BDSIM User’s Manual v0.1

I. Agapov, G. Blair, J. Carter
last updated February 22, 2006

Table of Contents

BDSIM v0.1 User’s Manual.................... 1
1 About BDSIM...............ciiiiiiinn... 1
2 Obtaining, Installing and Running 1
3 Lattice description......................... 2
3.1 Program structure........... 2
3.2 Arithmetical expressionsiiiiiiii ... 2
3.3 Physical elements and Entities 3
3.3.1 Coordinate systemcciiiiiiiiiii 3

3.3.2 Unibs ..o 4

3.3.3 marker. 4

3.3.4 drift ... 4

3.3.5 rhend. 5

3.3.6 sbend........... 5

3.3.7 quadrupole....... ... 5

3.3.8 sextupole. 6

3.3.9 octupole 6
3.3.10 multipole 6

3.3 01 1ol o 6
3.3.12 €COl. o 7
3.3.13 solenoid....... ... 7
3.3.14 hkicker and vkicker 7
3.3.15 transform3d......... 7
3.3.16 element 7

3.3 07 e . o 8
3318 LaSeT vt 9
3.3.19 Element number............ 9
3.3.20 Element attributes................. ... 9
3.3.21 Material table 9

3.4 Run control and output............ 9
341 OpLIOM. ... 10

3.4.2 DA . ..ottt 10

3.4.3 sample....... 10

SAd WS . 10

4 Visualizationc.cviiiiiieieennnn. 11

5 Physicsciiiiiiiiiii i 12
5.1 physicsList option oo 12
5.2 Transportation...............oiiiii i 13

521 drift ..o 13
5.2.2 sbendandrbend............. 13
5.2.3 quadrupole....... ... 13
5.2.4 otherelements............ i 14
5.3 Electromagnetic Physics L 14
5.4 Hadronic Physics......... ... 14
5.5 Tracking accuracyiiiiiiniiiii i 14

6 Output Analysis................ ..., 15

7 Implementation Notes 16
7.1 Architectureo 16
7.2 Features to be added in next releases 17

Appendix A Geometry description formats .. 17

Al gmadformat.......... 18
A2 MORKA . ..ot 18
A.2.1 Describing the geometryciiiiii... 19
A.2.1.1 Common Table Parameters........................ 20

A2.1.2 "Box’ Solid Types.....covoiiineii i 23

A2.1.3 ’Cone’ Solid Types.ovuueeiii .. 23

A21.4 ’Torus’ Solid Typesccovueieeeeeiiiiiaa... 24

A.2.1.5 ’Polycone’ Solid Typescooiiiiiiii ... 25

A.2.2 Creating a geometry list 25

A.2.3 Defining a Mokka element in the gmad file 26

A3 gdml. ..o 26
Appendix B Field description formats....... 26
Appendix C Bunch description formats...... 26

8 Referencesvviiiieieeieeenennnn. 27

il

Chapter 2: Obtaining, Installing and Running 1

BDSIM v0.1 User’s Manual

This file is updated automatically from ‘manual.texi’, which was last updated on February
22, 2006.

Copyright (©) 2004-2006 Royal Holloway University London.

1 About BDSIM

BDSIM is a Geant4 extension toolkit for simulation of particle transport in accelerator
beamlines. It provides a collection of classes representing typical accelerator components,
a collection of physics processes for fast tracking, procedures of “on the fly” geometry
construction and interfacing to ROOT analysis.

2 Obtaining, Installing and Running

BDSIM can be downloaded from http://flc.pp.rhul.ac.uk/bdsim.html. This site also
contains some information on planned releases and other issues. Alternatively, a develop-
ment version is accessible under http://cvs.pp.rhul.ac.uk. Download the tarball and
extract the source code. Make sure Geant4 is installed and appropriate environment vari-
ables defined. Then go through the configuration procedure by running the ./configure
script.

./configure

It will create a Makefile from template defined in Makefile.in. Then start the compilation
by typing

. /make

If the compilation is successful bdsim executable should be created in the current di-
rectory of in the $G4WORKDIR directory in case this variable is defined. Next, set up the
LD_LIBRARY _PATH variable to point to the ./parser directory and to the directory where
libbdsim.so is.

BDSIM is invoked by the command bdsim ‘options’

where the options are

--file=<filename> : specify the lattice file
-—output=<fmt> : output format (rootlascii), default ascii
--outfile=<file> : output file name. Will be appended with _N
where N = 0, 1, 2, 3... etc.
--vis_mac=<file> : visualization macro script, default vis.mac
--help : display this message
--verbose : display general parameters before run
--verbose_event : display information for every event
--verbose_step=N : display tracking information after each step
--verbose_event_num : display tracking information for event number N
--batch : batch mode - no graphics

A shell script (bdsimrun) is also provided which handles batch job support and opther
features.

Chapter 3: Lattice description 2

To run bdsim one first has to define the beamline geometry in a file which is then passes
to bdsim via the --file command line option, for example

bdsim --file=line.gmad --output=root --batch

The next section describes how to do it in more detail.

3 Lattice description

The beamline, beam properties and physics processes are specified in the input file written
in the GMAD language which is a variation of MAD language extended to handle sophisti-
cated geometry and parameters relevant to radiation transport. GMAD is described in this
section. Examples of imput files can be found in the BDSIM distribution in the examples
directory.

