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Exercise 1: (this is exercise 3.2 in Prialnik)

Assuming that the gas pressure, Py, is a fraction /3 of the total pressure,
P, which is constant throughout the star, and defining the total internal
energy of the star, U, as

M
U = /O (U'gas + urad)dma (1)

where ug,5 and u,qq are the specific energies corresponding to the gas and
the radiation. Show that the virial theorem in the form

M p
O = —3/0 ~dm, 2)

leads to the following expressions for the total energy of the star, E:

g = o 3)
—B
B = U (4)

for a classical (i.e. non-relativistic), non-degenerate gas. Note in particular
the limiting cases f — 0 and 8 — 1.

Solution:

We would like to express the total energy, E = U + Q !, in terms of the
internal energy, U, or of the gravitational energy, €2, but not both. So we

! This assumes that the star is in hydrostatic equilibrium, i.e. there is no macroscopic
flow of matter, which would mean we need an extra term in the expression of E, corre-
sponding to the macroscopic kinetic energy.



need a relation between U and 2, which is given by the virial theorem 2. As
equation 2 in expressed in terms of P/p, we need to express U in terms of
the pressure and the density. So we need the expressions for ugqs and u,qq in
terms of pressure and density, so we can use formula 1 to find U as function
of P and p.

From Py, = BP, the radiation pressure, P44, is given by P,,q = (1—0)P,
with 8 constant throughout the star.

In an ideal gas with a number density (number of particles per unit vol-
ume) n, at a temperature 7', the internal energy density is given by %nkT.
The pressure is given by Py, = nkT. Therefore, the gas specific internal
energy (energy density per unit mass), ugqs, is given by

3P 38P
u = — = ——
gas 2 p 2 p
where we divided the internal energy per unit volume by the mass per unit

volume, p, to get the specific internal energy.
For radiation we have 2:

3Paa  3(1—-pB)P

p p
This results from assuming a photon gas in thermodynamical equilibrium,
which corresponds to a number density of photons, n(v), with frequencies in
the interval (v, v + dv) given by Planck’s blackbody distribution:
8rv?  dv

h
S ewr —1

Urad =

n(v)dv =

This leads to a radiation pressure (exerted on the gas particles) %aT‘l, where
a is a constant. The blackbody distribution also results in a radiation energy
density given by aT*, and therefore to a radiation specific energy given by
Urad = CLT4/P = 3P’rad/p-

Summing g, and upqq We get:

ugas+urad = 3

2 p p
3 P
Ugas + Urag = =(2—05)—
gas Ta 2 P
P Ugas + Urad
p 22-5)

2 Prialnik, section 3.5.



Using the virial theorem 2, we get:
/ ugas + urad dm
2

As (3 is constant throughout the star, we can simplify this expression:

2 M
Q = —m 0 (Ugas + u»,-ad)dm

which, from 1, is simply:

Finally, E' can be expressed as:

2
E = QsU=-2v4+0="Ly

2-p 2-p

proving equation 4. Inverting 5 we get:

- arv=a+2=Fg_Fq
2 2
which proves equation 3.

The limiting cases are § — 0 and § — 1. As ( tends to 0, the pressure
becomes increasingly dominated by the radiation pressure. In the limit of
B ~ 0, from equation 3, the total energy becomes close to zero. This means
that the system becomes unbound and the star “evaporates”®. In the other
limiting case, the pressure is dominated by the gas pressure and the radiation
pressure becomes negligible as  approaches 1. In this case, from equation 4,
we obtainthe well known relations (see Prialnik, section 2.5):

3In a bound system, the total energy must be negative. In a star, this is achieved by
the gravitational potential energy being larger in absolute value than the internal energy
of the gas



ﬂhreshold Energy per
Nuclear Fuel Process 10° K Products Nucleon (MeV)
H p-p ~ 4 He 6.95
H CNO 15 He 6.25
He 3a 100 C, 0 0.61
C C+C 600 O, Ne, Na, Mg 0.54
0 0O+O 1000 Mg, S, P, Si ~ 0.3
Si Nuc.eq. 3000 Co, Fe, Ni <0.18

Table 1: Major nuclear burning processes.

Exercise 2: (this is exercise 4.2 in Prialnik)
Estimate the minimal stellar mass required for central ignition of the

different nuclear fuels, according to the threshold temperatures of table 1.
Assume:

a) a density profile given by p = p.(1 — %22), where p,. is the density at the
centre of the star and R is the star radius (see figure 1);

b) solar composition;

c¢) non-degeneracy.
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Figure 1: Density (left) and integrated mass (right) for a star with a density
profile given by: p(r) = p.(1 — Z3)

ﬁ .



