
RHUL Department of Physics

PH2150 Scientific Computing Skills

Java Programmming

S. George and C. V. Quarman

Autumn Term 2011

RHUL Department of Physics
PH2150 Scientific Computing Skills
Java Programming
Version 2 revision 17.
September 23, 2011
First version September 2001.
By S. George and C. V. Quarman

PH2150 Java Programming i

Contents

Introduction 1

1 Programming Basics 3

2 Input, mathematical functions and conditional branching 14

3 Iteration 22

4 Arrays, nested loops and composite operators 27

5 More advanced input and output 33

6 Multiple methods 37

7 Numerical problems and multiple classes 49

8 Object oriented programming 53

9 Statistics exercise using external software 63

Bibliography 67

Appendices 68

A How to use Java on the PC lab computers 69

B Dealing with errors 72

C Trapezium rule for integration 73

D Histograms 77

PH2150 Java Programming Contents ii

Introduction

This five-week module is intended as an introduction to computer programming. The lan-
guage you will use for this purpose is Java. This language, originally developed by Sun
Microsystems and now owned by Oracle, has been one of the most widely used computer
programming languages in the world for over a decade. It is best known for its use in associ-
ation with the World Wide Web and the Internet, but over the next few weeks you will see
that it can also be applied very effectively to scientific problems. Some big advantages of Java
over other languages are that it is highly portable: Java programs run on most computer
systems in use today; it is freely available; it is better integrated with graphics than other
languages; it is relatively simple as it does not have the constraint of remaining backward
compatible like older languages that have evolved; it is widely used, so Java programming is a
marketable skill which you should find useful in many areas both inside and outside physics.

Java’s portability means that you can use your programs on other types of computer without
having to recompile them, and the program should behave in the same way regardless of the
computer you are using. This is know as platform independence. It is for this reason Java
has become widely used on the Internet.

These notes, example files, tips and up to date information about this course can be found
at http://www.pp.rhul.ac.uk/~george/PH2150.

Objectives

This course gives you the opportunity to develop the following skills:

1. learn and practice the basic concepts involved in writing computer programs;

2. understand the main features of the Java language;

3. design and write simple programs in Java;

4. devise and use test procedures for your programs;

5. design and write Java programs to solve numerical problems;

6. gain the programming skills you need for the teamwork projects which follow this course.

Assessment

Assessment is based on the answers you give to the exercises included in the course. You
should write down these answers along with any notes you wish to make in your lab book.
Generally your answers should include printed listings of programs you write or modify and
printed output from tests you have run to demonstrate that your program works.

Your answers will be assessed on the following criteria:

• quality and correctness of the answer — applies to both written answers and program
listings and output;

PH2150 Java Programming Introduction 1

http://www.pp.rhul.ac.uk/~george/PH2150

• code presentation — your programs should be clearly laid out with appropriate use of
variable/method names, comments and indentation;

• programming style — solutions should be simple, efficient and effective.

• testing — when appropriate, you need to demonstrate that your program works by
testing its key features and comparing the resulting output with what you expected,
e.g. a result calculated by hand. Make sure you write this down! You can’t get marks
for it, if it’s only in your head.

Your final mark will be based on a subset of the exercises, but you must still
attempt all of them. A few exercises may be worked through as examples in class if they
are posing particular problems or raise interesting issues. The maximum marks for each
exercise are shown beside the exercise in the script.

At the end of the course you must hand in for marking:

• your lab notebook, containing the answers, notes and printout described above;

• your programs: just the .java files, no .class files please, will be collected via turnitin,
You will be given instructions for this later.

• include a table relating exercise numbers to program files names in your notebook.

You will be told where and when to hand in your book during the course.

Tips

• Write down your notes and answers as you work.
• Do not wait until the end to write everything up.
• Make sure that your answers are clear so that a reader can understand what you have
done, otherwise it’s hard to give you the marks you might deserve.
• Read the questions carefully to make sure you really do what you are asked.
• Identify each exercise by its number.
• Show your lab book to a demonstrator regularly so you can get some feedback on it.

PH2150 Java Programming Introduction 2

1 Programming Basics

Computer programs and java

A computer program is fundamentally just a set of instructions for the computer to follow.
Running a program means the computer executes the instructions that comprise the program.

Programming in Java involves the programmer writing a set of instructions in the Java
language. The file this Java code is saved in, is known as a source file and has the name
something.java. The source file must then be compiled1. The compiler reads and understands
the program written in the source file, then translates it and writes it out into a second
file (called something.class). This file contains the same program instructions written in a
different form, to better suit the computer rather than you the programmer. Whenever the
program is run the contents of this second file go through an interpreter which turns the
contents into instructions that the computer’s processor2 can understand and carry out.

Basic program structure

We will start right away with a look at a Java program. For most of this course all your
programs will have the same basic structure, which is reproduced below. This contains all
the essential parts of code that must be included in any program.

line
1
2
3
4
5
6
7

public class Simple
{

public static void main(String[] argv)
{

//some program code goes here
}

}

So what does this all mean?

public class Simple
Java programs are made up of classes, so the first line says that we are going to define a
a class and we have chosen to call it Simple, though of course you could call it another
name. (The convention is for class names to start with a capital letter.) The class
Simple is everything contained within the outermost set of curly brackets {}. The
purpose of the word public is something we will come to later; in the meantime you
should always use it.

public static void main(String[] argv)
Classes contain methods, and this line (3) is the start of the method called main. When
the computer runs any Java program it starts by looking for the main method and
carries out whatever the instructions are within it. All programs must contain one
(and only one) main method.

1Don’t worry if you don’t know what this means yet; you will be shown how to compile a program during
the first session.

2The processor is the part of the computer which does all the work, e.g. the Intel Pentium processor in
your PC.

PH2150 Java Programming Section 1 3

lines 4-6
Instructions for what the main method should do are in the form of some Java code
which goes in the main method — i.e. within the corresponding set of curly brackets, {}.
The //some... part on line 5 is called a comment, a note to yourself or others reading
the file which is ignored by the computer. There are other ways to write comments
which will be covered soon.

Also note how within the class all the other lines have been indented by four spaces, and
within the method everything is indented by a further four spaces. The spaces don’t have
any effect in the program — they are just used to make the structure of the program clearer
to see at a glance. You may also use blank lines occasionally for clarity as well.

Running a program on a lab PC

In this section you will learn how to run your first Java program.

Here is perhaps the simplest program you can write in Java.

/**
* Purpose: To write the word ‘Hello’ to the screen.
*/

public class Hello
{

public static void main(String[] argv)
{

System.out.println("Hello"); // outputs Hello to the screen
}

}

The program simply writes ‘Hello’ to your screen. You will see that it has the same basic
structure as was shown before. The semi-colon, ;, is used in Java to indicate the end of a
line of code, or one instruction. Don’t worry about understanding the System.out.println
just yet, the program is just for use in the exercise that follows. The purpose of this exercise
is to show you how to run Java programs on the computers you are using. You will now be
taken through typing in the program and running it on the lab PCs.

PH2150 Java Programming Section 1 4

Exercise 1.1 (1 mark)

You will be shown in the lab session how to use your computer to write, compile and run
Java programs.

Following the demonstration, type in the example above, save it, compile it and run it. Read
through the advice below as you work.

In appendix A you will find some notes on how to use Java on your PC.

Writing

Type in the program exactly as shown in the example above. Take care to copy upper and
lower case correctly from the example, as Java is case sensitive: the program will not work
if you get this wrong.

Saving

The code should always be saved in a file that has the same name as the public class and
with the extension .java so you should save the above code under the name ‘Hello.java’. This
is your source file. Note that the filename is case sensistive.

Compilation

The compilation process produces a file called Hello.class, which then is used when you run
the program.

If you get error messages when you compile the program, check very carefully what you have
typed, then try again or ask a demonstrator. Beware that there is a distinction made between
upper and lower case letters, so if for example you type Class rather than class, you will
get error messages.

Especially when you are creating longer programs you are bound to make mistakes so you
will get often errors when you first compile a program. Deal with one error at a time starting
from the first that the compiler found. Sometimes an error at the beginning of a program
can cause many errors later on and if you correct the first problem and compile again you
may find some of the other errors have vanished. The error message will contain the line
number and some description of the error which you can use to help find what went wrong.
Appendix B contains more help on errors, you should refer to this when you come across
problems.

Running

You should now see the word ‘Hello’ printed on the screen.

If you don’t then you may get a message about an exception written to your screen though it
is unlikely to happen with a program as small as we are dealing with here. Exceptions arise

PH2150 Java Programming Section 1 5

from problems that occur during the running of the program that were not detected by the
compiler. You will be warned about the most common exceptions as we go along.

If you have an exception now, ask for help. You will learn how to solve these problems yourself
as you gain experience.

Comments

Comments in a computer program are notes you make to yourself. They will be ignored
by the compiler and do not affect the way the program runs. For this reason they must be
marked. There are three ways to do this depending on the circumstances. The first looks
like this:

/**
* Purpose: describe what the program does,
* add any extra lines needed using an asterisk
*/

This form should be used at the beginning of all your files and give any necessary information
about your code, including its purpose, your name, the date and the exercise number where
applicable. Especially with longer files you may find it helpful to include a modification
history here as well, stating what changes were made and when.

The other two types of comment are:

// comments go here, rest of line is ignored

/* comments here may use
more than one line
and finish with */

When // appears on a line, everything to the right up to the end of the line is ignored by
the compiler. Java code can appear to the left of //. Longer comments may take the second
form shown. Anything between /*...*/ is considered to be a comment by the compiler and
ignored. Unlike //, the comment can span several lines.

As // comments may be placed within /*...*/, you may try putting the latter around a
block of code in your program that you think is causing an error or exception, as long as the
block of code only includes // comments3. Two sets of /*...*/ comments can not be nested
within each other.

It is important that you add sufficient comments to your programs so that it is clear what
they do and how they work. When someone else reads your program they cannot read your
mind, so they will need more help to understand it than you do. You will see more clearly
how comments are put to use as you progress through the course.

3Appendix B, Dealing with Errors, explains this and other techniques for debugging.

PH2150 Java Programming Section 1 6

Variables — declaring and assigning values

Before discussing input and output, including System.out.println(...) which you used in
Hello.java, it will be helpful to cover the topic of variables. You will have come across the
idea of variables in mathematics, and the concept of a variable in programming is similar.

A variable is associated with space in the computer’s memory that can hold a value (often a
number). Each variable has a name, which you choose, and subsequently use to refer to it.

You must start by declaring the variable, this gives the variable a name and reserves some
memory space to store whatever value the variable takes. It also tells the compiler what you
intend the variable to represent. This is known as the variable’s type. For example a variable
which always takes integer values, can be declared as type int in Java. For example the line
of code

int i;

declares an integer variable (i.e. a variable of type int) which we have chosen to call i. As
an int, it can store any integer value between -2147483648 and 2147483647.

Java provides types to represent several kinds of number, e.g. integer and floating point,
non-numerical things like text, and other more abstract things. These are listed on page 9.
You can give a variable a longer name if you like, and it is usually a good idea to choose
a word that explains what the variable is for. The convention is for variables to be named
using lower case letters, or if the name consists of more than one word, that a capital be used
at the start of each word other than the first. You may also use numbers or an underscore
in your variable names, but not at the beginning of the name. Examples of some well chosen
and valid variable names might be total, maxValue, answer1.

Exercise 1.2 (1 mark)

Now try the simple program below. As it contains public class VarTry you must type it
in to a file called ‘VarTry.java’.

Compile and run VarTry in the same way that you did with the Hello program to check
it prints out the number nine. Print the output and put it in your lab book. Read the
explanation that follows and try to understand how it works.

PH2150 Java Programming Section 1 7

/**
* Name:
* Date:
* Exercise: 1.2
* Purpose: To demonstrate the declaration and simple uses of variables.
*/

public class VarTry
{

public static void main(String[] argv)
{

int i; // declares integer variable named i
i = 9; // gives i the value 9
System.out.println(i); // print the value of i to the screen

}
}

You will see here how each line of code must end with a semicolon, ; , (if you need to write
a line of code that is longer than the width of the window you can continue it on the next
line by omitting the semicolon until the end of the statement).

The line i = 9 gives the value 9 to variable i. This is known as assigning a value to a variable
— i is assigned the value 9. It means that the space in the computer’s memory associated
with i now holds this value. The first time a variable is assigned a value, it is said to be
initialised. The = symbol is known as the assignment operator.

It is also possible to declare a variable and assign it a value in the same line, so instead of
int i and then i = 9 you can write int i = 9 all in one go. If you have more than one
variable of the same type you can also declare them together e.g.

int i, j; // or
int i=1, j, k=2;

which can be a useful way of saving space. Where necessary you should add comments
explaining the meaning of the variables, both so it is clear to you if you come to look at your
program at a later date, and to those marking your programs.

You will of course want to use many quantities which are not integers, and there are sev-
eral different variable types which cover these possibilities. For real numbers there are two
possibilities — float and double. As double uses twice as much memory as float to store
values, it is more accurate. For real numbers you will probably mostly want to use double.
All the variable types are described below.

PH2150 Java Programming Section 1 8

byte Integer variable allocated only 8 bits4 (i.e 1 byte) of memory. May store values from
-128 to 127.

short Short integer, allocated only 16 bits of memory. May take values from -32768 to
32767.

int Most commonly used form of integer variable, 32 bits. May hold any value in the range
-2147483648 to 2147483647.

long Used if working with particularly large integers, 64 bits. Up to nineteen digits and a
sign.

float Floating point real number, which must be written in the format 3.45, or 3.0e-5 —
that is they must include a decimal place and may include the letter e. What follows
e is the power of ten, so the two examples mean 3.45 and 3.0 × 10−5 respectively. A
float variable is 32 bits and holds a value between ±1.4 × 10−45 and ±3.4 × 1038, to
eight significant figures.

double A 16 significant figure, floating point, real number, 64 bits. Values are written as
for float, e.g. 5.8e59, and may take value between ±4.9× 10−324 and ±1.8× 10308.

boolean May take one of only two possible values, true and false. This is a logical truth
variable (1 bit).

char A single character (this may be an upper or lower case letter, number or other keyboard
symbols like :, # or ! for example.)