3.1 Program structure

A GMAD program consists of a sequence of element definitions and control commands. For
example, tracking a 1 GeV electron beam through a FODO cell will require a file like this:

qf: quadrupole, 1=0.5%m, k1=0.1;

qd: quadrupole, 1=0.5*m, ki1=-0.1;

d: drift, 1=0.5%*m;

fodo : line=(qf,d,qd,d);
use,period=fodo;

beam, particle=electron,energy=1xGeV;

Generally, the user has to define a sequence of elements (with drift, quadrupole,line
etc.), then select the beamline with the use command and specify beam parameters and
other options with beam and option commands. The sample command controls what sort
of information will be recorded during the execution.

The parser is case sensitive. However, for convenience of porting lattice descriptions from
MAD the keywords can be both lower and upper case. The GMAD language is discussed
in more detail in this section.

3.2 Arithmetical expressions

Throughout the program a standard set of arithmetical expressions is available. Every
expression is ended with a semicolumn. For example

x=1;
y=2.5-x;
z=sin(x) + log(y) - 8eb;

The variables then could be used along with numerical constants. The if-else clause
is also available, for example

Chapter 3: Lattice description 3

z=1;

if (z<2)

y=2.5-x
else

y=15;

3.3 Physical elements and Entities

GMAD implements almost all the standard MAD elements, but also allows to define ar-
bitrary geometric entities and magnetic field configurations. The geometry description
capabilities are extended by using “drivers” to other geometry description formats which
makes interfacing and standardization easier. The syntax of a physical element declaration
is

element_name : element_type, attributes;
for example
qd : quadrupole, 1 =0.1%0.1, k1 =0.01;
element_type can be of basic type or inherited. Allowed basic types are
e marker
o drift
e sbend
e rbend
e quadrupole
e sextupole
e octupole
e multipole
o vkicker
e hkicker
e rcol
e ecol
o laser
e transform3d
e clement
All elements except element are by default modeled by an iron box (given by the boxSize
option) with the vacuum beampipe (defined by beampipeRadius option). An already de-

fined element can be used as a new element type. The child element will have the attributes
of the .

q:quadrupole, 1=1*m, k1=0.1;
qq:q,k1=0.2;

3.3.1 Coordinate system

Chapter 3: Lattice description 4

3.3.2 Units
The usual accelerator coordinate system is assumed (see ref)
In GMAD the SI units are used.

Length [m] (metres)

angle [rad] (radians)

quadrupole coefficient [m**(-2)]
multipole coefficient 2n poles [m**(-n)]
electric voltage [MV] (Megavolts)
electric field strength [MV /m)]

particle energy [GeV]

particle mass [GeV/c**2]

particle momentum [GeV/c]

beam current [A] (Amperes)

particle charge [e] (elementary charges)
emittances [pi m mrad]

There are some predefined numerical values
pi 3.14159265358979

me electron rest mass
mp proton rest mass
GeV 1

eV 1°-9

KeV 10°-6

MeV 107°-3

TeV 1073

m 1

mm 1°-3

cm 1°-2

rad 1

mrad 1°-3

clight 2.99792458e+8

for example, instead of one can write either 100 or 0.1 * KeV when energy constants are
concerned.

3.3.3 marker

marker has no effect but allows one to identify a position in the beam line (say, where a
sampler will be placed). It has no attributes.

Example:

ml : marker;

3.3.4 drift
drift defines a straight drift space. Attributes:
e 1 - length [m] (default 0)

e aper - aperture [m] (default same as beampipe radius)

Chapter 3: Lattice description)

Example :

d13 : drift, 1=0.5%m;

3.3.5 rbend

rbend defines a rectangulat bending magnet. Attributes:
1 - length [m] (default 0)

e angle - bending angle [rad] (default 0)

e B - magnetic field [T]

e aper - aperture [m] (default same as beampipe radius)

when B is set, this defines a magnet with appropriate field strength and angle is not
taken into account. Otherwise, B that corresponds to bending angle angle for a particle in
use (defined by the beam command, with appropriate energy and rest mass) is calculated
and used in the simulations.

Example :

rbl : rbend, 1=0.5*m, angle = 0.01;

3.3.6 sbend

sbend defines a sector bending magnet. Attributes:
1 - length [m] (default 0)

angle - bending angle [rad] (default 0)

e B - magnetic field [T]

e aper - aperture [m] (default same as beampipe radius)

Example :
The meaning of B and angle is the same as for rbend.

rbl : rbend, 1=0.5*m, angle = 0.01;

3.3.7 quadrupole
quadrupole defines a quadrupole. Attributes:
1 - length [m] (default 0)

e k1 - normal quadrupole coefficient k1 = (1/B rho) (dBy / dx) [m~-2] Positive k1 means
horisontal focusing of positively charged particles. (default 0)

e ksl - skew quadrupole coefficient ksl = (1/B rho) (dBy / dx) [m~-2] where (x,y) is
now a coordinate system rotated by 45 degrees around s with respect to the normal
one.(default 0).

e tilt [rad] - roll angle about the longitudinal axis, clockwise.

e aper - aperture [m] (default same as beampipe radius)

Example :

qf : quadrupole, 1=0.5*m , k1 = 0.5, tilt = 0.01;

Chapter 3: Lattice description 6

3.3.8 sextupole

sextupole defines a sextupole. Attributes:

1 - length [m] (default 0)

e k2 - normal sextupole coefficient k2 = (1/B rho) (d°2 By / dx~2) [m~-3]

e ks2 - skew sextupole coefficient ks2 = (1/B rho) (d"2 By / dx~2) [m~-3] where (x,y)
is now a coordinate system rotated by 30 degrees around s with respect to the normal
one.(default 0).

e tilt [rad] - roll angle about the longitudinal axis, clockwise.

e aper - aperture [m] (default same as beampipe radius)

Example :

sf : sextupole, 1=0.5%m , k2=0.5, tilt = 0.01;

3.3.9 octupole
octupole defines an octupole. Attributes:
e 1 - length [m] (default 0)

e k2 - normal sextupole coefficient k3 = (1/B rho) (d~3 By / dx~3) [m~-3] Positive k1
means horisontal focusing of positively charged particles. (default 0)

e ks3 - skew sextupole coefficient ks3 = (1/B rho) (d"3 By / dx~3) [m~-3] where (x,y)
is now a coordinate system rotated by 30 degrees around s with respect to the normal
one.(default 0).

e tilt [rad] - roll angle about the longitudinal axis, clockwise.

Example :

sf : octupole, 1=0.5%m , k3 =0.5, tilt = 0.01;

3.3.10 multipole

will be implemented starting from v0.2

3.3.11 rcol
rcol defines a rectangular collimator
Attributes:

1 - length [m] (default 0)

e xsize - horizontal aperture [m]

e xsize - vertical aperture [m]

e material - material

Example :
coll : rcol,1=0.4*m, xsize=2*mm, ysize=1*mm, material="W"

The longitudinal collimator structure is not taken into account. To do this the user has
to describe the collimator with the generic type element

Chapter 3: Lattice description 7

3.3.12 ecol
rcol defines an elliptical collimator
Attributes:

1 - length [m] (default 0)

e xsize - horizontal aperture [m]

e xsize - vertical aperture [m]

material - material

Example :
col2 : ecol,1=0.4*m, xsize=2*mm, ysize=1*mm, material="W"

Here the longitudinal collimator structure is also not taken into account.

3.3.13 solenoid

will be implemented starting from v0.2

3.3.14 hkicker and vkicker

hkicker and vkicker are equivalens to a rbend and an rbend rotated by 90 degrees re-
spectively.

3.3.15 transform3d
An arbitrary 3-dimensional transformation of the coordinate system is done by placing a
transform3d element in the beamline. The syntax is
e x = <x offset>
o y =<y offset>
e z = <z offset>
e phi = <phi Euler angle>
e theta = <theta Euler angle>
e psi = <psi Euler angle>
Example:
rot : transform3d, psi=pi/2

3.3.16 element
All the elements are in principle examples of a general type element which can represent
an arbitrary geometric entity with arbitrary B field maps®. Its attributes are

e geometry = <geometry_description>

e bmap = <bmap_description>

Descriptions are of the form
format:filename

where filename is the path to the file with the geometry description and format defines
the geometry description format. The possible formats are given in Appendix A [Geometry],
page 17.

L' E fields will be implemented starting from release v0.2

Chapter 3: Lattice description

Example :
qq : element, geometry = plain:qq.geom, bmap = plain:qq.bmap;

<bmap> and <emap> are definitions of E and B field maps according to (field maps).

Figure 3.1: An example a cryomodule described as element

3.3.17 line

elements are grouped into sequences by the 1ine command.
line_name : line=(element_1,element_2,...);
where element_n can be any element or another line.
Example :

A sequence of FODO cells can be defines as

qf: quadrupole, 1=0.5, k1=0.1;

qd: quadrupole, 1=0.5, k1=-0.1;

d: drift, 1=0.5;

fodo : line=(qf,d,qd,d);

section : line{fodo,fodo,fodo};

beamline : line{section,section,section};

Chapter 3: Lattice description 9

3.3.18 laser
laser defines a drift section with a laser beam inside.

<laser_name>: laser, position = {<x>,<y>,<z>},direction={ <dx>, <dy>, <dz>
} wavelen=<val>, spotsize=<val>, intensity=<val>;

Attributes
e 1 - length of the drift section

e position - position of an arbitrary point on the beam axis relative to the center of the
drift section

e direction - vector pointing in the beam direction
e wavelen - laser wave length [m]

e spotsize - spot size (sigma)[m)]

intensity -[W]

the laser is considered to be the intersection of the laser beaam with the volume of the
drift section.

3.3.19 Element number

when several elements with the same name are present in the beamline they can be accessesd
by their number in the sequence. In the next example the sampler is put before the second
drift

bl:1line=(d,d,d);
sample,rang=d[2] ;

3.3.20 Element attributes

Elements attributes such as length, multipole coefficiens etc. can be accessed by putting
square brackets after the element name, f.e.

x=d[1];

3.3.21 Material table
There is a set of predefined materials for use in elements such as collimators, f.e.
“Al” “W” “Iron” “Copper” “Graphite” etc

Note that each geometry driver such as Mokka has its own set of materials

3.4 Run control and output

The execution control is performed in the GMAD input file through option and sample
commands. How the results are recorded is controlledby the sample command. When the
visualization is turned on, it is also controlled through Geant4 command prompt

Chapter 4: Visualization 10

3.4.1 option
Most of the options in bdsim are set up by the command
option, <name>=value,...;