Solution:

The rate of nuclear burning is negligible at temperatured below the
thresholds listed in the table and grows very rapidly with temperature above
the threshold. We need to determine the temperature at the centre of the
star, which is likely to be the highest in the star.

Assuming an ideal gas, the equation of state

R
Pgas 1 pT (6)
relates temperature with density and pressure (see Prialnik section 3.3). R
is the ideal gas constant (R = 8.3145 x 10° J kg=! K1) and p is the mean
atomic weight:

1 1 1

2 ur He
where p, and p; are the mean atomic weights for electrons and ions in the
stellar material. These can be expressed as:

1 X;

w4,
1 X,
e - XZ: Z;A;

In the above expressions, the sum is over all ion species that are present in
the star in mass fractions X; and are characterized by atomic weights A; and
charge (or atomic number) Z;. For the sum, we have p, ~ 1.17 and u ~ 0.61
(see Prialnik section 3.3).

So we need to express Py, and p as a function of the total mass of the
star. To do this, we need the results from exercises 1.3 and 2.1 in Prialnik,
where the density profile given in a) is also assumed. These are obtained in
the following.

From the density we can obtain the total mass, M, as a function of the
density at the centre of the star, p..

M = 472 p(r)dr
0



M = E7T,OCR3 (7)

15
This can be inverted to give the density at the centre as a function of M:
16M
= 8
By integrating the equation of hydrostatic equilibrium
ap-__Gm
dr r?

we may determine the pressure at the centre of the star, P, (assuming, of
course, that the star is in hydrostatic equilibrium):

Gm(r)

r2

POM) ~PO) = 0-Po=— [ o) T gy (9)

For the density profile given in a), we have (see derivation of M above):

which we can use in equation 9 to obtain P,:

R r? r rs

Ry r3 r3 ro
— dnGp, [ L _ d
TGP |3 T 3@ T sme T s

which, after integration, gives:

15G M?
. = — (10)
167 R4
Combining equations 8 and 10 with the state equation for an ideal gas
(equation 6), we get the temperature at the centre of the star:

P, = E,OcT’c
1
p P

T, = =
R rho.




1puG M
e = 3% & (11)
This is almost what we want: the central temperature as a function of
M. If p. was a known constant, equation 11 above could be turned into a
solution for 7T, depending only on M. Inverting equation 7 and substituting

in equation 11:
1puG M

2 R 3/15 M
8 mpe

,UG T\ 1/3
o= 2 (5) et (12)

Assuming only the form of the density profile, and that the electron gas in
non-degenerate, we can advance further. The assumption of non-degeneracy
implies that, for electrons, the ideal gas pressure is higher than the degeneracy
pressure, given by (Prialnik, section 3.3):

R ) 5/3
_chc > Kl <p_>

T,

€ /’Le
2 o< RT3
c K13
R3T3,U,2
pC Kij

with K; = 107 N m? kg=%/3. Replacing this inequality in 12, we get an upper
limit for T, as a function of the stellar mass M:

1/6
Tc < ﬁ (1) 13 M2/3 (R?)Tg/'[’g)

R \15 K3
2/3 ,2,,2/3072 Ar4/3
T < <1> prpeGE M
15 R K

Finally, the last equation can be inverted to express a lower limit for the
stellar mass necessary for a certain reaction to occur as a function of the the

threshold temperature:
w5 g, () _RE:

T 12 Mg/ 3032

3/4 73/4
M > ,/E—R/Kl T3/
T ,us/zﬂé/?(;:sﬂ



Tinreshora 1gnition mass lower Energy per

Nuclear Fuel Process 10°% K limit 1030 kg Nucleon (MeV)
H p-p ~ 4 ~ 3.4 6.55
H CNO 15 9.2 6.25
He 3a 100 38 0.61
C C+C 600 150 0.54
O 0+0 1000 210 ~ 0.3
Si Nuc.eq. 3000 490 <0.18

Table 2: Major nuclear burning processes and lower limit of masses necessary
for central ignition assuming solar composition, non-degeneracy and a density

profile given by: p(r) = p.(1 — 1’%—22)

substituting the constants in the above expression (G = 6.672 x 107'! m?
kg=!s72, Ky =107 N m® kg=%/3, p, ~ 1.17, 1 ~ 0.61 and R = 8.3145 x 10°
J kg=! K1), and using the temperature thresholds from table 1 we get:

M > 3.81 x 10T *kg]

This results in the updated table 2.