You can also create a String of characters. A String is like a word or a line of text and can
include spaces, upper and lower case letters, numbers and other keyboard symbols. Strings
are created in a similar way to variables, and the double quote symbol " is used to mark the
start and end of the text. You may for example write

String name = "Bob1";

This creates a String called name which stores ‘Bob1’.

You should be aware that there are some words which you may not use as names for variables
(or methods or classes for that matter) as they have a special meaning in Java. These are:
abstract, boolean, break, byte, byvalue, case, cast, catch, char, class, const,
continue, default, do, double, else, extends, false, final, finally, float, for,
future, generic, goto, if, implements, import, inner, instanceof, int, interface,
long, native, new, null, operator, outer, package, private, protected, public,
rest, return, short, static, strictfp, super, switch, synchronized, this, throw,
throws, transient, true, try, var, void, volatile, while, widefp.

4A bit is the smallest unit of computer memory. It may be thought of as either a 1 or a 0 in some binary
code. 8 bits make up 1 byte of memory.

PH2150 Java Programming Section 1 9

Exercise 1.3 (6 marks)

With reference to the section above, say what type of variable would be suitable for the
following, and suggest a name for it too.

It may help to think of possible values and the range which would be valid before you choose
a type.

Example: the temperature of a room in C. Room temperature is likely to vary between 15 and
35 C but it can take any value inbetween including non-integers, e.g 20.37 C, so the type must
be float or double depending on the accuracy required. A suitable variable name, following
the conventions described above, would be roomTemp.

(i) the number of pages in a book;

(ii) the number of atoms in a book;

(iii) the length of a side of a triangle in metres;

(iv) your name;

(v) whether or not a nucleus has decayed;

(vi) the probability that it could have decayed.

Simple output

In the Hello program you used the line System.out.println("Hello") to write ‘Hello’ to
the screen. This is the standard way of outputting to the screen and it works for numbers
and variables (see previous section) as well. If you want to print several things at the same
time you can use the + symbol as follows.

System.out.println("Hello" + 1.234);
System.out.println("Hello " + "number " + 1.234);
System.out.println("The value of variable x is: " + x);

The first two commands result in the outputs ‘Hello1.234’ and ‘Hello number 1.234’ respec-
tively. The third command will print to the screen ‘The value of variable x is: ’ followed by
whatever number, character, or string, is stored in the x.

You can add separate Strings together using +, e.g. String name = "Bob" + " Smith". Or
String id = "abc" + 1.4 creates a string called id which stores ‘abc1.4’. Here 1.4 is a
number but it is automatically converted into a string before being added to "abc". We
explore strings a little more in the next section, which is on output, where you will see that
it is equally possible to have instead of a number, a variable, where the value of the variable
is added to the string in the same way that the number is above.

PH2150 Java Programming Section 1 10

Exercise 1.4 (4 marks)

Try programming output yourself.

• Make a copy5 of your program VarTry.java, call it VarTry2.java, and change the class
name to match the new file name.

• Alter VarTry2 so that you also declare a double variable, x, assign it a value and print
this to the screen.

• Compile and run your program to check the output is what you expect.

• Next modify your program to create a string and print that to the screen as well.
Compile and run your program to check the output is what you expect.

• Finally modify your program again to declare a second double variable y, assign it
a value, and add the statement System.out.println(x + y); to your code. Again,
compile and run your program to check the output is what you expect.

• Write in your lab notebook what the program outputs to the screen.

• Alter your program to System.out.println(x + " " + y) to see the two values printed
to your screen separately.

• Your program listing, sample output and your answer to all these questions should all
go in your lab notebook.

If you wish to print several things to the screen on the same line without using + all the time,
you can use System.out.print() which works in the same way as the System.out.println()
you’ve just been using, but will not move to the next line each time.

Arithmetic operators

Now that you are able to initialise6 and output data, its time to do something with it in
between. For numbers or numerical variables there are the operators +, -, /, and * which add,
subtract (or reverse sign), multiply and divide respectively, just as in mathematics. There is
also % which gives the remainder when the first number is divided by the second, e.g. the
value of 4 % 3 is 1.

There is also the assignment operator, =, which you used earlier. This does not act in the
same way as an equals sign in maths, instead it puts the value which is to the right of the
operator into the variable which is to the left. E.g. x = 1 gives x the value 1, x = y gives x
the value of y, x = 2*y + 1 gives x the value of 2y + 1, and x = x + 1 adds 1 to the value
of x.

5It is a good idea to save versions of your programs as they develop so that if the changes you make cause
new errors you have a working previous version of your program to refer to. Remember to change the name
of the public class so it matches the filename.

6Initialise — assign a value to a variable for the first time

PH2150 Java Programming Section 1 11

Expressions within round brackets are evaluated first, then division, multiplication, addition
and subtraction operations in that order — so you can add brackets where necessary to
influence the order in which the expressions are evaluated. E.g. 2 + 4/2.0 returns the value
4 whereas (2 + 4) / 2.0 the value 3. You will also need to use brackets sometimes in
situations such as x* (-y). Leaving the brackets out here would not only make the meaning
unclear but also cause two operators to be placed next to each other which is not allowed.

Exercise 1.5 (5 marks)

Copy the following source file, Division.java, from the course web site:
http://www.pp.rhul.ac.uk/~george/PH2150/downloads/Division.java

(i) Add three lines to this source file so that the program also prints out the difference of
the two variables i and j, the product of i and j, and the ratio i/j. Run, and record
in you lab book the results exactly. Comment on whether these are the answers you
would expect?

(ii) Alter the third line that you added so it now gives i divided by j as a whole number
and a remainder. Also print out the value of ((double)i)/j. Again record the exact
output of your program in your lab book.

You do not have to type in this program.

/**
* Name:
* Date:
* Exercise: 1.5
* Purpose: To demonstrate use of arithmetical operators and
* a common problem encountered with integer division.
*/

public class Division
{

public static void main(String[] args)
{

// declare and initialise variables
int i = 5, j = 3;

// print the numbers and the sum of i and j to screen
System.out.println("The values are: i is " + i +

", j is " + j);
System.out.println("The sum of these integers is " + (i + j));

}
}

What this exercise aims to demonstrate a potential difficulty with dividing one integer by
another. If both the numbers involved are integers, an integer result is expected so the answer

PH2150 Java Programming Section 1 12

http://www.pp.rhul.ac.uk/~george/PH2150/downloads/Division.java

is rounded down to a whole number — thus 5/3 gives 1. If using numbers in your program
you could instead write 5.0/3 or 5/3.0 to get a decimal answer. The default type for a
decimal number in your code is double, and when one number in the division is double, the
result is type double as well. Obviously if you are using a variable just adding .0 is not
much use, so instead there is a way of converting the value of an int variable into a double
before the operation is carried out. This is the (double)i that you have just made use of in
exercise 1.5.

PH2150 Java Programming Section 1 13

2 Input, mathematical functions and conditional branching

Keyboard input

It would obviously be much more useful to create a program which could add together any two
numbers rather than just two specific numbers given in the program. Recompiling every time
you wish to try a program with new values is not satisfactory. The way to enter numbers via
the keyboard into your program while it is running is therefore given below. Input is slightly
more complicated than output, so you are not expected to understand the code at this stage.

The beginning of your program will require a few extra pieces of code, so that it looks like
this:

/**
* Purpose: Shows things you must add to allow input from the keyboard.
* These include "import java.io.*" and "throws IOException" in
* addition to the lines indicated in the main method.
*/

import java.io.*;

public class InputExample
{

public static void main(String[] argv) throws IOException
{
// code needed for keyboard input
BufferedReader br = new BufferedReader(

new InputStreamReader(System.in));
String temp;

// rest of your program code here, as usual

}
}

Then whenever you wish to read something from the keyboard, simply write

temp = br.readLine();

You will probably find it helpful though to add a line like System.out.println("Enter
Input") or similar whenever you use this so that it is obvious the program is waiting for
some input. When running the program, you will know to type in something when you see
this prompt. Press the return key to finish and let the program continue with your input.

The input is stored in the string temp so if you want to use the input as anything other than
a string it needs to be converted into the right variable type. Java provides a way to do this
as shown in the examples below.7

7NB the type conversion examples above work for JDK 1.3, but older versions of Java, e.g. J++, do not
support this syntax. Instead you have to use something like this:
x = Double.valueOf(temp).doubleValue();

PH2150 Java Programming Section 2 14

x = Double.parseDouble(temp); // string temp converted to double x
y = Float.parseFloat(temp); // string temp converted to float y
i = Long.parseLong(temp); // string temp converted to long i
j = Integer.parseInt(temp); // string temp converted to int j
k = Short.parseShort(temp); // string temp converted to short k
m = Byte.parseByte(temp); // string temp converted to byte m
a = Boolean.valueOf(temp).booleanValue(); // string temp converted to boolean a

Note that x, y, etc. must first been declared as their respective variable types before you
assign the result of the string conversion. There will be a chance to practice this input method
in the next exercise.

This is the standard way to input data from the keyboard. It looks quite complicated, but you
should just copy the relevant code whenever you want to input data from the keyboard and
for the moment trust that it works. By way of a brief explanation: import tells the compiler
that you will be using some software from outside your program. The name java.io.* tells it
what this is and implies to the compiler where the necessary files can be found. If there is the
possibility of an error occuring in the program, it can be handled using a Java feature called
exception handling. The BufferedReader and InputStreamReader used to get the keyboard
input can throw up exceptions or errors, in this case called an IOException. This must be
handled in your program, and the simplest way to do this is to declare that main throws
IOException. Later in the course you will come to understand these concepts better.

There will be a chance to practice this input method in the next exercise.

Mathematical library

It may be necessary in a program to use common mathematical functions such as the sine,
square root, or log of a number. There are some standard methods Java provides to do this
simply. To calculate y = x2 it is easiest to use the expression y = x*x, however for higher
powers of x this is awkward, so in general y = xn is calculated using y = Math.pow(x,n).

The values or variables placed in the round brackets, (), are known as arguments.

These useful methods providing mathematical functions exist:

Math.E // e as a double
Math.PI // pi as a double
Math.sin(x) // sine of x
Math.cos(x) // cosine of x
Math.tan(x) // tangent of x
Math.asin(x) // arcsine of x
Math.acos(x) // arcsine of x
Math.atan(x // arctangent of x
Math.exp(x) // exponential of x
Math.log(x) // natural logarithm of x
Math.pow(x,n) // x raised to the power n (both double)
Math.sqrt(x) // square root of x
Math.random() // random double between 0.0 and 1.0 (uniform distribution)

// requires no argument

PH2150 Java Programming Section 2 15

Math.abs(x) // the absolute value of x, works for int, long, float and
// double values, returning value of the same type

Except Math.abs() these mathematical functions all give result values of type double. They
also all take a double variables or values as their arguments — both x and n in the above are
double variables. Note that Math.pow() requires two arguments, whereas Math.random()
requires none, although the brackets must still be included. Using Math.abs() is slightly
different — using it on a float variable will give a float value, on an int variable will
return an int value, and so on.

Note that all the trigonometric functions work in radians.

Exercise 2.1 (6 marks)

Write a program that reads in a value for an angle from the keyboard, computes and writes
out the sine and cosine and, as a check, the value of sin2x + cos2x for that angle. The value
of sin2x + cos2x, of course, should be very close to 1. In your laboratory notebook, record
the results of entering the angles 3.5 and 2.3e-3. You should use variables of type double and
include all significant figures in your written answer. Stick a print out of your program in
your lab notebook.

The if statement and comparison operators

We use if in a program so that a piece of code may only be carried out under certain
circumstances, which we can choose, by specifying some conditions that must be satisfied. It
is one way in which the flow, the order in which lines of code are executed when the program
runs, can be controlled, (you may find it helpful to think of if and other forms of flow control
by imagining a flow chart). A basic example of the code for an if statement is as follows:

if (boo)
{

x = y;
}

In this short piece of code, x is only set equal to y if whatever condition we have chosen to put
in the round brackets () is true. This is where the boolean variable type briefly mentioned
earlier may come in useful. If the value of a boolean variable boo is true, he code in the curly
brackets {} (in the above case x = y) is executed. If boo is false, the code in curly brackets
{} will not be executed.

Notice how within the curly brackets {} code is indented. This is simply to make it clearer
that the code is contained within an if statement.

More usefully for the scientist, we can write things like

if (w < z)
{

x = y;
}

PH2150 Java Programming Section 2 16

As you might expect if (w < z) means ‘if w is less than z’, and in the above code x = y
only happens if it is true that w is less than z. It is also possible to use the same variables
in the condition, i.e. between the round brackets (), as between the curly brackets {} if you
need to.

Less than, <, is an example of a comparison operator — it compares two variables, asking
whether one is less than the other, returning a boolean result — true if the condition is
satisfied and false if it is not. The other comparison operators are in the table below. Note
the difference of w == z i.e. ‘does w equal z?’ to x = y i.e. ‘set the value of x equal to y’
which is the assignment operator we met earlier.

< Less than
E.g. w < z is true if the value of w is less than the value of z.

> Greater than
E.g. w > z is true if w is greater than z.

== Equal to
E.g. w == z is true if the values of w and z are equal.

<= Less than or equal to
E.g. w <= z is true if w is less than or equal to z.

>= Greater than or equal to
E.g. w >= z is true if w is greater than or equal to z.

!= Not equal to
E.g. w != z is true if w and z have different values.

Here’s a simple example where if is used to compute the modulus, i.e absolute value, of any
double value entered.