The following options influence the geometry

beampipeRadius - default beampipe radius [m]
beampipeThickness - default beampipe thickness [m]
tunnelRadius - tunnel Radius

boxSize - default accelerator component size

The following options influence the tracking

deltaChord -
deltalntersection
chordStepMinimum -
lengthSafety -
thresholdCutCharged -
thresholdCutPhotons -
randomSeed -
stopTracks -
physicsList -

For a more detailed description of how the option influence the tracking see Chapter 5
[Physics], page 12
3.4.2 beam
The parameters related to the beam are given by the beam command

beam, <name>=value,...;

beam, particle=electron,energy=100, momentum=1,1,1;

3.4.3 sample
To record the tracking results one uses the sample command:
sample, range=<range>,particle=<particle>,values={valuel,value2,...}
Example :
sample, range=d;
csample, range=d;
3.4.4 use
use command selects the beam line for study

use, period=,range=

Chapter 4: Visualization 11

4 Visualization

When BDSIM is invoked in interactive mode, the run is controlled by the Geant4 shell. A
visualization macro should be then provided. A simple visualization macro is listed below.

Invoke the OGLSX driver
Create a scene handler and a viewer for the OGLSX driver
/vis/open OGLIX

Create an empty scene
/vis/scene/create

Add detector geometry to the current scene
/vis/scene/add/volume

Attach the current scene handler
to the current scene (omittable)
/vis/sceneHandler/attach

Add trajectories to the current scene

Note: This command is not necessary in exampleNO3,
since the C++ method DrawTrajectory() is

described in the event action.

/vis/viewer/set/viewpointThetaPhi 90 90
/vis/drawVolume
#/vis/scene/add/trajectories

/tracking/storeTrajectory O
#/vis/viewer/zoom
/tracking/storeTrajectory 1

#

for BDS:

#/vis/viewer/zoom 300
#/vis/viewer/set/viewpointThetaPhi 3 45

By default the macro is read from the file named vis.mac. The name of the file with
the macro can also be passed via the vis_mac switch.

bdsim --file=line.gmad --vis_mac=my_macro.mac

In interactive mode all the Geant4 interactive comamnds are available. For instance, to
fire 100 particles type

/run/beamOn 100 runs the simulation with 100 particles
and to end the session type
exit

To display help menu

Chapter 5: Physics

/help;

For more details see [Geant], page 27.

& Applications Places Desktop @%@@@@ _J GEr S’G:)
w p__\ manual.texi - emacs®@ dhcp245.pp.rhul.ac.uk
[~} viewer-0 (OpenGLStoredX) >§'

DSIM/docs

oc

ex

—— ux
v iliaq o
g ! | og
Eile Edit View Terminal Tabs Help df
WARNING: objects with visibility flag set to "false" will not be dr/*| e
awn! vi
"/vis/viewer/set/culling global false" to Draw such objects.
Also see other "/vis/viewer/set" commands.
Idle> /vis/viewer/pan 0 -1 5 ¥
Idle> /vis/viewer/pan 0 -1 ‘ |
Tdle> =
— = , — Go | =
E Find: |echo @ Find Next @ Find Previous =|Highlight [] Match case
Done

@=] ilia@ dhcp245:~/ |® BDSIM/parser -... !H \Iia@dﬁfﬂ#ﬁ'n,’;l O gmad.h - emacs.. =] manual.texi - em l_Ij_wewer-D (OpenG |[&L I |

Figure 4.1: An screenshot with an example BDSIM visualization

5 Physics

BDSIM can exploit all physics processes that come with Geant4. In addition fast tracking
inside multipole magnets is provided. More detailed description of the physics is given
below.

5.1 physicsList option

Depending on for what sort of problem BDSIM is used, different sorts of physics processes
should be turned on. This processes are groupes into so called “physics lists”. The physics
list is specified by the ‘physicsList option in the input file, f.e.

option, physicsList="em_standard";

Several predefined physics lists are available

Chapter 5: Physics

"standard" - transportation of primary particles only

"em_standard" - transporation of primary particles, ionization,
bremsstrahlung, multiple scattering

"em_low" - the same but using low energy electromagnetic models]]

"sr" - electromagnetic physics and synchrotron radiation generation]]

"lw" - list for laser wire simulation - standard electromagnetic|]

physics and "laser wire" physics which is Compton Scattering]]
with total cross-section renormalized to 1.

standard electromagnetic, fission, neutron capture, neutron]]
and proton elastic and inelastic scattering.

"standard_hadronic"

By default the standard physics List is used

5.2 Transportation

The transportation follows the scheme: the step length is selected which is defined either
by the distance of the particle to the boundary of the “logical volume” it is currently in
(which could be, f.e. field boundary, material boundary or boundary between two adjacent
elements) or by the mean free path of the activated processes. Then the particle is pushed to
the new position and secondaries are generated if necessary. Fach volume has an associated
transporatation algorithm.

5.2.1 drift

The particles are translated along straight lines inside drift spaces.

X 1h0O x0
x’ = 0100 X x0°’
y 001h yO
y’ 0001 y0’

If the trajectory reaches the boundary of the beam pipe then multiple scattering and
other activated atomic and nuclear processes basically determines the random transport.

