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1 Polytropic models

The stellar structure equations, given by:
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are too complicated to be solved analytically as a system of differential equa-
tions. But if the pressure, P, can be considered independent from tempera-
ture, 7', then equations 1 and 2 become independent of 3 and 4, and can be
solved independently. This is the case with polytropic models.!

In polytropic models, the equation of state is given by:

P = Kp' =Kpt" (5)

where K and v =1+ % are constants, and n is the polytrope index. Note
that, unusually, the pressure given by the equation of state, doesn’t depend
on temperature. If the star is dominated by the electron degeneracy pressure,
its equation of state is given by equation 5. For such a star, the polytropic
index is n = 1.5 in the case of a non-relativistic degenerate electron gas and

! Polytrope (meaning something like “many turns”) designates a type of function or conic
section. Exactly which type depends on the polytrope index n.



to n = 3 in the even more extreme case of a relativistic degenerate electron
gas. This type of model is relevant in the case of white dwarves.

Taking equation 1, it may be multiplied by 7?/p and differentiated with
respect to 7:
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Now we use equation 5 to express the terms in P as functions of p:
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using the last equation, expression 7 can be written as:
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This is finally a differential equation which describes the dependence of the
star’s density on the radius. It’s a second order equation, so it’s solution



requires two boundary conditions. The following boundary condictions may
be taken:

p(r = R) 0 from: P(r=R)=0

P
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To solve equation 8 for particular cases of the polytrope index, n, it is
useful to perform a substitution using a variable € defined by:

p=pb" with 0<H<1 9)

with n the same as the polytrope index. If § = 1, then p =0, i.e. a f of 1
corresponds to the star’s surface. At the other end of the interval, § = 0 and
p = pe, which then corresponds to the centre of the star. Using 9, we have:
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Doing the substitution in 8 we have:
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where the term inside square brackets is a constant with units of length
squared which will be written as o?:
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and the equation above becomes:
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We’ll can now do a further substitution, defined by:
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and so
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which may be replaced in 11 to give:
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where p = p.0" and r = af. Equation 13 is known as the Lane-Emden
equation. The following boundary conditions may be used in its solution:

r = 0—=&=0&p=p,
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Example: n =0 If the polytrope index, n, is zero, then the star density
is given by:

p = pb° = p, = constant

and the Lane-Emden equation can be written as
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This equation is now separable and cab be easily integrated in the following
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To find the integration constants A and B we can notice that the solution
would produce a singularity at £ = 0 for any finite value of A, i.e. A must
be zero, otherwise € becomes infinite at £ = 0. For B, we can notice that at
the centre of the star, i.e. for & = 0, # must be 1:

A =0
=0 = 1-B=1

So we're left with:
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This is shown in figure 1. It should be noticed that this is not a realistic
model! We have p = p,, i.e. the density is constant troughout the star. So
we get a solution for §(§) but no dependence of p on #. Non-zero values of n
give more realistic models.

It is found that for n < 5, 6(§) is monotonic and decreasing with increas-
ing £ and has a zero at r = R4, as was also found for the case n = 0
above.

1.1 Central density and average density

The total mass of the star may be written as:
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Figure 1: 0 versus & for an hypothetical star described by a polytrope of

index n = 0.

where &g is the value of £ at the star’s surface, given by R = aég. But,

from equation 13:
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and the total mass becomes:
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As R = a&g, this can also be written as:
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n D, M, R,
1.0 3.290 3.14 3.14
1.5 5.991 2.71 3.65
2.0 11.40 2.41 4.35
2.5 23.41 2.19 5.36
3.0 52.18 2.02 6.90

Table 1: Constants of polytrope models for different indices n (see Prialnik
table 5.1).

The first term on the right-hand side is the volume of the star. The term in
square brackets is a constant which depends only on the polytrope index. It
is usually written as D, *:
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This and other constants for polytrope mnodels may be found in table 1 or
in Prialnik table 5.1. Inverting equation 14, we get an expression for the
central density of an star described by a polytrope of index n, which then
depends linearly on the average density of the star, p:
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1.2 Mass-radius relation

Going back to a step in the derivation of equation 14,
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where M, is a constant given by:
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and is also listed in table 1. This can be further written as:
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Now, solving equation 10 for p., we have:
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and we can substitute p. in equation 16 to get:
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where the relation @« = R/&g was used in the last step. &g is a constant
which depends only on the polytrope index and is normally written R,,. It
can be found in table 1. This leads finally to a relation between the mass
and the radius of a star described by a polytrope of index n:
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Note that the right-hand side is a constant depending only on the polytrope
index.

1.2.1 Special cases

Looking at equation 17, we can see that two special cases exist in the mass-
radius relation. For n = 3 we get:
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i.e., there is only one value of the star’s mass, M, which satisfies hydrostatic
equilibrium! For n = 3, M doesn’t depend on R at all!
A second special case exists, clearly, for n = 1. In this case, the depen-
dence of R on M disappears and we get:
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i.e., for n = 1 the star’s radius is fixed, independently of the star’s mass.

For the intermediate cases of 1 < n < 3, the radius (raised to a positive
power) is proportional to the inverse of the mass (also raised to a positive
power):
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2 The Chandrasekhar mass

As was said in the beginning of section 1, white dwarves are very dense
stars where the pressure is dominated by the electron degeneracy pressure.
The relevant equation of state in the case of white dwarves corresponds to
a polytropic model with polytrope index of n = 1.5 = 3/2 for the non-
relativistic case, and of n = 3 for the relativistic case, where the thermal
electron velocity becomes non-negligible with respect to the velocity of light.

Let’s assume initially that the star is non-relativistic, and so the poly-
trope index is n = 3/2. The proportionality constant for this case is K =

K| = 107% (see Prialnik sec.3.3). From equation 5, we get a pressure
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proportional to p°/°. Also, from equation 19, we get:
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If we now imagine similar stars but with increasingly large masses, we see
that their radiae will be smaller as the masses are larger.

For this case, we get a density which depends on the square of the mass
of the star:

p X v x i3 x M?

As we go to higher star masses, the density grows so much that the
electron gas occupies all the available states up to high values of energy, and
many electrons become relativistic. As the density increases, the equation
of state becomes closer to a polytropic model with an index n = 3. The
pressure is, then, proportional to p*/3. The proportionality constant is K =
K} =1.24 x 1010%, given by the expression?:
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We have seen in section 1.2.1 that for the case n = 3 there is only one possible
solution for the mass. This is the limit value that is possible in a compact
star dominated by the electron degeneracy pressure. This mass is known as

the Chandrasekhar mass, M¢,. In this case, the mass of the star, and is
given by equation 18 with K replaced by KJ:
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For a hydrogen-depleted star, we have p, = 2 (for a star made essentially of

iron p, = 2.15) and the Chandrasekhar mass becomes:

Mgy = 1.46M,

MCh =

This is the highest possible mass for a star dominated by the electron dege-
nearcy pressure and that is still in hydrostatic equilibrium.

2See Prialnik section 3.3.