PH2150 Java Programming Section 2 17

/**
* Purpose: An example to demonstrate use of ‘if’
*/

import java.io.*;

public class IfExample
{

public static void main(String[] args) throws IOException
{

//Read in a value from the keyboard
BufferedReader br = new BufferedReader(

new InputStreamReader(System.in));
System.out.println("Enter positive or negative number...");
String temp = br.readLine();

double x = Double.parseDouble(temp);

if (x < 0)
{

x = -x;
}

System.out.println("The modulus of this number is " + x);
}

}

Else and else if

There is also the option of adding else after an if — the else section should contain parts
to be executed if the condition is not true. A trivial example of this is given below, where a
value for boo is displayed on the screen.

boolean boo;

// some code goes here which gives boo the value true or false

if (boo)
{

System.out.println("if: boo is true");
}
else
{

System.out.println("else: boo is false");
}

// print value of boo to the screen directly
System.out.println("boo is " + boo);

PH2150 Java Programming Section 2 18

There is also an optional else if that can be added. This works like an else but you get
to specify another test condition as well. Here is an example:

/**
* Purpose: An example to demonstrate the use of ‘if’
*/
import java.io.*;
public class IfExample2
{

public static void main (String[] args) throws IOException
{

BufferedReader br = new BufferedReader(
new InputStreamReader (System.in));

System.out.print ("Enter a number between 0 and 10 inclusive: ");
String temp = br.readLine();
double x = Double.parseDouble(temp);
// check user input
if (x > 10)
{

System.out.println("The number you entered is too high");
}
else if (x < 0)
{

System.out.println("The number you entered is too low");
}
else
{

System.out.println("The number you entered is " + x);
}

}
}

This program checks whether input is in the range 0-10. If the input is larger than 10 the
first condition is true and the if block of code is executed. If x is less than 10 the second test
is performed — x<0. If the second condition is true the elseif block of code is executed.
Otherwise, if both conditions were false the final else block of code is executed.

You may use as many else if’s as you like after an if, allowing tests of many different
conditions such as x<0. If an else is used it always comes at the end, being executed only if
all the conditions preceding it are found to be false.

Exercise 2.2 (10 marks)

Create a program to solve quadratic equations making use of the well-known formula for
solving quadratics. Assuming the form of the quadratic is ax2 + bx + c, read in the three
numbers a, b, c from the keyboard. If the equation has complex roots, your program should
output a message to the screen to this effect and not try to calculate them, otherwise the
one or two roots of the equation should be printed to the screen. Include in your lab book a
printout of your program and sample output to show that it works when tested for complex
roots, a single root, and two roots, by using it to solve the following equations:

PH2150 Java Programming Section 2 19

(i) x2 − 4x + 4

(ii) x2 − 4x + 8

(iii) 2x2 + 13x + 21

Logical operators

It is also possible to test whether more than one condition is satisfied at the same time. E.g.

if ((w < z) && (a == b))
{

x = y;
}

This uses what is known as the AND logical operator, which is represented in the code above
by the symbol &&. It does exactly what the name suggests — the code will set x equal to y
only if both w is less than z and a is equal to b. Look carefully at the use of round brackets
in the example above. These are important as the conditions within the innermost brackets
are evaluated first. When these are found to be either true or false, the && operator asks
whether both sets of brackets are true.

There are also other logical operators, including OR and NOT which again do rather what
their names suggest.

&& AND operator
E.g. (boo1 && boo2) returns true only if both boo1 and boo2 are true. Returns false
otherwise.

|| OR operator
E.g. (boo1 || boo2) returns true if either boo1, boo2, or both are true. Returns false
otherwise.

! NOT operator
E.g. !boo returns false if boo is true and vice versa.

Exercise 2.3 (4 marks)

Look at the code given below. What is the output from this program when:

(i) a = 1, b = 2, c = 3, and d = 4?

(ii) a = 2, b = 4, c = 2, and d = 1?

(iii) a = 7, b = 4, c = 2, and d = 1?

(iv) a = 3, b = 1, c = 3, and d = 1?

PH2150 Java Programming Section 2 20

Work it out by hand, then write a program to check your answers if you wish.

if ((a>b) && (c!=d))
{

System.out.println("First if block of code executed");
}
else
{

System.out.println("First else block of code executed");
}

if ((a==c) || (b<=d))
{

System.out.println("Second if block of code executed");
}
else
{

System.out.println("Second else block of code executed");
}

PH2150 Java Programming Section 2 21

3 Iteration

One of the most common and powerful ways to control the flow of execution through a
program is by using iteration, also known as loops. A loop is just a way of telling the
computer to repeat some code many times. The number of iterations can be fixed, or depend
on the outcome of calculations made within the loop.

There are several types of loop available in Java. The first to be introduced is called a for
loop.

For loops

Here is an example of a for loop:

for (int i=0; i<10; i++)
{

System.out.println(i);
}

The first line, starting with the for statement, defines the loop. The code to be executed
inside the loop is contained within the curly brackets, {}. Code within these brackets is
indented to make it easier to see that it is inside the loop.

There are three expressions within the round brackets after the for statement. The first
(int i=0) is known as the initial expression. It is used to do things like declare and initialise
variables before the loop starts. It is evaluated only once. The second expression within
the round brackets (i<10) is the test expression. This is evaluated at the beginning of
each iteration. It must be a logical expression, as described in the previous section on if
statements. If it is found to be true, the iteration continues and the code within the loop is
executed. If false, the loop ends. The final expression within the round brackets (i++) is the
update expression. This is evaluated at the end of each iteration, after the code within the
loop has been executed.

In the example, i is declared as an int and initialised to 0. Then the test i<10 is evaluated.
This is clearly true since i is 0. So the line of code inside the loop is executed with the result
that the value of i, 0, is printed to the screen. The update expression i++ is short-hand for
i = i + 1, i.e. the value of i is increased by one. This is repeated until it is no longer true
that i is less than 10. At this point, the test fails and the loop ends.

Exercise 3.1 (4 marks)

First, predict exactly what numbers the above code would print out. What are the first and
last numbers that will be printed? Explain your reasoning. Then, write a program containing
the above code, run it and compare the results with your prediction. If you got it wrong,
explain what actually happened and why.

Note: the ++ operator is very useful in loops. There is also a −− operator, which does the
opposite, i.e. subtracts 1 from the variable.

PH2150 Java Programming Section 3 22

You can put any valid Java code inside the for loop. For example, variable declarations, if
statements, calculations, mathematical functions, and even another loops.

While loops

Below is an example of a while loop. Like the for loop, it contains a test expression
(i<10) and some code inside the loop to be repeated as long as this expression remains true.
The variable i must be declared and initialised before the loop as you see on the first line,
int i = 0;. The example below does exactly the same thing as the for loop above.

Example:

int i = 0;
while (i < 10)
{

System.out.println(i);
i++;

}

The following example shows another simple use of the while loop. For each loop iteration,
x is doubled and the new value is printed out. This continues until x exceeds 1024. Hence
powers of two are printed up to 1024.

// Print powers of 2 up to 1024.
float x = 1;
while (x < 1024)
{

x = x*2;
System.out.println(x);

}

Exercise 3.2 (5 marks)

Take the example class IfExample2 (page 19) which you can download from the course web
site: http://www.pp.rhul.ac.uk/~george/PH2150/downloads/IfExample2.java. Modify
it so the user is asked to re-enter a number if the input is not valid, i.e. outside the requested
range. Include the program listing and sample output in your lab book. Hint: use a while
loop around the input.

So, which sort of loop should you use — for or while? They are both very flexible, so in
almost any situation, either could be used to create the desired effect. The choice is therefore
mainly a question of style and convenience. As a rough guide, for is well-suited to loops
which have a definite number of iterations that you know in advance, as in the example above.
Is also most appropriate when you need a variable inside the loop which keeps count of the
number of iterations, like i in the above examples. A while loop is best when you don’t
know how many iterations there will be, but you can write a logical expression which tells

PH2150 Java Programming Section 3 23

http://www.pp.rhul.ac.uk/~george/PH2150/downloads/IfExample2.java

you whether to continue for another iteration or not. If in doubt, a good rule is to use which
ever type of loop seems simplest.

There is a third loop statement, do, which is very similar to while. Again, the example does
the same thing as the two previous examples.

int i = 0;
do
{

System.out.println(i);
i++;

}
while (i < 10);

The only difference between do and while is that the test expression (i<10) is evaluated at
the end of each iteration, instead of at the beginning. Therefore the code inside the curly
brackets {} is always executed at least once.

Note: it is possible to create an infinite loop, i.e. one which repeats for ever. A simple
example would be:

while (true)
{

// never ends
}

If you have such a loop in your program, with no other means of escape the program will run
for ever. If this happens, you can usually stop the program by pressing Ctrl-C.

Flow control

There will be sometimes be points in the code inside the loop where it will be convenient to
jump out of the loop completely, or skip the rest of the loop code and proceed directly to the
next iteration. In Java, there are commands to do this. They are, respectively, break and
continue. They allow finer control of the program flow, as the loop can be ended without
waiting until the next time the test expression is evaluated. You should use these commands
when it makes your code simpler or easier to understand. They are most useful when your
programs become larger and more complex. The example below shows how they are used.

// generate random numbers and sum those that are <= 0.5,
// until the running total exceeds 6.0.
double sum = 0;
while (true) // infinite loop, but break will be used to escape
{

// get a new random number
double r = math.random();

// if r is outside the required range, skip ahead to the next iteration

PH2150 Java Programming Section 3 24

if (r > 0.5)
{

continue;
}

// do something with the random number
sum = sum + r;
System.out.println("random number " + r + " running total " + sum);

// exit the loop when the running total exceeds the target
if (sum > 6.0)
{

break;
}

}

Scope

Now that you have learnt about the main control statements if, for, while, you need to
know about something called scope. The scope of a variable is the region of the program
within which the variable can be referred to. A variable will only exist from the point at
which it is declared until the end of the block of code it is in. A block of code is contained
within curly brackets. If you declare a variable inside a loop, it will not be available outside
the loop. At the end of the braces, the variable “goes out of scope” which is to say that it is
no longer recognised by the compiler or available to use in your program. Study the examples
below:

// Scope example 1 - this won’t compile because of the last line.
// the scope of i is inside the loop
for (int i=0; i<10; i++)
{

System.out.println(i);
}
System.out.println("final i=" + i); // wrong, outside the scope of i

// Scope example 2 - this is a corrected version of scope example 1
// the scope of i is outside the loop, because i is declared before
// the for loop.
int i;
for (i=0; i<10; i++)
{

System.out.println(i);
}
System.out.println("final i=" + i); // correct, i is still in scope

// Scope example 3 - this won’t compile either
boolean test = true;
if (test)
{

boolean success = true;
System.out.println(success); // this is ok

PH2150 Java Programming Section 3 25

}
System.out.println(success); // wrong - outside the scope of ‘success’

If the third example is modified so that the boolean variable ‘success’ is declared before the
if statement, then it will work.

In general it is a good idea to declare variables within the most limited scope that they need,
and to declare them as near as possible before they are used. This means if you use the
variable by mistake elsewhere, you are more likely to get a compiler error rather than strange
run-time behaviour, which is hard to debug.

So, if a variable is only needed inside a loop, it is best to declare it inside the loop. For
example, if you like to use i as the iterator in for loops, you can declare it in the initial
expression of the for loop, as shown in the example at the beginning of this section. Since i
is now limited to the scope of the loop, you can declare it again in the next loop and be sure
you are getting a different variable every time.

Exercise 3.3 (4 marks)

Which of the following examples will not compile due to a scope-related error? Explain why
not, before you try to compile them. You can use the compiler to see if you are right. NB
compiler error messages are not an acceptable answer to this question — please give a full
explanation of any flaws you identify.

// Example 1
// Sum the integers from 0 to 25?
for (int i = 0; i<=25; i++)
{

int sum;
sum = sum + i;

}
System.out.println(sum);

// Example 2
// Sum the absolute value of integers from -25 to 25?
int sum = 0;
for (int i = -25; i<=25; i++)
{

if (i < 0)
{

int j = -i;
}
else
{

int j = i;
}
sum = sum + j;

}
System.out.println(sum);

PH2150 Java Programming Section 3 26

4 Arrays, nested loops and composite operators

Creating an array

Arrays are useful when an ordered group of values need to be stored. The values should
be of the same type (int, double, etc.) and there should be a fixed number of them, for
example the entries of a vector or matrix. There are similarities in the behaviour of arrays
and variables, but also some differences — here is how to create an array that will contain
entries that are of type double.

// way to create an array and fill with some numbers
double[] vector1 = {1.2, 0.0, 5.3, 1.4};

// way to create an array but fill in values later
double[] vector2;
vector2 = new double[4]; // where 4 is the size (no. of entries)

This code creates the arrays {1.2, 0.0, 5.3, 1.4} called vector1 and {0.0, 0.0, 0.0, 0.0} called
vector2 — note that unlike a variable, if you do not specify initial values, all entries are
automatically initialised to zero. The first line in both examples doesn’t look unlike declaring
a variable, and you can equally well use other data types as desired, to get arrays of integer
values for example. The second line in both cases gives the length or size of the array, for
vector1 this is done by explicitly giving the values of each element, in the case of vector2
space is reserved for four values of type double but the values will be filled in later in the
code. As with variable declarations the two lines of code can be reduced to one, e.g.
double[] vector2 = new double[4].

Figure 4.1 illustrates the creation of an array, which results in the values in the array occu-
pying four adjacent words in the computer’s memory. The array itself is a reference to this
data.

double[] a = {1.0, 2.0, 3.0, 4.0};

2.01.0 3.0 4.0a

Figure 4.1: Example of an array of doubles in memory.

Array manipulation and references

To make use of the values stored in arrays you should refer to each element individually.
The numbering of each element starts at zero, thus for vector1 above, the number 1.2 is the
zeroth element vector1[0], 0.0 the first element vector1[1], and 5.3 the second element
vector1[2], and so on. Individual array elements vector1[2] can then be used as any double
variable would be, so you can for example assign a number to it, use it in a calculation, like
this:

PH2150 Java Programming Section 4 27

System.out.print(vector1[1]);
vector1[0] = 7;
vector1[2] = vector1[0]*(-7.0) + vector1[3];

Often though you will want to perform the same or similar operations on all the entries of
an array in turn. This can be done using loops, and shows the major advantage of an array
over using many individual variables.