5.2.2 sbend and rbend

5.2.3 quadrupole

Similar procedure applies to quadrupoles with transport matrices inside the beampipe

X x0
x’ = M X x0’
y yO
y’ yo’
cos(h sqrt(k)) q/sqrt(k) sin(h sqrt(k)) 0 0
M_f = -sqrt(k)sin(h sqrt(k)) cos(h sqrt(k)) 0 O

0 0 ch(h sqrt(k)) 1/sqrt(k) sh(h sqrt(k))

0 0 sqrt(k) sh(h sqrt(k)) ch(h sqrt(k))

0 0 ch(h sqrt(k)) 1/sqrt(k) sh(h sqrt(k))
M_d = 0 0 sqrt(k) sh(h sqrt(k)) ch(h sqrt(k))

cos(h sqrt(k)) q/sqrt(k) sin(h sqrt(k)) 0 0

Chapter 5: Physics

-sqrt(k)sin(h sqrt(k)) cos(h sqrt(k)) 0 0

Y
S,
ey

-0.05

=)
LI LN L L L L LB B

-0.1

. _0-05\ L \0\ L \0.05\ L \0.1\

.
2
=

<
~

-0.2

-0.4

-0.6

-0.8

-

TT T[T T T[T T T[T T T[T TT [T TT [TTT
[y

o e b e b b b e e L
g2 -1500 -1000 -500 0 500 1000 1500

Figure 5.1: An example of distribution tracked through a beamline

5.2.4 other elements

In all other elements Runge-Kutta

5.3 Electromagnetic Physics
Synchrotron Radiation

Laser wire (Compton Scattering)
5.4 Hadronic Physics

5.5 Tracking accuracy
The following options influence the tracking accuracy

chordStepMinimum minimum

Chapter 6: Output Analysis 15

deltalntersection determines the precision of locating the point of intersection of the
particle trajectory with the boundary and hence the error in the path length in each volume.
This may influence the results especially in the case when EM fields are present.

deltaChord
lengthSafety all volumes will have an additional overlap of this length
thresholdCutCharged energy below which charged particles are not tracked.

thresholdCutPhotons energy below which photons are not tracked.

6 Output Analysis

During the execution the following things are recorded:

Energy deposition along the beamline
Sampler hits

If the output format is ASCII i.e. if BDSIM was invoked with the ——output=ascii option,
then the output file “output.txt” containing the hits will be written which has rows like

#hits (PDGtype plGeV/c],x[micron],y[micron],z[m],x’ [microrad],y’ [microrad]):|}
11 250 -4.72907 -5.86656 5.00001e-06 0 O
11 250 -8.17576 -4.99729 796.001 0.320334 -0.126792

if ROOT output is used then the root files output_0.root, output_1.root etc. will be
created with each file containing the number of events given by nperfile option.

Chapter 7: Implementation Notes

& Applications Places Deskiop EXSEBE® &) oo ST Mon Feb 27, 11:01 PM) @
ROOT Object SR
Eile ¥iew Options Help
3 sampler_phys_1 = <}J| & EI Option 4
All Folders Cantents of "YROOT Files/output_0rootsampler_phys_1"
[Croot BRE BED Bere Beewt BReesnt B B0 Ber Pewd B B0 Bee B0 e Sk
[C1PROOF Sessions
Dmomemia}’developmemﬂBDSIMﬂ
[C1ROOT Files
=
B .Ejoutpul_o.ruot ﬂ:| S |3@®
_| Eile Edit Bun Qptions Help

Command | ‘ Option [‘ Histagram [htemp
File Edit View Options Inspect Classes Help || = -[Cuivent Foider [Currerd Tree - sampler_phys 1
xpﬂ:xnmﬂ (CTreetist Xz~ B -empte- Eyvp
< 2 - | T AR eo-enpty- SRE

Ziempty- B -emply- B2
oL -empty- B w0 By welght
& seanbox Spd Yt

R E-empty- R0 ey

e -empty- Fyvnd
B -ampty- gy EO
EO-empty- §h 20
Eo-empty- B
Er-empti- e
Ey-empty- §hy

o ([R] 8 [0%
i IList oList S N 1 ==

B |
| 30 Ooiects | Y
|il ‘ 8 jlia@localhost:~/deve. ..] [BDSMaterials.cc - e...] & ROOT Object Brawser l O TreeViewer l & ca | %D[J]]:lﬂ

Figure 6.1: An example ROOT Analysis

The file contains the energy loss histogram and a tree for every sampler in the line with
self-explanatory branch names.

7 Implementation Notes

7.1 Architecture

In this section the architecture of BDSIM is briefly described for someone wishing to use it
as a class library.

Appendix A: Geometry description formats

Mokka

Geometry Drivers GMAD parser

GDML

I
Element Classes Physics Processes
eBremsstrahlung
BDSQuadrupole
Transportation
BDSCollimator

Steppe ‘

"Steppers"

Figure 7.1: An example a cryomodule described as element
- BDSMultipole
- gmad

- Physics list - adding own physics processes

7.2 Features to be added in next releases
will add hadronic stuff (already available, but...)

gas
Appendix A Geometry description formats

The element with user-defined physical geometry is defined by
<element_name> : element, geometry=format:filename, attributes
for example,

colli : element, geometry="gmad:colli.geo"

Appendix A: Geometry description formats

A.1 gmad format

gmad is a simple format used as G4geometry wrapper. It can be used for specifying more
or less simple geometries like collimators. Available shapes are:

Box {

x0=x_origin,
yO=y_origin,
z0=z_origin,

X=xsize,

y=ysize,

z=zsize,
material=MaterialName,
temperature=T

}

Tubs {

x0=x_origin,
yO=y_origin,
z0=z_origin,

X=xsize,

y=ysize,

z=zsize,
material=MaterialName,
temperature=T

}

For example

Cons {

x0=0,

y0=0,

z0=0,

rminl=5
rmax1=500
rmin2=5
rmax2=500
z=250
material="Graphite",
phi0=0,
dphi=360,
temperature=1

}

A file can contain several objects which will be placed consequently into the volume, A
user has to make sure that there is no overlap between them.

