ) + 0(n™?

= (1P + O™

Vir]

(cf. R.J. Muirhead, Aspects of Multivariate Statistical Theory,

Wiley, New York, 1982.)

Lecture 2 summary

e Statistical tests: test whether data stand in agreement with
predicted probabilities, i.e., hypotheses. Critical region, significan
level, power, (related to efficiency, purity).

¢ Fisher discriminants, neural networks, etc.: reduce data
vector I to a single (or few) component function t(f) Compact
data while retaining ability to discriminate between hypotheses.

e Goodness-of-fit tests: quantify level of agreement between d:
and hypothesis with P-value.

e The significance of a signal: often give P-value of hypothes
that only background present.

e Introduction to parameter estimation: try to minimize b
variance. Simple estimators for mean, variance, covariance.
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