// create array called ‘list’ and then print out elements to screen
int[] list = {1, 4, -3, 66, 19};
for (int i=0; i<5; i++)
{

System.out.println(list[i]);
}

Which saves us typing out System.out.println(...) five times. Note that here the loop
variable i runs from 0 to 4 as the elements of the array are numbered from zero. It is a very
common mistake to let the loop variable increase to too high a value. For example it would be
easy to type i<=5 by mistake, by thinking about the array having five entries. If a variable
does go beyond the end of an array, the error will not be picked up by the compiler, but
instead results in an ArrayIndexOutOfBoundsException when the code is executed. Also be
careful to start with int i = 0 to use the first array entry.

// create array of general length filled with random no.s
double[] randomNos = new double[N]; // value of N set somewhere prev.
for (int i=0; i<N; i++)
{

randomNos[i] = Math.random();
}

In this example the loop not only saved us typing randomNos[...] = Math.random();
many times (N could be 10, 1000, 100000 or more!), but in fact we don’t even need to know
whether the array is 10 or 100000 long, so long as we have the value stored in N.

If you wish to use the length of any array in your code, append .length to the end of the
name of the array. For example the value of list.length would be 5 or randomNos.length
would be the value of N. In the former case it is best to use list.length instead of typing
5 explicitly because it makes the code more general and requires less alteration if the length
of the array were altered in a second version of the program.

PH2150 Java Programming Section 4 28

Exercise 4.1 (5 marks)

The aim of this exercise is to practice using arrays in loops and accessing individual array
elements.

Write a program, ‘Arrays’, that creates an array of length N, where N is an int you declare
and set in the program. You will now fill the array with the first N numbers of the Fibonacci
sequence. This is a sequence which crops up frequently in nature. The first two numbers are
1, then the rule to compute the rest is that each number is the sum of the two previous, i.e.

x1 = 1, x2 = 1, xn = xn−1 + xn−2 (1)

The resulting sequence is 1, 1, 2, 3, 5, 8, 13,

At the END of your program, print out the first ten numbers of the sequence using a loop.
Separately it should also print out the 30th and 46th numbers in the sequence. A print-out
of your program and sample output should go in your lab notebook.

What if you want to create a new array which contains the same values as an existing array?
You may be tempted to type double[] b = a where a is the array to be copied to the new
array b. This is valid code, but it has a slightly different effect to the one desired. In order
to create a copy of an array you should use a for loop and set each value individually:

// create array b of same length as array a
double[] b = new double[a.length];

// set each value of b equal to equivalent value of a
for (int i=0; i<a.length; i++)
{

b[i] = a[i];
}

Exercise 4.2 (5 marks)

Copy the java program ArrayCopyDemo.java from the course web site8. Read the code and
try to predict what it will do. When you have decided, compile it and run it. Comment on
the different effects of the two copying methods and explain what has happened.

For a usual variables, double b = a, copies the value of a to b. With arrays, this is not the
case. Instead, b is set to to refer to the same data that a refers to. There is therefore still
only one copy of the data so any change to the values of b is a change to the values of a.
This is due to arrays being reference data types, that is they are handled by reference, unlike
int, double, boolean etc. which are primitive data types, handled by value. For example in
int[] list = {1, 4, 3} the array {1, 4, 3} is stored somewhere in the computer’s memory,
and list is a variable name that refers to it, but we might set other variable names to refer
to this same area of memory using the = operator. For now it is hard to see the advantage of
arrays behaving in this way, but some should become clear in later sections.

8http://www.pp.rhul.ac.uk/~george/PH2150/downloads/ArrayCopyDemo.java

PH2150 Java Programming Section 4 29

http://www.pp.rhul.ac.uk/~george/PH2150/downloads/ArrayCopyDemo.java

Note that anything created with a new command, not just arrays, is a reference data type.

Figure 4.2 illustrates what happens when you assign one array to another.

double[] a = {1.0, 2.0, 3.0, 4.0};

2.01.0 3.0 4.0a

2.01.0 3.0 4.0
b

a
2.01.0 3.0 4.0a

2.01.0 3.0 4.0b

double[] b = a;

Figure 4.2: What happens when array a is defined and then array b is set equal to a? Since
a and b are references, they both point to the same array data (bottom left). It is important
to understand that b does not get its own copy of the array data (bottom right).

The only other strange behaviour of reference data types to be aware of at this stage is that
of the == comparison operator.

double[] a = {1.0, 2.0, 3.0, 4.0}
double[] b = {1.0, 2.0, 3.0, 4.0}

if (a == b)
{

// code here not executed
}

Rather than comparing the values of a and b, their references are compared — that is the
code asks whether a and b refer to the same area of memory. So even though they have the
same values the test a == b will be false and the code within if never executed.

Conversely, if the references are both to the same data, then they are considered to be equal
so the comparison will be true:

double[] a = {1.0, 2.0, 3.0, 4.0}
double[] b = a

if (a == b)
{

// code here always executed, a==b true!
// both references refer to same array

}

PH2150 Java Programming Section 4 30

Composite operators

As a short diversion from arrays, you will by now have been using the arithmetic operators
+, -, *, / and % enough to appreciate the usefulness of the composite operators. These are
+=, -=, *=, /= and %=, and their uses are:

x += y // shorthand for x = x + y
x -= y // shorthand for x = x - y
x *= y // shorthand for x = x * y
x /= y // shorthand for x = x / y
x %= y // shorthand for x = x % y

Multi-dimensional arrays and nested loops

It is also possible to create arrays with two or more dimensions. Two dimensional arrays
are useful for storing matrices for example. In Java, arrays of more than one dimension are
created by making arrays of arrays. This is known as nesting. The follow examples should
make this more clear.

// two ways of creating two dimensional arrays
int[][] matrix = {{0, 1, 2, 3},

{4, 5, 6, 7},
{8, 9, 10, 11}};

int[][] square = new int[5][5]; // creates 5 by 5 matrix with zero values

Taking the above 2D array matrix as an example, in order to perform operations on each
value of a multi-dimensional array, it is necessary to nest several for loops. The example
code below sets every entry of matrix to 1.

for (int i=0; i<3; i++)
{

for (int j=0; j<4; j++)
{

matrix[i][j] = 1;
}

}

You can think of the outer loop (i) moving down the rows of matrix, then the inner loop
(j) moves along each row. Note that when you nest loops, the loop variable of each loop (i
and j in the example above) must be different for this to work properly.

Particularly with two dimensional arrays such as matrices, it can be helpful to print the
entries to screen in columns and lines as they would normally appear in a matrix. Firstly
creative use of System.out.println() and System.out.print() (the latter does not move to the
next line after printing the output) can help. Secondly there are some special characters:

PH2150 Java Programming Section 4 31

"\t", which produces a tab and "\n" which moves to the next line. These can be included
anywhere in a string.

Exercise 4.3 (10 marks)

Write a program that will multiply together two 3×3 matrices (as defined below) with integer
entries and print the resulting 3×3 matrix to the screen, making use of nested for loops, and
the += composite operator. Use "\t" to help format the output. Include the program listing
and output in your lab book. You can check the answer by hand or ask a demonstrator to
check that it is correct.

int[][] matrixA = { { 1, 0, 1 },
{ 1, 2, 3 },
{ 1, 4, 5 } };

int[][] matrixB = { { 5, 4, 0 },
{ 4, 8, 1 },
{ 1, 1, 0 } };

Hint: carefully analyse how matrix multiplication works before you write your program. Show
this analysis in your lab book to justify your program design.

PH2150 Java Programming Section 4 32

5 More advanced input and output

Formatting output

Sometimes you will want to control the way in which the output of a program is written. For
example, for some numbers not all the significant figures will be required, or in fact they may
get in the way if you wish to write more than one result on each line. It can be helpful then
to able to format output.

There are three steps to printing formatted output. The first is to create the format9 that
you wish to use. This is done using

DecimalFormat myFormat = new DecimalFormat("###.000");

where myFormat is what you decide to call the format. The format is defined using the string
"###.000" where # denotes a digit and 0 denotes a digit or a zero (if there is not a digit to
go in this place a zero is printed instead). The decimal point has its usual meaning. E.g. the
number 23 in this format would be printed as 23.000.

For comparison, if the format was "000.000", the output would be 023.000. This shows the
difference between # and 0.

Note that to use DecimalFormat, you will need to add import java.text.DecimalFormat;
at the top of your program, so that the compiler understands what you mean by it. If you
forget this, you will get a compiler error “cannot resolve symbol”.

Once a format has been created in this way it may be used again and again for different
numbers being printed out. To output a number, here 23, in the format myFormat use the
code:

// creates a string (called sOutput),
// which is the number in the desired format
String sOutput = myFormat.format(23);

// print out as usual
System.out.println(sOutput);

The formats created may be used on all number variable types in exactly the same way.
Despite the name DecimalFormat the value may be an integer, as demonstrated above, or
formats need not include a decimal place, thus printing numbers truncated to integer form.

As well as #’s and 0’s an E may be used to specify the exponential from of a number. For
example "0.##E0" would give a number in scientific format, with a maximum of two decimal
places — any extra digits being rounded off.

DecimalFormat mySciForm = new DecimalFormat("0.##E0");
String sOutput = mySciForm.format(157.98642);
System.out.println(sOutput);

9In the example, myFormat is actually an object of type DecimalFormat, but objects will not be covered
until section 8, so for the moment you can assume that it works like a variable which, rather than a number,
stores something more abstract which describes how to format numbers.

PH2150 Java Programming Section 5 33

The above code outputs 157.98642 in scientific format with two decimal places. The output
from the program is therefore 1.58e2

As a shortcut, there is no need to create the intermediate String. The following code does
exactly the same as the previous example.

DecimalFormat mySciForm = new DecimalFormat("0.##E0");
System.out.println(mySciForm.format(157.98642);

Exercise 5.1 (5 marks)

What would the following print out? Work it out without using the computer and write the
answer in your lab book. Then write a program to check your answers.

DecimalFormat fmt1 = new DecimalFormat("0.000E0");
DecimalFormat fmt2 = new DecimalFormat("0.0##");
System.out.println (fmt1.format(0.1)); // (a)
System.out.println (fmt1.format(3.14159)); // (b)
System.out.println (fmt2.format(1.5)); // (c)
System.out.println (fmt2.format(0.0009)); // (d)
System.out.println (fmt2.format(2.7e3)); // (e)

Note: your test program will need to import java.text.DecimalFormat.

More detailed information on formatting numbers can be found in the online Java API doc-
umentation [4].

Input from a file

As with reading input from the keyboard, you will need to include some particular code near
the beginning of your source file in order to use the methods for reading input from a file.

import java.io.*;

public class InputDemo
{

public static void main(String[] args) throws IOException,
FileNotFoundException

{

This is the same as for keyboard input but with the addition of FileNotFoundException.
This is the exception that will be written to your screen if the input file you specify does not
exist.

To open your file (the example here is named ‘file1.in’) from which the input should be read:

// Open file to read input from

PH2150 Java Programming Section 5 34

BufferedReader br = new BufferedReader(
new InputStreamReader(
new FileInputStream("file1.in")));

As with keyboard input you are not yet expected to understand how this code works, it is
enough to be able to copy and make use of it. The indentation is not necessary but again
just makes things clearer. This code need only be included once in your program. Once the
file is open, a line of the file is read using:

temp = br.readLine(); // where temp is a String you should declare first

Every time you use this command the next unread line of the file will be placed into the string
temp. As with keyboard input, one of Double.parseDouble(temp), Int.parseInt(temp),
etc. must be used to convert the string temp into the number type if required.

To read a file, line by line, until the end of the file is reached, you can do something like this
(assuming temp and b are declared as above):

while ((temp = br.readLine()) != null)
{

System.out.println("read line: " + temp);
}

Output to a file

Printing output to a file is quite similar to getting input from a file, although the file need
not already exist. At the beginning of your source file import java.io.* and throws
IOException are needed.

To open the file, here called ‘file2.out’, to write output to:

// Open file to print output to
PrintWriter q = new PrintWriter(

new FileOutputStream("file2.out"), true);

This line is only needed once when you first want to output to the file. The file will be closed
(with the contents saved) automatically when the program ends. Don’t forget the true when
creating the PrintWriter, or this will not be the case! If the output file already exists when
you run the program, e.g. from the last time you ran it, it will be overwritten and lost, so
copy or rename files containing output you want to keep, before re-running a program.

Then whenever you want to write data to the file:

q.println("output to be written to file");

The above line can be treated in the same way as System.out.println(), so you can output
variable values etc. as usual. With println() data will be written to a new line each time.

PH2150 Java Programming Section 5 35

Exercise 5.2 (6 marks)

Using the techniques described in this section:

(i) Write a program that will read in numbers from a given file and print them on the
screen. Use the file input.txt as input which you can download from
http://www.pp.rhul.ac.uk/~george/PH2150/downloads/input.txt.
Include your program output in your lab book.

(ii) Modify the program to write the numbers out to a different file, in scientific format with
6 significant figures, e.g. 3.2 is written as 3.20000E00, 0.5 is written as 5.00000E-01.
Include the program listing and a printout of the output file in your note book.

Don’t forget to write the following at the top of your program:

import java.io.*;
import java.text.DecimalFormat;

PH2150 Java Programming Section 5 36

http://www.pp.rhul.ac.uk/~george/PH2150/downloads/input.txt

6 Multiple methods

Basics of using another method

So far all the source files you have written have had the same basic structure. Firstly a
public class for which you choose the name, the contents of which are inside a set of curly
brackets. Secondly, inside the class, a public static void method which must be called
main, and must have the argument String[] argv. Again the contents of the main method
are contained within a set of curly brackets {}.

/**
* Purpose: To show most simple program structure.
*/

public class Simple
{

public static void main(String[] argv)
{

//some program code goes here
}

}

We are now going to add to this program structure a second method. See that this second
method is still inside the class, but unlike all the other code you have made use of so far, it
is outside the main method.