Appendix A: Geometry description formats

A.2 mokka

As well as using the gmad format to describe user-defined physical geometry it is also
possible to use a Mokka style format. This format is currently in the form of a dumped
MySQL database format - although future versions of BDSIM will also support online
querying of MySQL databases. Note that throughout any of the Mokka files, a # may be
used to represent a commented line. There are three key stages, which are detailed in the
following sections, that are required to setting up the Mokka geometry:

e Describing the geometry

e Creating a geometry list

e Defining a Mokka Element to load geometry descriptions from a list

A.2.1 Describing the geometry

An object must be described by creating a MySQL file containing commands that would
typically be used for uploading/creating a database and a corresponding new table into a
MySQL database. BDSIM supports only a few such commands - specifically the CREATE
TABLE and INSERT INTO commands. When writing a table to describe a solid there are
some parameters that are common to all solid types (such as NAME and MATERIAL) and some
that are more specific (such as those relating to radii for cone objects). A full list of the
standard and specific table parameters, as well as some basic examples, are given below
with each solid type. All files containing geometry descriptions must have the following
database creation commands at the top of the file:

DROP DATABASE IF EXISTS DATABASE_NAME;
CREATE DATABASE DATABASE_NAME;
USE DATABASE_NAME;

A table must be created to allow for the insertion of the geometry descriptions. A table
is created using the following, MySQL compliant, commands:

CREATE TABLE TABLE-NAME_GEOMETRY-TYPE (

TABLE-PARAMETER VARIABLE-TYPE,
TABLE-PARAMETER VARIABLE-TYPE,
TABLE-PARAMETER VARIABLE-TYPE
);

Once a table has been created values must be entered into it in order to define the solids
and position them. The insertion command must appear after the table creation and must
the MySQL compliant table insertion command:

INSERT INTO TABLE-NAME_GEOMETRY-TYPE VALUES (valuel, value2, "char-value",

D

The values must be inserted in the same order as their corresponding parameter types
are described in the table creation. Note that ALL length types must be specified in mm
and that ALL angles must be in radians.

Appendix A: Geometry description formats

An example of two simple boxes with no visual attributes set is shown below. The first
box is a simple vacuum cube whilst the second is an iron box with length_x = 10mm,
length_y = 150mm, length_z = 50mm, positioned at x=1m, y=0, z=0.5m and with zero
rotation.

CREATE TABLE mytable_BOX (

NAME VARCHAR(32),

MATERIAL VARCHAR(32),

LENGTHX DOUBLE(10,3),
LENGTHY DOUBLE(10,3),
LENGTHZ DOUBLE(10,3),
POSX DOUBLE(10,3),
POSY DOUBLE(10,3),
POSZ DOUBLE(10,3),
ROTPSI DOUBLE(10,3),
ROTTHETA DOUBLE(10,3),
ROTPHI DOUBLE(10,3)

);

INSERT INTO mytable_BOX VALUES("a_box","vacuum", 50.0, 50.0, 50.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0);

INSERT INTO mytable_BOX VALUES("another_box","iron", 10.0, 150.0, 50.0,
1000.0, 0.0, 500.0, 0.0, 0.0, 0.0);

Further examples of the Mokka geometry implementation can be found in the exam-
ples/Mokka/General directory. See the common table parameters and solid type sections
below for more information on the table parameters available for use.

A.2.1.1 Common Table Parameters

The following is a list of table parameters that are common to all solid types either as an
optional or mandatory parameter:

e NAME
Variable type: VARCHAR(32)

Appendix A: Geometry description formats

This is an optional parameter. If supplied, then the Geant4 LogicalVolume associated
with the solid will be labelled with this name. The default is set to be the table’s name
plus an automatically assigned volume number.

e MATERIAL
Variable type: VARCHAR (32)
This is an optional parameter. If supplied, then the volume will be created with this
material type - note that the material must be given as a character string inside double
quotation marks(“). The default material is set as Vacuum.

e PARENTNAME
Variable type: VARCHAR(32)
This is an optional parameter. If supplied, then the volume will be placed as a daughter
volume to the object with ID equal to PARENTNAME. The default parent is set to be
the Component Volume. Note that if PARENTID is set to the Component Volume then
POSZ will be defined with respect to the start of the object. Else POSZ will be defined
with respect to the center of the parent object.

e ALIGNIN
Variable type: INTEGER(11)
This is an optional parameter. If set to 1 then the placement of components will be
rotated and translated such that the incoming beamline will pass through the z-axis of
this object. The default is set to 0.