/**
* Purpose: To show structure of program with multiple methods.
*/

public class LessSimple
{

// another method - can be called what you like
public static void doSomething()
{

//code may go in here in the usual way - variables, ifs, loops etc.
//must end with a return statement...
return;

}

// main method as usual
public static void main(String[] argv)
{

//some program code goes here
//should use the doSomething() method
//this is done by typing
doSomething();

}
}

The lines doSomething() and return will be explained shortly.

When the program is run, the main method is executed. Any other methods that exist will
only be executed if they are used by the main method. The main method can be thought of

PH2150 Java Programming Section 6 37

as the top level of the program, from which other methods are invoked. It is good practice to
keep main very short and simple, by splitting your program up into different methods which
can be called from main.

The convention is to have the main method written as the last method in your source file,
just so that it is easy to find. The order in which methods are written doesn’t affect the order
in which they are executed — even though it is at the end, the computer always begins by
executing the main method.

Note that the additional method is declared using public static void just as for the main
method.

Here is a simple example with exactly the same structure as above.

/**
* Purpose: Prints the first 10 square integers,
* as an example to show the use of two methods.
*/

public class Trivial
{

// method to print squares from one to a hundred
public static void squares()
{

for(int i = 1; i < 11; i++)
{

System.out.println(i*i);
}
return;

}

// main method
public static void main(String[] argv)
{

squares(); // calls the squares method
}

}

The line of code squares(); is where the main method makes use of the squares method,
asking it to carry out its set of instructions. This is known as a call to the squares method.
The return statement at the end of squares sends flow of the program back to the method
that called it, and so execution of the main method continues.

You may have found that writing programs where all your code is within the main method
can become very long, which makes the source file look messy or unclear. It can also be
awkward if you have similar groups of calculations or instructions that need to be performed
and need to be typed in separately each time. Using additional methods can help with both
of these issues, making code tidier and therefore easier to understand, and reducing the need
to duplicate code. There is little obvious advantage in having separated the above program
into two methods — the same could very easily be achieved with just a main method — it is
just a simple example in how to write and call methods. However with larger programs there
are significant benefits of separating your code into several methods in this way.

PH2150 Java Programming Section 6 38

Passing information between methods

What if you want the behaviour of a method to vary depending on a value of a certain variable
in your main method? It is possible to pass several values to method, and receive up to one
value back. You may for example have several numbers you would like some calculation
performed on. You could pass these values to a method and then receive the result back.

Let’s start with how to give, or pass, a value to a method. This is done by giving the method
an argument, which goes between the round brackets () after the method name. Look at the
following example, an explanation follows.

/**
* Purpose: Example of program with two methods.
* The main method uses the printSquare method.
* The printSquare takes an double argument and prints the
* value of the argument squared to the screen.
*/

public class ArgExample
{

// method to print square of a value to screen
public static void printSquare(double y)
{

System.out.println(y*y);
return;

}

// main method
public static void main(String[] argv)
{

double x = 5.0;

printSquare(3.0); // call to print the square of 3.0
printSquare(x); // call to print the square of x

}
}

The method printSquare is declared as public static void printSquare(double y).
Unlike before, the brackets that follow the method name now contain a variable declara-
tion, in this case for a variable y which is of type double. The variable y exists within this
method and can be used here for calculations etc..

Because the variable declaration for y is in the round brackets, whenever the method printSquare
is called the method expects a double value to be in the round brackets in the call statement.
So the call for printSquare may look like:

printSquare(3.0);

In the printSquare method y then takes this value, for the case above 3.0, so the value 9.0
is printed to the screen.

Within the main method a variable x is declared and given a value. When the call printSquare(x)
is used, y takes whatever value x has in the main method at the time, in this case 5.0, so 25.0
is printed to the screen.

PH2150 Java Programming Section 6 39

It is possible for a method to have several arguments. These should be separated by commas,
e.g.

public static void calculate(double x, double y, int i, short n)
{

//method code goes here
return;

}

then to call the method simply enter values, or variables, of the expected type:

calculate(3.0, result, 2, num) // where result and num are
// double and short variables respectively

Exercise 6.1 (6 marks)

The purpose of this exercise is to write your own class with multiple methods.

• Write a class called MultMethEx1 which has a method called printTriangleArea to
calculate the area of a triangle, given the lengths of the three sides as arguments.10 It
should print out the result.

• Write a main method which asks the user to enter values for the sides of a triangle and
then uses the printTriangleArea method to calculate and print the area. Do not
write code to check the input yet.

• Include the program listing and sample output in your lab book.

• Bear in mind the constraints on the sides of the triangle11 when testing the program.

So far all the additional methods you have seen have been declared as void and have not
passed back, or returned, any values to the method that called them. This is the meaning
of void, that the calling method should not expect any result to be passed back to it from
the method being called. However methods can also be declared as double, int, boolean,
String, or any other variable type, in which case the code for the method must return a value
of that type. This is probably easiest to understand from an example.

import java.io.*;
public class NonVoidMethodExample
{

public static double function1(double x)

10 The area of a triangle with sides a, b, c is given by Heron’s formula:

area =
√

s(s− a)(s− b)(s− c)

where s = (a + b + c)/2.
11In order for a, b and c to form a triangle, two conditions must be satisfied: all side lengths must be

positive; the sum of any two side lengths must be greater than the third side length.

PH2150 Java Programming Section 6 40

{
/* write some mathematical function of x here, e.g. x + 3x^2 */
return (x + 3*x*x);

}

// and then to call the above method

public static void main(String[] args) throws IOException
{

BufferedReader br = new BufferedReader(
new InputStreamReader(System.in));

System.out.print("Enter a value of x at which to evaluate f(x) ");
System.out.print("or return to end: ");
// read input until an empty line is returned
String nextLine;
while ((nextLine = br.readLine()) != null)
{

if (nextLine.equals(""))
{

break;
}
double x = Double.parseDouble(nextLine); // JDK 1.3.1
System.out.println("f(x) at x=" + x + " is " + function1(x));
System.out.print("Enter another value of x, or return to end: ");

}
}

}

The above example defines a method called function1 which has the return type double and
also takes a double argument. The method simply performs a calculation using the argument
and returns the result.

The use of this method is demonstrated in the main method. In this example, the user is
prompted to enter a number, then there is a loop which takes each entered number, uses the
function1 method to calculate another number, and prints them. The program ends when
the user enters nothing.

Notice that the call to a void method exists on its own on a line. In contrast, in the example
above, there is a value returned from the method, so this needs to be used somehow in a
calculation or stored in a variable.

Other information about methods

A method can not alter the values of any of its arguments. Thus the following is not valid
code and will not compile.

public static int increment(int i)
{

i += 3; // this is not allowed, code will not compile
return i;

}

PH2150 Java Programming Section 6 41

You do not have to restrict yourself to calling additional methods just from the main method.
If you have two or more additional methods one may call another.

Exercise 6.2 (9 marks)

Starting with the class MultMethEx1 you wrote for the previous exercise, make a new version
of the class called MultMethEx2.

(i) Add a new method called calcTriangleArea that performs the same calculation as
printTriangleArea did, but instead of printing the area to the screen, it returns the
area as a double. Modify main to use both methods and show that they produce the
same result.

(ii) Change the code in the method printTriangleArea so that it uses the new method
calcTriangleArea instead of calculating the area itself. No changes to main should be
necessary. Demonstrate that your program produces the same result.

(iii) Add a method testIfValidTriangle which takes the three sides as arguments and
checks that they form a valid triangle, according to the criteria given in the previous
exercise. This method should return a boolean value: true if the sides do make a valid
triangle, or false if not. Use the testIfValidTriangle method in the main method to
validate the input before trying to calculate the area.

Note that in answering question (ii) you have benefited from having encapsulated a well-
defined part of your program inside a separate method (printTriangleArea). This allows
you to modify the internal workings of this method without requiring any changes elsewhere
in the program where the method is used.

Include the program listings and sample outputs from all the questions above in your lab
book.

Method naming

Notice from the above examples that method names follow several conventions.

• Method names are often verbs because methods should do something.

• A method should do what its name says - no more or less!

• Start names with a lower case letter, just like variables.

• Subsequent words in the name start with a capital letter, just like variables

Class variables, method variables and scope

Look again at the example that was used earlier, reproduced below. There are two variables
x and y.

PH2150 Java Programming Section 6 42

/**
* Purpose: Example of program with two methods where one method
* takes an argument. The program prints the value of
* x squared to the screen.
*/
public class ArgExample
{

// method to print square of a value to screen
public static void printSquare(double y)
{

System.out.println(y*y);
return;

}

// main method
public static void main(String[] argv)
{

double x = 5.0;

printSquare(3.0); // prints the square of 3.0 to the screen
printSquare(x); // prints the square of x to the screen

}
}

Variable y, which is declared at the same time as the printSquare method, only exists within
this method. Each time the method is called, the variable is recreated, and then ceases to exist
when flow returns to the main method. Code outside of the printSquare method cannot use
y. That is, the scope of y is the method printSquare. The concept of scope was introduced
in section 3, but now it has to be extended to include methods and classes.

Similarly x is defined inside the main method, and may only be used in there. The scope of
x is the main method. So x and y exist independently of each other, within their respective
methods.12 They are known as method variables. It is not possible for printSquare to use
the variable x, or for the main method to use y, because the variables do not exist there.

Before this section on multiple methods, all the variables you have used have either been
declared in the main method (in which case their scope is from their declaration to the end
of the method), or within a for loop, if statement or similar block of code (in which case
their scope was from declaration to the end of the code block, denoted by the closing curly
bracket }). Now you have also created variables in other methods, but the principle is just
the same.

There is one further level at which variables can be declared. These are class variables. They
are variables declared outside of any methods, but within the class, and as such exist for all
methods in the class. Their basic declaration is the same as with any variable, however like
methods they should have public static added to the beginning. Here is a simple program
which does something similar to the previous example, but where the scope of x is different.

/**
* Purpose: Example of program with a class variable
* The program prints the value of x squared
* to the screen.
*/

12Because the variables exist independently in their separate regions, there is no reason why they should
not be given the same variable name if you wish. Even if both were called x the two variables would exist
completely independently in their respective scopes.

PH2150 Java Programming Section 6 43

public class ScopeExample
{

// declare class variable x
public static double x;

// method to print x squared to screen
public static void printXSquare()
{

System.out.println(x*x);
return;

}

// main method
public static void main(String[] argv)
{

// give x a value and print its square to screen
x = 5.0;
printXSquare();

// change value of x and print square to screen
x = 2.0;
printXSquare();

}

}

Since x exists within the entire class, both methods can make use of it.

There is no need to pass the value of x to the method printXSquare, so there is no need for
the method to take an argument. Note that because printXSquare has been written to print
the value of x2 to the screen, it can not be used to print the square of any other value. It is
not in general a very useful method.

To summarise these ideas of variable scope:

Class Variables An example is the variable a in the code below. For now you should always
declare using public static. The variable is declared in the class, but outside of the
methods. It is visible to all the the class, so all the methods of the class may use it.

Method Variables Examples are b and c in the code below. Method variables are declared
inside a method (c), or as an argument in a method declaration (b). The scope of c is
from its declaration to the end of the method. The scope of b is the entire method.

Variables declared in a block of code E.g. the variables d and e in the code below. They
are normally declared within a block of code (code within a pair of curly brackets {})
and their scope is from declaration to the end of that block of code. In the case of a
for loop the declaration in in the round brackets following for and the variable exists
for the duration of the loop.

/**
* Purpose: Program that does nothing useful, but using variables
* that have a variety of scopes.
*/

public class ScopeSummary

PH2150 Java Programming Section 6 44

{
// scope of a is the entire class
public static double a;

// scope of b is all of method alpha
public static double alpha(int b)
{

double c; // scope of c from here to method end
c = a*b;
return c;

}

public static void main(String[] argv)
{

// scope of d is all of for loop
for (int d=1; d<100; d*=2)
{

if ((d%3) != 0)
{

a = d%3.0 + 1.234;
double e = alpha(d); // scope of e starts here
System.out.println(e);

} // scope of e ends here
}

}
}

PH2150 Java Programming Section 6 45

Exercise 6.3 (4 marks)

With reference to the example code above, categorise the following statements as true or
false.

(i) The variable a is visible in any method of the class.

(ii) The variable d is visible inside the method alpha.

(iii) The variable c is not visible inside the method main.

(iv) The variable e is visible anywhere inside the method main.

Passing arrays to methods

You will remember from the section about arrays, that arrays are reference variable types
and as such their behaviour is slightly different from that of variables of primitive data types
such as double, int, etc. Passing arrays to or from methods can be very useful. However it
is the main area where reference data types behave slightly differently from primitives.

To pass an array to a method, the method declaration should look like this:

public static void takeArrayMethod(double[] numberList)
{

// method code
return;

}

and then the method call might look like:

takeArrayMethod(vector1); //or
takeArrayMethod({1.0, 3.4, 5.2});

where vector1 would be an array of double values already created by the program.

For a method to return an array the method should be declared as you might expect:

public static int[] returnArrayMethod()
{

// method code which includes creating an int array called vector2
return vector2;

}

When a primitive data type, e.g. double, is passed to a method, its value is copied to the
new method variable. For reference data types, a new reference is created, but unlike for
primitives, the data that is referenced is not copied to a new area of memory. Instead the

PH2150 Java Programming Section 6 46

new reference is set to refer to the original area of memory storing the data. This is known
as passing by reference.

As was mentioned earlier it is not possible for a method to change the value of its arguments.
E.g.

// method that tries to change argument value
public static double increase(double x)
{

x += 10; // code not allowed so
return x; // will not compile

}

The equivalent for an array is that the variable (i.e. the array name) can not have its reference
changed. E.g.

// method that tries to change argument reference
public static int[] change(int[] vector2)
{

vector3 = {1,2,3};
vector2 = vector3 // code not allowed so
return vector3; // will not compile

}

However it is possible to change individual values in the array, in the area of memory that
vector2 refers to. This is in contrast to primitive data types where the value of an argument
can not be changed. E.g.