e ALIGNOUT
Variable type: INTEGER(11)
This is an optional parameter. If set to 1 then the placement of the next beamline
component will be rotated and translated such that the outgoing beamline will pass
through the z-axis of this object. The default is set to 0.

e SETSENSITIVE
Variable type: INTEGER(11)
This is an optional parameter. If set to 1 then the object will be set up to register energy
depositions made within it and to also record the z-position at which this deposition
occurs. This information will be saved in the ELoss Histogram if using ROOT output.
The default is set to 0.

e MAGTYPE
Variable type: VARCHAR (32)
This is an optional parameter. If supplied, then the object will be set up to produce
the appropriate magnetic field using the supplied K1 or K2 table parameter values .
Two magnet types are available - “QUAD” and “SEXT”. The default is set to no
magnet type. Note that if MAGTYPE is set to a value whilst K1 or K2 are not set, then
no magnetic field will be implemented.

e K1
Variable type: DOUBLE(10,3)
This is an optional parameter. If set to a value other than zero, in conjuction with
MAGTYPE set to “QUAD” then a quadrupole field with this K1 value will be set up within
the object. Default it set to zero.

Appendix A: Geometry description formats

o K2
Variable type: DOUBLE(10,3)

This is an optional parameter. If set to a value other than zero, in conjuction with
MAGTYPE set to “SEXT” then a sextupole field with this K2 value will be set up within
the object. Default it set to zero.

e POSX
Variable type: DOUBLE(10,3)

This is a required parameter. This is the X-position in mm used to place the object
in the component volume. It is defined with respect to the center of the component
volume and with respect to the component volume’s rotation.

e POSY
Variable type: DOUBLE(10,3)

This is a required parameter. This is the Y-position in mm used to place the object
in the component volume. It is defined with respect to the center of the component
volume and with respect to the component volume’s rotation.

e P0OSZ
Variable type: DOUBLE(10,3)

This is a required parameter. This is the Z-position in mm used to place the object in
the component volume. It is defined with respect to the start of the component volume
and with respect to the component volume’s rotation.

e ROTPSI
Variable type: DOUBLE(10,3)

This is an optional parameter. This is the psi Euler angle in radians used to rotate the
obejct before it is placed. The default is set to zero.

e ROTTHETA
Variable type: DOUBLE(10,3)

This is an optional parameter. This is the theta Euler angle in radians used to rotate
the obejct before it is placed. The default is set to zero.

e ROTPHI
Variable type: DOUBLE(10,3)

This is an optional parameter. This is the phi Euler angle in radians used to rotate
the obejct before it is placed. The default is set to zero.

e RED
Variable type: DOUBLE(10,3)

This is an optional parameter. This is the red component of the RGB colour assigned
to the object and should be a value between 0 and 1. The default is set to zero.

e BLUE
Variable type: DOUBLE(10,3)

This is an optional parameter. This is the blue component of the RGB colour assigned
to the object and should be a value between 0 and 1. The default is set to zero.

Appendix A: Geometry description formats

o GREEN
Variable type: DOUBLE(10,3)

This is an optional parameter. This is the green component of the RGB colour assigned
to the object and should be a value between 0 and 1. The default is set to zero.

e VISATT
Variable type: VARCHAR (32)

This is an optional parameter. This is the visual state setting for the object. Setting
this to “W” results in a wireframe displayment of the object. “S” produces a shaded
solid and “I” leaves the object invisible. The default is set to be wireframe.

A.2.1.2 ’Box’ Solid Types

Append _BOX to the table name in order to make use of the G4Box solid type. The following
table parameters are specific to the box solid:

e LENGTHX
Variable type: DOUBLE(10,3)

This is a required parameter. This value will be used to specify the x-extent of the
box’s dimensions.

e LENGTHY
Variable type: DOUBLE(10,3)

This is a required parameter. This value will be used to specify the y-extent of the
box’s dimensions.

e LENGTHZ
Variable type: DOUBLE(10,3)

This is a required parameter. This value will be used to specify the z-extent of the
box’s dimensions.

A.2.1.3 ’Cone’ Solid Types

Append _CONE to the table name in order to make use of the G4Cons solid type. The
following table parameters are specific to the cone solid:

e LENGTH
Variable type: DOUBLE(10,3)

This is a required parameter. This value will be used to specify the z-extent of the
cone’s dimensions.

e RINNERSTART
Variable type: DOUBLE(10,3)

This is an optional parameter. If set then this value will be used to specify the inner
radius of the start of the cone. The default value is zero.

e RINNEREND
Variable type: DOUBLE(10,3)

This is an optional parameter. If set then this value will be used to specify the inner
radius of the end of the cone. The default value is zero.

Appendix A: Geometry description formats

ROUTERSTART
Variable type: DOUBLE(10,3)

This is a required parameter. This value will be used to specify the outer radius of the
start of the cone.

ROUTEREND
Variable type: DOUBLE(10,3)

This is a required parameter. This value will be used to specify the outer radius of the
end of the cone.

STARTPHI
Variable type: DOUBLE(10,3)

This is an optional parameter. If set then this value will be used to specify the starting
angle of the cone. The default value is zero.

DELTAPHI
Variable type: DOUBLE(10,3)

This is an optional parameter. If set then this value will be used to specify the delta
angle of the cone. The default value is 2*PI.