// method that changes the values of an array
public static void valueChange(int[] vector2)
{

for(int i=0; i<vector2.length; i++)
{

vector2[i] = i+1; // this IS allowed
}
return;

}

Note that in this particular case, since any value changes are made to data in the original
area of memory, there is no need to have return vector2; thus the method is declared as
void.

Exercise 6.4 (5 marks)

It is useful to have generic methods to perform common tasks that you will use again and
again, saving yourself a lot of typing. It also makes your code more concise, abstract and
easy to understand. One common programming task is to print the contents of an array. In a
large program with arrays this might have to be done many times. For this exercise you will
write a method to do this and use it to simplify some code you wrote in a previous exercise.

PH2150 Java Programming Section 6 47

• Take your answer to exercise 4.2, and rename it.

• Add a separate method to print out any integer array.

• Change the main method to use this utility in place of any existing loops that print the
contents of an array.

• Put the modified program listing in your lab book along with sample output.

If you need to print arrays in any future exercises, you should try to re-use this method.

PH2150 Java Programming Section 6 48

7 Numerical problems and multiple classes

Numerical integration

Numerical methods are a collection of techniques for solving mathematical problems which
lend themselves to implementation as computer programs. They exist to solve all sorts of
problems, for example differentiation, minimisation, sorting data and solving differential equa-
tions. Numerical methods are particularly useful when it is either impossible or impractical
to solve a problem analytically.

The trapezium rule for numerical integration of a function f(x) is∫ xN

x1

f(x)dx = h[
1
2
f1 + f2 + f3 + ... + fN−1 +

1
2
fN] + O(

(b− a)3f ′′

N2
)

= h[
1
2
(f1 + fN) +

N−1∑
i=2

fi]

where N − 1 is the number of trapezia, x1 and xN are the lower limit and upper limits of
integration respectively, and h is the trapezium width.

Here you will use the trapezium rule to numerically integrate a function. This exercise will
allow you to put into practice many aspects of Java programming that you have learnt so
far. A reminder/primer on the trapezium rule can be found in Appendix C.

Exercise 7.1 (20 marks)

Write a program that will make use of the trapezium rule to numerically integrate a mathe-
matical function.

The following steps are given as a guide on how to proceed with the program. It is recom-
mended that you follow these steps closely to get all the available marks.

1. Write a separate method to return the value of the function you want to integrate. For
example, this is a definition of f(x) = 2x:

public static double f(double x)
{

return 2*x;
}

2. Write a method which implements the trapezium rule. It should take as arguments the
range over which to integrate (x1 and xN) and the number of steps (N). It should use
these parameters to compute the integration using the trapezium rule and return the
result. It will call the method f you defined in the previous step.

3. Write a main method to prompt the user to type in values of x1, xN , and N , call the
above method and print the result. It should check the value of N supplied is valid
before proceeding to any calculation, but it is sufficient just to exit with a auitable error
message if the value is invalid.

PH2150 Java Programming Section 7 49

4. Test your program, using a function linear in x as shown above, first with N = 1 (which
should fail the validity check) then N = 2 and a few values where N > 2. Calculate the
answer by integrating the function by hand. You should get exactly the right answer
regardless of the value of N (why?)

5. Next, test your program with a second order polynomial for several values of N . Again,
compare with the analytical (hand calculated) result.

6. Study what happens to the accuracy of the answer as N increases. Show how the
convergence relates to N . Is this what you expect from the formula for the trapezium
rule?

7. Based on your findings, devise a method to estimate the accuracy of a calculation when
the correct answer is unknown.

At this point you should have established enough confidence in your program to use it on a
function which cannot be integrated analytically.

When you have written your program, show a demonstrator that it works. You will then be
allocated a function to integrate from those below. It will help to sketch the function before
you try to integrate it.

(i) The function x4 log(x +
√

x2 + 1) over the interval x = 0, 1.

(ii) The function log(3x2) over the interval x = 0.7, 2.

(iii) The function cos(x2) over the interval x = −1, 1.

(iv) The function cos(x3) over the interval x = −1, 1.

(v) The function sin(x2) over the interval x = 0, 1.7.

(vi) The function sin(x3) over the interval x = 0, 1.4.

(vii) The function − log(sin(x)) over the interval x = 0.1, 1.

(viii) The function cos(tan(x)) over the interval x = −1, 1.

Make sure you document the design, code and testing of your program as well as the final
result. Most of the marks for this exercise will be awarded for these three things. As well
as giving the answer, estimate the accuracy of this number using the method you
devised in step 7 above. An accuracy of around 3 significant figures is sufficient.

PH2150 Java Programming Section 7 50

Multiple classes

You’ve now added extra methods to the basic program structure, but it is also possible to
add extra classes too. In the basic program structure you had one class, which was declared
public. Since a public class must always have the same name as the file in which it is
contained, if your program is to include an extra public class, it should be in a separate
file of the same name. Additional classes do not contain a main method.

One advantage of using additional classes, is if you’ve written some methods for use in one
program that you think may be useful in another. By writing these methods in a separate
public class (in a separate file) any program may make use of them in exactly the same
way as usual just by adding the name of the class containing the method, to the beginning
of the method name, i.e.

ClassName.methodName(argument);

Here’s a short example, based on the printSquare example from section 6, page 39. The
following code should be in a file called ‘MainClass.java’.

/**
* Demonstrate the use of the printSquare method in ExtraClass.
*/
public class MainClass
{

public static void main (String[] args)
{

double x = 3.0;
ExtraClass.printSquare(x); // call to print the square of x

}
}

The above code uses the method printSquare which is in this file, ‘ExtraClass.java’.

/**
* Utility class with some general methods
* which can be used by other classes
*/
public class ExtraClass
{

// method to print square of a value to screen
public static void printSquare(double y)
{

System.out.println(y*y);
return;

}
}

Both these files can be downloaded from the course web page.

PH2150 Java Programming Section 7 51

Splitting code up like this means that any other program you write may also make use of
the method printSquare without you needing to retype it. Obviously if you are going to do
this, it pays to make your code as general as possible and to comment it as fully as possible,
to avoid problems if you end up re-using it some time after it was originally written.

When compiling the file containing the main method, the compiler will automatically detect
if any other files/classes are used by the program and compile these too if necessary.

Splitting up programs over several files also makes it easier for more than one person to work
on a project at the same time — useful if you are programming in a team. One person can be
busy writing a main method, and as long as he/she knows what the class, method names and
their arguments are, they can make use of them in the main method. Another programmer
can worry about the details of how to perform the necessary calculations etc. within these
additional methods.

You’ve probably noticed by now that the form of the call to a method of another class looks
quite familiar. This is because you have been using it already, e.g. System.out.println()
and the mathematical functions such as Math.sin(x). These classes and their methods are
a standard part of the language and are automatically available for you to call in any Java
program.

PH2150 Java Programming Section 7 52

8 Object oriented programming

Introduction to object orientation (OO)

By now you have mastered all the basics that enable you to write programs that will perform
all the calculations you need. However we have not yet touched upon the style of programming
that Java was really designed for, object orientation, or 00. There can be great advantages in
writing your programs in an object oriented way. This section should serve as an introduction
to 00 programming in Java. If after this you wish to find out more, try chapter 6 of [1] and
chapter 2 of [2].

This section will require you to start thinking about classes in a different way. However,
despite the different style, you will still need the Java covered previously in the course. Also
bear in mind that, however a program is written, when running the program the computer
always starts with the one and only main method.

Creating an object

Objects are not dissimilar to variables or arrays in some ways. Like arrays they are reference
data types, and so may be passed to and from methods in the same ways as arrays. The
major difference is that the programmer can define the form that the object takes — such
as how many values it has and methods that are particular to objects of that type13. To see
how this works, read carefully though the following example.

Before creating any objects, we must write a sort of blueprint or template for them. This
‘blueprint’ is the class. Previously you have been using classes really only as a way of grouping
together methods in a program. The classes that act as ‘templates’ for objects are behaving
differently from the ones you have used before because we now begin to omit the word static
in class variable and/or method declarations.14

It is possible to imagine many scenarios when you might want to perform calculations using
complex numbers. It would be useful then to create objects that behave in the ways that
complex numbers do. Here is a class Complex that defines a complex number.

/**
* Purpose: A class from which objects can be created, which behave
* like complex numbers.
* NB: This class should be saved in the file Complex.java
*/
public class Complex
{

// two non-static class variables
// representing the real and imaginary parts of a complex number
public double realpart;
public double imagpart;

}

13The word type is used here in the same way as a variable may be of type int for example.
14The main method for the program should still always be declared public static void and should be in

a separate public class that does not contain any non-static methods or class variables.

PH2150 Java Programming Section 8 53

Then in any program where you wish to use complex numbers you can create an object of
this class. The object, just like a variable, can be given a name of your choosing. To create
an object of the class Complex write, in the method of another class:

Complex a; // creates a reference "a" (c.f. arrays)
a = new Complex(); // creates a new object of class Complex

// and sets "a" to refer to it

// often this is all written on one line
Complex b = new Complex();

Each object created from this class will have its own realpart and imagpart, and you can
refer to these in your program by adding .realpart or .imagpart to the end of the object
name. Thus a program that created a Complex object, gave it values and printed them to the
screen would look like this.

/**
* Purpose: Demonstrating how to create an object.
*/

public class ObjDemo
{

public static void main(String[] args)
{

// create an object of type Complex
Complex a = new Complex();

// give object values
a.realpart = 1.2;
a.imagpart = -5.9;

// print to screen
System.out.println(a.realpart + " + " + a.imagpart + "i");

}
}

As with any programs that involve more than one class (and therefore more than one file),
compiling the file that contains the main method will automatically compile any other files
needed for the program to work.

Exercise 8.1 (5 marks)

Type in the Complex class given above and save the file as ‘Complex.java’. Write your own
short program (main method only) similar to ‘ObjDemo’ above that creates two Complex
objects and gives them values, then adds them together by refering to the real and imaginary
parts as a.realpart and a.imagpart, and prints out the result. Put the program listing of
ObjDemo and output showing your tests in you lab book.

PH2150 Java Programming Section 8 54

This might seem quite a long-winded way of adding two complex numbers, and indeed it is.
Fortunately, using objects there is a simple way to do this that is considerably more versatile.

Non-static methods

The idea of a method is that it gives an object some capability which it ought to have.
Complex numbers should be capable of complex arithmetic, such as addition, subtraction,
multiplication and so on. For example, complex numbers should be able to add themselves
to other complex numbers, so it is reasonable to write a method to do this.

Below, a simple method for complex number addition has been added to the Complex class
used above.

public class Complex
{

public double realpart;
public double imagpart;

// method to add together two complex numbers & return the result
public static Complex add(Complex z, Complex w)
{

Complex sum = new Complex();
sum.realpart = z.realpart + w.realpart;
sum.imagpart = z.imagpart + w.imagpart;
return sum;

}
}

This first method add is similar in form to those you are already used to writing. When in
a program it is necessary to add two Complex objects together, the method call should look
like:

// where a, b and c are each objects of the class Complex
c = Complex.add(a,b); // add a and b, result stored in c

// (values of a and b remain unaltered)

as you may expect from having used methods in other classes in Section 7.

Here’s another addition method as an example, called increaseBy, note that this one is not
declared as static. This non-static method also goes inside the Complex class.

// method to add complex "z" onto this object
public void increaseBy(Complex z)
{

realpart += z.realpart;
imagpart += z.imagpart;
return;

}

PH2150 Java Programming Section 8 55

The calling of a method which isn’t declared as static is slightly different. Rather than
adding the method name to the class name as in Complex.add(...) the method name needs
to be added onto the end of the name of an object which has been created from that class.

a.increaseBy(b); // add b to a (result stored in a), or
b.increaseBy(a); // add a to b (result stored in b)

This is because increaseBy uses realpart and imagpart which can take different values for
each object created from the class. Thus it is necessary to specify which object of the ones
you’ve created it is that you want the method to be applied to.

Note that (unlike add) the method increaseBy acts on one of the objects and takes the other
as an argument. The realpart and imagpart are the real part and imaginary part of the
object on which the method acts. Whereas z.realpart and z.imagpart are the real and
imaginary parts of the object passed as an argument to the method. In the case of the addition
method above a.increaseBy(b) will leave a with the same value as b.increaseBy(a) will
give to b. So using increaseBy in this way is like a=a+b or b=a+b while using the add method
is like c=a+b.

Methods like increaseBy in the example above are known as non-static and defined without
the static keyword because they act on data which belongs to objects. In this case, the data
are the variables realpart and imagpart which clearly have different, independent values in
each object of type Complex. You will see the distinction between object and class data at
the end of this section.

Constructor methods

Constructor methods are a particular type of non-static method. They are given the same
name as the class and are automatically called when an object is created using new. They
are declared slightly differently from usual methods — just public, there is no void or
double etc. and should be the first methods in the class. A constructor method is used to
automatically initialise an object ’s variables to values of your choice. Here is an example:

public Complex(double x, double y)
{

// initialise class variables to values specified in method call
realpart = x;
imagpart = y;
return;

}

Enabling Complex objects to be created with any initial values like this:

Complex z = new Complex(3,4);

The new Complex() you have used before this is a default constructor, which initialises all
variables to zero. However, if you write your own constructor like the one above, the default
will not exist. It is possible to write more than one constructor for a class, if each takes

PH2150 Java Programming Section 8 56

a different number of arguments. Therefore you could add the default constructor to your
classes if you wish — i.e. in addition to the public Complex(double x, double y) above,
the class can also contain:

// default constructor
public Complex()
{

realpart = 0.0;
imagpart = 0.0;
return;

}

Using private class variables

So far you have been using public class variables. The word public makes them visible to
the other classes, so they can be referred to in the a.realpart way. This is not a good way to
design a class, for the following reason. Say you wanted to change the way the complex number
was stored from Cartesian to polar, so you replace the public class variables realpart and
imagpart with argument and modulus. Now you have a problem because anywhere in any
other program that Complex objects have been used, you will have to change them to use
the argument and modulus instead of realpart and imagpart.

It would be much better to somehow hide all the internal workings of the Complex class, so
any alterations to the class did not require changes to be made to any of the other classes
using Complex.

This is possible with a combination of private rather than public class variables, and
methods that can be called to find out what these variable values are. Class variables that
are declared as private can not be referred to from other classes, they are only visible within
their own class. It is considered better programming practice to use private rather than
public class variables, and you should aim to do this in the remainder of the course. Here
is the Complex class rewritten using only private class variables.

/**
* Purpose: A class from which objects might be created, which behave like
* complex numbers. Private variables are used to demonstrate
* good programming practice.
*/

public class Complex
{

// private class variables
private double realpart;
private double imagpart;

// default constructor, real and imaginary parts are initialised to zero.
public Complex()
{

PH2150 Java Programming Section 8 57

realpart = 0;
imagpart = 0;
return;

}

// another constructor
public Complex(double x, double y)
{

realpart = x;
imagpart = y;
return;

}

// method to find out value of real part
public double getReal()
{

return realpart;
}

// method to find out value of imaginary part
public double getImag()
{

return imagpart;
}

// method to add complex "z" onto this object
public void increaseBy(Complex z)
{

realpart += z.getReal();
imagpart += z.getImag();
return;

}

// method to add together two complex numbers and return the result
public static Complex add(Complex z, Complex w)
{

Complex sum = new Complex();
sum.realpart = z.getReal() + w.getReal();
sum.imagpart = z.getImag() + w.getImag();
return sum;

}

// method to print out in usual complex number form
public void print()
{

System.out.print(realpart);
if (imagpart < 0)
{

PH2150 Java Programming Section 8 58

System.out.print(" - " + (-1*imagpart) + "i");
}
else if (imagpart > 0)
{

System.out.print(" + " + imagpart + "i");
}
System.out.println("");
return;

}

}

See how the values of realpart and imagpart may now be obtained by calling the methods
getReal and getImag. Any calculations etc. that might need to be done with complex
numbers should be achieved by writing static methods such as add and non-static methods
like increaseBy.

Exercise 8.2 (8 marks)

Copy the file ‘Complex.java’ from the web site and save it in your current Java project or
directory: http://www.pp.rhul.ac.uk/~george/PH2150/downloads/Complex.java. Open
the file and look at it — it contains the Complex class listed above with private class variables
discussed above with the constructors, the increaseBy method and the print method.

(i) Write a program, in a separate class called something like “TestComplex”, that makes
use of the Complex class without changing it, to create two Complex objects, u and
v, give them values, add v to u using the non-static increaseBy method and print
the new value of u to the screen, using the print method. When you have checked that
it works, use it to calculate the result of (4 + 3i) + (2− 7i).

(ii) Now adapt ‘Complex.java’ by adding a new non-static method that turns a complex
number into its complex conjugate. Test it thoroughly by getting your program to
check all cases for the original number: imaginary part positive, imaginary part zero
and imaginary part negative. Show the results for (4 + 3i), (2− 7i), and 2.

Printouts of both files and sample outputs should go in your lab notebook.

Discussion of objects and static vs. non-static methods

This section begins with a slight diversion to teach you more about objects and object orien-
tation.

You have come across objects before — the code you were given to read input from a screen,
and to write and read data to and from files, involved creating and objects and using non-
static methods from classes that have been written by someone else. You haven’t seen the
files containing these classes because they are automatically included as part of the Java
language.

PH2150 Java Programming Section 8 59

http://www.pp.rhul.ac.uk/~george/PH2150/downloads/Complex.java

Despite never reading these classes, by being told what classes and methods exist you have
still been able to make use of them. This is the advantage of OO, it is much simpler to use
another class like this than try to understand the intricate workings of somebody else’s code.

Object Orientation is a powerful technique when it comes to modelling real systems in a
computer program. When it comes to designing your own programs using objects, as a
general guide, it is a good idea to write a class and create objects for things are are objects
in real life. Think about what you will be asking the objects to do or to tell you; these things
can be implemented as their methods.

Take the following example. Say you have a farm and keep sheep. You have several pens in
which the sheep are kept so each sheep is assigned a pen number. You may wish to find out
which pen a sheep is in, move it to another pen, or count the total number of sheep that you
own. To model this using OO you can write a class called Sheep which will make use of both
static and non-static class variables and methods.

/**
* Purpose: A class from which objects might be created, which behave like
* sheep. Demonstrates use of classes to represent classes
* of objects in real life, and the difference between using
* or omitting static.
*/

public class Sheep
{

// each sheep is kept in a pen for which the number is
private int penNumber;

// total number of sheep created from this class
private static int totalSheep = 0;

// sheep constructor
public Sheep(int n)
{

penNumber = n;
totalSheep ++;
return;

}

// find which pen a sheep is in
public int find()
{

return penNumber;
}

// move sheep to another pen
public void moveTo(int differentPen)
{

penNumber = differentPen;

PH2150 Java Programming Section 8 60

return;
}

// count all sheep
// NB: this is a static method, and it doesn’t
// use any non-static variables
public static int countAll()
{

return totalSheep;
}

}

This program can be downloaded from the course web page:
http://www.pp.rhul.ac.uk/~george/PH2150/downloads/Sheep.java

When in a program you create an object of type Sheep, each is created from the class which
acts like a template. Each sheep object has its own penNumber, however because the class
variable totalSheep was declared as static, each object does not get its own variable of
that name. There is just one variable totalSheep, belonging to the class Sheep, which is
shared and used by all of the objects created from this class.

The same is true for methods. Those declared without static are specific to each object and
are used by acting on an object. E.g. if there is a sheep called alfred, to find out the pen it
is in use alfred.find(). However the static method isn’t specific to each object so to find
out how many sheep there are in total, use Sheep.countAll() as a method call.

totalSheep=4

acts as a template for
creating sheep objects

Sheep class

from Sheep class
instance "dave" created

the class keeps track
of totalSheep

penNumber=4
penNumber=3penNumber=2

penNumber=1

its own penNumber
every object has

bob clara
davealfred

Figure 8.3: Illustration of the Sheep class in use. Four instances are created from the Sheep
class. Each instance has its own penNumber. The Sheep class also has a static class variable
totalSheep which keeps track of the total number of sheep in the class, not in the individual
instances.

See how adding the word static changes the behaviour of a class. When an object is created
from a class, it does not gain its own version of that method or variable. When all methods
and class variables are declared as static creating an object from the class would not do
anything, so objects can not be created from classes where everything is static. This is how
all the programming you were doing before this section on OO worked.

PH2150 Java Programming Section 8 61

http://www.pp.rhul.ac.uk/~george/PH2150/downloads/Sheep.java

Figure 8.3 illustrates this point, in association with an example class SheepTrial which uses
the Sheep class:
http://www.pp.rhul.ac.uk/~george/PH2150/downloads/SheepTrial.java

/**
* Trial program to demonstrate use of Sheep class
*/
public class SheepTrial
{

public static void main(String[] args)
{

// create Sheep instances
Sheep alfred = new Sheep(1);
Sheep bob = new Sheep(2);
Sheep clara = new Sheep(3);
Sheep dave = new Sheep(4);

// check total number of sheep
// note that this is a class method, not an object method.
System.out.println("Total number of sheep is " + Sheep.countAll());

// check which pen dave is in then move him to another pen
System.out.println("dave is in pen " + dave.find());
dave.moveTo(5);
System.out.println("moving dave ...");
System.out.println("dave is now in pen " + dave.find());

}
}

An object created from a class is sometimes known as an instance of a class. When everything
in a class is static there can only ever be one instance of a class, i.e. all the variables etc.
only exist once, resulting in the procedural programming style you were using before.

There is no exercise based directly on this material, but you will find it useful background to
the next section.

Closing remark

This section has only scratched the surface of object oriented programming. Another impor-
tant aspect of OO is inheritance, but it is beyond the scope of this introductory Java course.
It is a large subject which encompasses both the design and implementation of software. You
are encouraged to read more about it in the bibliography if you are interested.

PH2150 Java Programming Section 8 62

http://www.pp.rhul.ac.uk/~george/PH2150/downloads/SheepTrial.java

9 Statistics exercise using external software

In this section, you will learn how to use external software packages to create and plot
histograms and draw simple graphs. You will also get some experience of putting together a
larger software project from several components. This is a little different from the previous
sections, because you are expected to find out for yourself, from documentation and examples,
how to use the software you are given.

Exercise 9.1 (15 marks)

Follow the instructions below to produce the programs described, which you should demon-
strate with answers, listings, output and plots in your lab book.

Random number generator

Computer-generated random numbers are not truely random. This is because the computer
can only carry out instructions, so the outcome is always predictable. However, it can give
the appearance of randomness by using an algorithm which generates a sequence of numbers
which behave very much like random numbers. Because the sequence has been calculated,
it is reproducible. In fact, if you run your program several times with the same seed15 it
should always give the same sequence of ‘random’ numbers. For this reason they are known
as pseudo-random numbers.

Java provides a pseudo-random number generator in the java.util package, documented here:
http://download.oracle.com/javase/6/docs/api/java/util/Random.html

This documentation explains the interface of the Random class in great detail: its construc-
tors, methods and class variables. It is in a standard style of documentation for java, known
as “javadoc”. You may find it quite confusing at first but it is useful for reference so you
should try to get used to it. However, all you need to know to use the Random class for this
exercise is explained below.

Note that many of the explanations in the documentation contain code to show you how
some methods are implemented. You do not have to write this code to use the Random class.

To use it, first you will need to put an import statement at the top of your program:

import java.util.Random;

You should create an object of class Random, using one of its constructors, e.g.

Random r = new Random();

or, with a seed,

long seed = 1220645228; // change this for a different sequence
Random r = new Random(seed);

15an initial value supplied to the random number generator

PH2150 Java Programming Section 9 63

http://download.oracle.com/javase/6/docs/api/java/util/Random.html

Then you can call the methods of this object to get random numbers as required, e.g.
nextDouble() and nextGaussian(). These are listed in the documentation.

Write a program to generate 100 random numbers with a distribution that is:

(i) uniform between 0 and 1,

(ii) Gaussian.

For now, your program should just print the numbers to the screen or a file.

Making histograms

The concept of a histogram is explained in Appendix D.

A Histogram class is provided for you to use. It is documented here:
http://www.pp.rhul.ac.uk/~george/PH2150/jdocs/.

To use the Histogram class, you need to download it from here:
http://www.pp.rhul.ac.uk/~george/PH2150/downloads/Histogram.java

There is also a test program in which a a Histogram object is created and used:
http://www.pp.rhul.ac.uk/~george/PH2150/downloads/HistogramTest.java

Copy the Histogram class from the web site and find out how to use it by looking at the
documentation and the HistogramTest program.

Then, adapt your random number program from above to fill the generated random numbers
into histograms. Use different histograms for the uniform and Gaussian distributed random
numbers.

Add a method to the Histogram class which calculates the standard deviation of the his-
togram. The standard deviation is defined as:

σ =

√√√√ 1
N − 1

M∑
i=0

Wi(xi − x̄)2

where in this case, M is the number of bins, x̄ is the mean of the histogram, for which a
method is already provided, xi is the central value of bin i and Wi is the height of the bin,
which is used to weight the sum. N is the number of entries made into the histogram, not
including over/underflows. Use this method to print the standard deviation of your Histogram
objects.

Drawing graphs

The next step is to display your histograms graphically. To draw graphs you will use the
PtPlot package which is freely available [6]. This is already installed on the network so you
just have to know how to use it.

In order to make it easier to use, a class SimplePlot is provided for you. There are methods
to plot a curve (drawCurve) and a histogram (drawHistogram).

PH2150 Java Programming Section 9 64

http://www.pp.rhul.ac.uk/~george/PH2150/jdocs/
http://www.pp.rhul.ac.uk/~george/PH2150/downloads/Histogram.java
http://www.pp.rhul.ac.uk/~george/PH2150/downloads/HistogramTest.java

To use the SimplePlot class, you need to download it from here:
http://www.pp.rhul.ac.uk/~george/PH2150/downloads/SimplePlot.java.

The SimplePlot class is documented here:
http://www.pp.rhul.ac.uk/~george/PH2150/jdocs/.

There is also a test program in which a a SimplePlot object is created and used:
http://www.pp.rhul.ac.uk/~george/PH2150/downloads/SimplePlotTest.java

Look at the SimplePlot class, documentation and example (the example is the best place to
start). Using the instructions in the next section, try to compile and run the SimplePlotTest
class. It should produce three graphs: a curve, a scatter plot and a histogram. Look at the
code of SimplePlotTest to understand how to do this. Then use a SimplePlot object in your
program to display the histogram.

Documentation for the PtPlot package is available here:
http://ptolemy.eecs.berkeley.edu/java/ptplot5.3/ptolemy/plot/doc/index.htm.

Compiling and running with PtPlot

To compile and run Java programs which use an external package, you need to provide some
extra information when you give the compile and run commands. Note that these will only
work in a MSDOS command window, not in the Jext console.

First you need to know where the external package is. For convenience, this location can
be assigned to a MSDOS environment variable. It is recommended that you set PTII to the
location of the PtPlot package:

set PTII=P:\Applications\Ptolemy\ptplot5.3

You can now refer to this location in java and javac commands by writing %PTII%.

To compile a program that uses some external package, you have to tell the compiler where
to find this package, using the -classpath option, i.e.

javac -classpath %PTII%;. MyClass.java

Note that ‘;.’ must be at the end of the classpath. This tells the compiler to continue looking
in your current folder for files as well.

You only need to compile your class with the main method. The Java compiler will automat-
ically work out which other classes need to be compiled for you and do this.

To run your program, you must again specify the classpath, i.e.

java -classpath %PTII%;. MyClass

Final exercise

Your program should now create and plot random number distributions. You can use this to
investigate the central limit theorem.