A.2.1.4 ’Torus’ Solid Types

Append _TORUS to the table name in order to make use of the G4Torus solid type. The
following table parameters are specific to the torus solid:

RINNER
Variable type: DOUBLE(10,3)

This is an optional parameter. If set then this value will be used to specify the inner
radius of the torus tube. The default value is zero.

ROUTER
Variable type: DOUBLE(10,3)

This is a required parameter. This value will be used to specify the outer radius of the
torus tube.

RSWEPT
Variable type: DOUBLE(10,3)

This is a required parameter. This value will be used to specify the swept radius of the
torus. It is defined as being the distance from the center of the torus ring to the center
of the torus tube. For this reason this value should not be set to less than ROUTER.

STARTPHI
Variable type: DOUBLE(10,3)

This is an optional parameter. If set then this value will be used to specify the starting
angle of the torus. The default value is zero.

DELTAPHI
Variable type: DOUBLE(10,3)

This is an optional parameter. If set then this value will be used to specify the delta
swept angle of the torus. The default value is 2*PI.

Appendix A: Geometry description formats

A.2.1.5 ’Polycone’ Solid Types
Append _POLYCONE to the table name in order to make use of the G4Cons solid type. The
following table parameters are specific to the polycone solid:
e NZPLANES
Variable type: INTEGER(11)

This is a required parameter. This value will be used to specify the number of z-planes
to be used in the polycone. This value must be set to greater than 1.

e PLANEPOS1, PLANEPOS2, ..., PLANEPOSN
Variable type: DOUBLE(10,3)

These are required parameters. These values will be used to specify the z-position of the
corresponding z-plane of the polycone. There should be as many PLANEPOS parameters
set as the number of z-planes. For example, 3 z-planes will require that PLANEPOS1,
PLANEPOS2, and PLANEPQOS3 are all set up.

e RINNER1, RINNER2, ..., RINNERN
Variable type: DOUBLE(10,3)

These are required parameters. These values will be used to specify the inner radius of
the corresponding z-plane of the polycone. There should be as many RINNER parameters
set as the number of z-planes. For example, 3 z-planes will require that RINNER1,
RINNER2, and RINNER3 are all set up.

e ROUTER1, ROUTER2, ..., ROUTERN
Variable type: DOUBLE(10,3)

These are required parameters. These values will be used to specify the outer radius of
the corresponding z-plane of the polycone. There should be as many ROUTER parameters
set as the number of z-planes. For example, 3 z-planes will require that ROUTER1,
ROUTER2, and ROUTERS3 are all set up.

e STARTPHI
Variable type: DOUBLE(10,3)

This is an optional parameter. If set then this value will be used to specify the starting
angle of the polycone. The default value is zero.

e DELTAPHI
Variable type: DOUBLE(10,3)

This is an optional parameter. If set then this value will be used to specify the delta
angle of the polycone. The default value is 2*PI.

A.2.2 Creating a geometry list

A geometry list is a simple file consisting of a list of filenames that contain geometry
descriptions. This is the file that should be passed to the GMAD file when defining the
mokka element. An example of a geometry list containing ’boxes.sql’ and ’cones.sql” would
be:

’#’ symbols can be used for commenting out an entire line
/directory/boxes.sql

/directory/cones.sql

Chapter 8: References

A.2.3 Defining a Mokka element in the gmad file
The Mokka element can be defined by the following command:

<element_name> : element, geometry=format:filename, attributes

where format must be set to mokka and filename must point to a file that contains a
list of files that have the geometry descriptions.

for example,

collimator : element, geometry=mokka:coll_geomlist.sql

A.3 gdml

GDML is a XML schema, for dtector description. GDML will be supported as an external
format starting from next release.

Appendix B Field description formats

The element with user-defined physical geometry is defined by command
<element_name> : element, geometry=format:filename, attributes
for example,

colli : element, geometry=plain:colli.geom

Appendix C Bunch description formats

For compatibility with other simulation codes following bunch formats can be read.For
example, to use the file distr.dat as input the beam definition should look like

beam, particle="e-",distrType="guineapig_bunch",distrFile="distr.dat",...|}

The formats currently supported are listed below

guineapig_bunch

E[GeV] x[micrometer| y[micrometer| z[micrometer| x’[microrad| y’[microrad]
guineapig_slac

E[GeV] z[nanometer| x[nanometer| y[micrometer| x’[rad] y’[rad]
guineapig_pairs

E[GeV] x[rad] y[rad] z[rad] x[nanometer| y[nanometer| z[nanometer]

here a particle with E>0 is assumed to be an electron and with E<0 a positron.
The following distributoion types can be generated

Gaussian
beam,distrType="gauss",sigmaX=...,soigmaXp=...,sigma¥=...,sigma¥Yp=...,sigmaE=...,|]
Elliptic shell

generated a thin elliptic shell in x,x’ and y,y’ with given semiaxes

beam,distrType="eshell" ,x=...,xp=...,y=...,ypP=...;

Chapter 8: References

8 References

G. Blair, Simulation of the CLIC Beam Delivery System Using BDSIM, CLIC Note
509

Root User’s Guide, http://root.cern.ch/root/doc/RootDoc.html

Geant4 User’s Guide, http://wwwasd.web.cern.ch/wwwasd/geant4/G4UsersDocuments/0verview/htm]
MAD-X User’s Guide, http://mad.home.cern.ch/mad/uguide.html
NLC Zero-order design report

RAN