Modify your program to make and plot histograms of the following:

PH2150 Java Programming Section 9 65

http://www.pp.rhul.ac.uk/~george/PH2150/downloads/SimplePlot.java
http://www.pp.rhul.ac.uk/~george/PH2150/jdocs/
http://www.pp.rhul.ac.uk/~george/PH2150/downloads/SimplePlotTest.java
http://ptolemy.eecs.berkeley.edu/java/ptplot5.3/ptolemy/plot/doc/index.htm

(i) add 2 uniform random numbers, subtract the number 1;

(ii) add 4 uniform random numbers, subtract 2;

(iii) add 6 uniform random numbers, subtract 3;

(iv) add 12 uniform random numbers, subtract 6.

Uniform random numbers are taken to be distributed uniformly between 0 and 1. Make at
least 1000 entries in each histogram.

Compare the mean and standard deviation of these histograms to those of the Gaussian you
made earlier. Also compare the shapes you see in the graphical plots. What do you notice
as the number of random numbers added together increases? What do you expect to happen
as it approaches infinity?

This demonstrates the central limit theorem, which is explained further in many statistics
books, such as [5].

PH2150 Java Programming Section 9 66

References

[1] Richard Davies, Introductory Java for Scientists and Engineers, First Edition,
Addison-Wesley, 1999.

[2] Mary Campione, Kathy Walrath, and Alison Huml, The Java Tutorial, Third
Edition, Addison-Wesley, 2001.

[3] Online Resources for Java Programmers (a list of basic and advanced tutorials)
http://download.oracle.com/javase/tutorial/index.html

[4] Java Platform, Standard Edition 6, API Specification
http://download.oracle.com/javase/6/docs/api/

[5] Glen Cowan, Statistical Data Analysis, Oxford University Press, 1998.
http://www.pp.rhul.ac.uk/~cowan/stat/

[6] Ptolemy Java Plotter (java classes for drawing graphs)
http://ptolemy.eecs.berkeley.edu/java/ptplot5.3/ptolemy/plot/doc/index.htm

PH2150 Java Programming Section 9 67

http://download.oracle.com/javase/tutorial/index.html
http://download.oracle.com/javase/6/docs/api/
http://www.pp.rhul.ac.uk/~cowan/sda/
http://ptolemy.eecs.berkeley.edu/java/ptplot5.3/ptolemy/plot/doc/index.htm

Appendices

A How to use Java on the PC lab computers

Instructions

The recommended Java environment for this course is Oracle’s Java Development Kit (JDK)
version 616. The standard edition is free to download and it contains all you need to compile
and run Java programs. Later in this section there is information about installing it on your
own computer. It is of course already installed on the lab PCs.

To write and edit Java programs, you can use any text editor such as Wordpad or Notepad,
however the recommended editor is Jext. It is aware of the Java language, so it makes
it easier for you by colour-coding key words and indenting correctly at the start of a new
line. Jext is available on the lab PCs via the Windows Start Menu: Programs→Academic
Applications→Physics→Jext

When you create a new file with Jext, you should set the language to Java on the menu at
the top right of the Jext tool bar.

Files can be opened and saved through the File menu or using the appropriate icons. You
must keep your own Java files in a folder under your home drive; it is suggested that you
save them in a dedicated subdirectory called Y :\java. You can create this directory in the
normal way using Windows Explorer.

To compile and run java programs, type commands into an MSDOS window17. To open a
MSDOS window, go to the Windows Start menu and in the search box, type cmd then return.

16Older versions version of the JDK, such as 1.4.2 and 1.5 should also work fine.
17 Alternatively you can use the Jext console. This is not generally recommended as it doesn’t work correctly

with programs that use text console input. To show the Jext console pane, go to the Edit menu of Jext, select
“Options...”, click on “General”, then at the bottom of the screen, check the box “show top tabbed pane
(Console)”.

PH2150 Java Programming Appendix A 69

To change to the folder where you saved your Java file from the text editor, Y :\java, type:

Y:
cd Y:\java

Some other useful MSDOS commands and tips are given later in this section.

In order to run a Java program, you must first compile it. To compile the Java class defined
in the file ‘ClassName.java’, simply type:

javac ClassName.java

To run a compiled class, type:

java ClassName

MSDOS tips

Directories

Directories, also known as folders, are organised in a tree-like structure. To move around
directories:

cd .. moves up to the parent directory;
dir lists the files and sub-folders in the current folder;
cd stuff moves down into the folder called “stuff”, if it exists.

Screen size

You can change the font size of the MSDOS window and the number of lines it displays.
Click on properties on the MSDOS toolbar, then once you have changed the settings, exit
the MSDOS window and start it again for them to take effect. NB The font size must be
small enough to accomodate the number of lines you wish to display on the screen.

You can switch between full screen mode and back by pressing <Alt>+<Return>.

Editing on the command-line

With the Windows XP MSDOS window, you can use the up/down arrows to recall from the
previous lines you entered, and left and right arrows to move around a line and edit it.

Cut and paste

To copy text from the MSDOS window, click on the top-left icon of the window to get a menu
→Edit →Mark. Now use the mouse to mark out an area of the text in the window to copy,
then press Return to copy it. You can paste this into other applications, such as MS Word.

To copy the whole MSDOS window as a picture, press <Alt>+<Print Screen>. You can
paste this into other applications, such as MS Word. This works for any window, not just
MSDOS.

PH2150 Java Programming Appendix A 70

Redirecting program output to a file

If you program produces a lot of output, it may be convenient to send it to a file instead of
the screen. With MSDOS you can do this by typing a greater than symbol followed by the
filename after any command. For example:

java Hello > output.txt

You can then open the resulting file output.txt with any text editor (Jext, Notepad, Word)
to edit, print or copy the text.

Because the program output is redirected to the file, you don’t see it on the screen at all. If
you program expects some input, you won’t see any prompts you made for that either, but
your program will still be waiting for you to type something. There is no easy solution to
this; you just have remember what is required and enter it blindly.

Installing Java

It is freely available in case you have your own PC and would like to install it. To download the
latest Java Development Kit (JDK), go to http://www.oracle.com/technetwork/java/javase/downloads/index.html,
scroll down to Java SE 6 Update 27 (or the latest update) and click on the download button
for the JDK. Choose the appropriate version for your computer and operating system and
follow the instructions carefully. Unfortunately, support for the download and installation of
software on your own computer is beyond the scope of this course.

Installing Jext

The recommended editor, Jext, can also be downloaded for free from http://sourceforge.net/projects/jext/.

PH2150 Java Programming Appendix A 71

http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://sourceforge.net/projects/jext/

B Dealing with errors

It is inevitable that code you write will initially suffer from errors. Many will be detected by
the compiler which prints details of the errors to the screen. However some will only become
evident when you try and run the program (runtime errors). This may be an exception in
which case some details will be written to the screen, or you may be testing your program
and have discovered that it is not giving the results you expect. Either way, you will have to
debug your program; that is, work out why it is going wrong and how to fix it.

There are several techniques you can use to find out what the problems are.

Compile-time errors

• With errors detected by the compiler always start with the first and work through
them in order, recompiling each time. You may find that solving the first error will
eliminate the rest as sometimes a simple error at the beginning of a program will cause
many cascading errors later on.

• If the compiler detects an error then look at the details it gives about which line in
the code the error was found and what the error was. Look carefully at the line of
code in your source file — you may simply have spelled something wrong or omitted a
semicolon. Forgetting a semicolon will tend to result in an error message that refers to
the following line (as it is the following line that then fails to make sense to the compiler),
so you should also check the lines around the one mentioned by the compiler.

• If the compiler gives an error “variable not defined” or “cannot resolve symbol” when
you are using some Java feature that you are sure you have spelled correctly, then the
problem could be that you have not got the necessary import statement at the start of
the file.

Run-time errors

• If an exception occurs when you try and run the program, again, look at the details
written to the screen — the line number and the type of exception thrown — then
examine this area of your source code. You may have written code that tries to go
beyond the end of an array for example.

• If you suspect a particular block of code may be causing problems try surrounding
it with the longer form of comment /*...*/ which effectively removes it from your
program without lots of unnecessary deleting. Then compile (and run) the program
again to see if the error/exception still occurs — if it doesn’t then the problem lies within
the code that was commented out. This method can be tried with both compiler and
runtime errors.

• So long as the program compiles okay, you can add System.out.println(...); to
your program at strategic points to determine how far the program gets before the
exception is thrown. This allows you to narrow down on where the problem code must
be.

PH2150 Java Programming Appendix B 72

C Trapezium rule for integration

The trapezium rule is a numerical method for integration of a function between two bounds.

Other methods exist which are better than the trapezium rule, e.g. Simpson’s rule. You can
read more about them in text books or on the web.

Why would you want to integrate numerically rather than analytically? Here are two reasons:

• the function cannot be integrated analytically;

• you have a lot of integrations to perform, so some automated process is preferable.

Trapezium rule

The trapezium rule states that you can approximate the area under a curve by a trapezium,
as shown in figure C.4. The area is therefore calculated like this:

���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������

���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������

x1 x2

x

y

f1 f2

f(x)

h

Figure C.4: A straight line is used to approximate the curve f(x) between x1 and x2. This
forms a trapezium (shaded area) which can be used to calculate approximately the area under
the curve between these bounds.

∫ x2

x1

f(x)dx = h

(
1
2
f1 +

1
2
f2

)
+ O(h3f ′′)

Where the notation f1 is short hand for f(x1).

The error due to the approximation, O(h3f ′′), indicates that this method is exact for polyno-
mials up to degree 1, i.e. straight lines f(x) = ax + b, because for such functions the second
derivative f ′′ = 0. It is clearly an approximation for higher order polynomials (x2,x3, etc.)
and other functions. The error will also be small if h is small.

The area of a trapezium is its average height × its width, i.e. h
2 (f1 + f2).

PH2150 Java Programming Appendix C 73

Extended trapezium rule

To make this rule useful, break the curve to be integrated into many small intervals (small
h). Then use the trapezium rule many times, like this (see figure C.5):

x

y

x2 x5x4x3x1 h

���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������

���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������

�������
�������
�������
�������
�������
�������
�������
�������
�������
�������

�������
�������
�������
�������
�������
�������
�������
�������
�������
�������

���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������

���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������

���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������

���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������

f(x)

B CA D

a b

Figure C.5: The curve f(x) is now approximated by a series of short straight lines which
each form a trapezium. Summing the area of these trapezia gives an approximation of the
total area under the curve between a and b.

∫ b

a
f(x)dx = h

(
1
2
f1 +

1
2
f2

)
. . . A

+h

(
1
2
f2 +

1
2
f3

)
. . . B

+h

(
1
2
f3 +

1
2
f4

)
. . . C

+h

(
1
2
f4 +

1
2
f5

)
. . . D

+O

(
(b− a)3f ′′

N2

)

Generalise the formula to N points:

∫ xN

x1

f(x)dx = h

[
1
2
f1 + f2 + f3 + ... + fN−1 +

1
2
fN

]
+ O

(
(b− a)3f ′′

N2

)

= h

[
1
2
(f1 + fN) +

N−1∑
i=2

fi

]
+ O

(
(b− a)3f ′′

N2

)

Note that h is still the width of a single interval, so

h =
b− a

N − 1

PH2150 Java Programming Appendix C 74

The approximation error is now

O

(
(b− a)3f ′′

N2

)
b − a and f ′′ are normally fixed parameters of the problem. You can see that increasing N
will improve the accuracy.

Programming

Think about the following when you plan your program.

• Break the problem down into smaller parts, and consider writing these as different
methods of your class.

• Which parts of your program do you want to be able to change easily? Try to put these
in separate methods.

• Which parameters would it be convenient to ask the user to enter?

• How to program this formula?

I = h

[
1
2
(f1 + fN) +

N−1∑
i=2

fi

]

• Summation is well suited to a particular type of Java command, as you have seen in
the matrix multiplication exercise (exercise 4.3).

Pitfalls

Here are some (but not all) of the common problems associated with the exercise.

Code

• Data types — make sure your choice of int or double is appropriate for the variable.
Remember the effects of integer division!

• Loop counters should be integers to avoid rounding errors.

• Don’t forget to initialise variables where necessary.

• Limit the scope of variable declarations to the minimum required.

Method

• Beware of limitations of the Trapezium rule.

• Understand the behaviour of the function before trying to integrate it.

• Choose N to reach a reasonably accurate result. Vary N to understand the accuracy.

PH2150 Java Programming Appendix C 75

• The function must not be sharply concentrated in peak(s) — this implies f ′′ is large.

• The function must be characterised by a single length scale (i.e. y range does not cover
several orders of magnitude) — again, this implies f ′′ is large.

PH2150 Java Programming Appendix C 76

D Histograms

A histogram is a way of representing the frequency distribution of a quantity which changes
randomly each time it is measured. Most other types of graph are used to show the correlation
between different variables. The key difference between a histogram and other types of graph
is that there is only one variable and the aim is to show how its values are distributed.

A histogram is similar in appearance to a bar (or column) chart where categories are marked
along the x-axis and the height of columns above these categories shows their relative fre-
quency. A bar chart, although it looks similar to a histogram, has discrete categories on the
x-axis rather than a continuous variable. The x-axis of a histogram represents a quantity
which is continuous, but the the axis is still divided into bins. The column heights in each
bin show the relative frequency of data with a value between the lower and upper edges of
the bin. Figure D.6 shows an example of such a histogram.

Histograms are typically used to show data which are collected by repeated measurements of
a quantity whose value varies according to some probability density, such as the lifetime of
an unstable nucleus or particle before it decays.

Data
2.11181
2.2664
1.93247
4.13048
4.54348
3.35372
3.9448
1.83678
2.72451
6.02379
10.7733
...

Figure D.6: Example of a histogram with a continuous variable. Part of the data collected
in the histogram is shown on the left.

PH2150 Java Programming Appendix D 77

	Introduction
	Programming Basics
	Input, mathematical functions and conditional branching
	Iteration
	Arrays, nested loops and composite operators
	More advanced input and output
	Multiple methods
	Numerical problems and multiple classes
	Object oriented programming
	Statistics exercise using external software
	Bibliography
	Appendices
	How to use Java on the PC lab computers
	Dealing with errors
	Trapezium rule for integration
	Histograms

