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1 The Virial Theorem

The virial theorem conects the star’s internal energy (and so the pressure
and density) with the star’s gravitational energy. This connection provides
a feedback mechanism which is responsible for the star’s secular stability.

1.1 The virial theorem

For a star of total mass M and radius R, with pressure and density functions
P(m) and p(m) of the integrated mass variable m, the virial theorem in a
star may be stated as:
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Q) is the gravitational potential energy:
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where r is the distance from the centre of the star (which is also a function of
m). Note that € is negative, as the star is a bound system. The relationship
between P and p depends on which equation of state describes the gas.



1.2 Derivation of the virial theorem
From the hydrostatic equilibrium equation
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Multiply both sides by the volume, V' = %m‘?’ and integrate to get:
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Now, the right-hand side can be identified as the gravitational potential
energy (see equation 2) divided by three. The left-hand side can be integrated
by parts:
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The first two terms vanish because the pressure is zero at the star’s surface
and the volume is zero at the star’s geometric centre. As dm = pdV, we are
left with:
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which is the same as equation 1 above.

2 Internal energy

The internal energy of the star is the kinetic energy of the gas particles,
including the normal gas, constituted by ions and electrons, and the photon



gas. Here, we are considering the cases where one of these contributions is
dominant and the others can be safely neglected.

The internal energy can be found by integrating the kinetic energy, €(p),
of the gas particles for the entire range of possible momenta p, weighted by
the number of particles having that value of momentum, n(p):
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The specific energy density of the gas, w4 (i-e., the energy per unit mass
and unit volume) can be obtained from the expression above by dividing by
the density:
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In the following, we’ll also need to know the pressure integral, which
gives the pressure for a certain number distribution n(p) of particles with
momentum p. This can be written':
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2.1 Classical ideal gas

For an classical ideal gas, the energy is given by the familiar expression
€ = 2, and the momentum distribution, n(p), is the Mazwell-Boltzmann
distribution:

nrdmp? —p?

") = GrmgrpEe ®

where n; is the total number of ions per unit volume, m; is the mean molec-
ular mass, k = 1.380658 x 10~22JK ! is Boltzmann’s constant, and T is the
temperature.

Solving the integral in equation 3 with n(p) given by equation 5 gives?:
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1See Prialnik section 3.1
2Gee section A.l.



On the other hand, the equation of state for a classical ideal gas is: Pyqs =
nkT (obtained using the pressure integral, equation 4 above?®). This gives:
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Finally, integrating over the whole star, we get the total internal energy of
the star’s gas, Ugqs:
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Now, using the virial theorem, we have:
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But, from equation 7, the right-hand side is simply twice the internal energy:
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2.2 Non-negligible radiation pressure

If the contribution of the (photon gas) radiation to the total pressure cannot
be neglected, we must include it in the expression for %:
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How do we calculate P,.,4? The same way as above, except the momentum
distribution is now given by Planck’s black-body distribution instead of the
Maxwell-Boltzmann distribution, and the energy € is now given by € = hv,
where h is Planck’s constant. The black-body distribution is given in terms
of the frequency, v, by:
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where ¢ is the speed of light. Using the above expression in equation 4, and
taking into account v = c and p = h—c", we get:
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The solution of this integral is shown in section A.3. The result is (equa-
tion A.3):
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where the a is the radiation constant: a = TRc3p3 -

In a similar way, using equation 3 and the black-body distribution, equa-
tion 9, we get for the specific internal energy of the photon gas (see section A.4
and equation 16):
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which results in the total internal energy arising from the photon gas:
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Now, for non-negligible radiation pressure, the virial theorem (eq. 1) can
be written:
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where equations 8 and 10 were used in the last step.

3 Secular Stability

The total energy of the star, E, is the sum of the gravitational potential
energy and of the gas and radiation internal energy. If radiation pressure is



negligible this means:
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(see equation 8). Including the radiation pressure, we have:

E = Q+ Urad + Ugas
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(see equation 11). Both the above equations result in:
E = —Us (12)

i.e. the total energy is in both cases the negative of the total internal energy
of the gas.

We can now consider the physics of the system. If the star becomes
smaller, the gravitational potential energy, 2, increases in value (i.e., be-
comes more negative), as it depends on the inverse of the radius (see equa-
tion 2). From equations 11 and 8, the (positive) internal energy of the gas,
Ugas, increases. This means that the star temperature increases. A higher
temperature means a higher average gas particle momentum and so a higher
internal gas energy. From equation 12, the total energy, E, also increases in
value and becomes more negative.

It the reverse situation, if the star expands, {2 decreases, which leads to
smaller Ugqs and so smaller star temperature and a total energy closer to
zero, i.e. “less negative”.

The previous paragraphs explain the ingredients of the star’s stability.
Let’s consider what happens if there’s a sudden increase of the rate of nuclear
burning. For a star, we have:

E = Lnuclear - L

where L is the star’s luminosity and L,,;¢eqr 18 the energy produced by nuclear
fuel burning. In thermal equilibrium, L, ,qeqr is equal to L. If, on the other
hand, there’s a perturbation which causes an increase of the energy generated
in nuclear reactions, then L,,.eqer > L and therefore E > 0. Since E is
negative (as the star is a bound system), then |F| becomes smaller. But
from equation 12, this causes Uy to decrease and so also the temperature
to decrease.



This means that a perturbation which increases the nuclear burning rate
actually causes a decrease in the star’s temperature. This can be described
as the star having a negative heat capacity. l.e., we supply heat to the star
in the form of increased nuclear burning and this has the effect of decreasing
the star’s temperature.

As the rate of nuclear reactions varies strongly with the temperature, a
small decrease in the temperature leads to a much smaller rate of nuclear
burning, and so the initial perturbation disapears.

The same type or argument applies to an initial perturbation which de-
creases the rate of nuclear burning. In this case, the star becomes hotter,
and the nuclear burning rate is increased, which opposes the trend of the
initial perturbation.

A Appendix: Some detailed calculations

A.1 Ideal gas internal energy
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Solving the integral 3 with n(p) given by 5 and the energy given by ¢ = 7
gives:
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In the last step, the fllowing substitution was made:
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We can try to transform it into an integral of the form [ e ®z"dx:
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with y = %. The integral may be solved by integrating twice by parts.
Note that the constant term is zero in both integrations by parts:
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Making an additional substitution y = 22, we have dy = j—gdz = 2zdz
and:
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This doesn’t look like much of an improvement, but in fact this integral is
simply /7 /2, according to equation 20 in section A.5.3.
This leaves us with:
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A.2 Ideal gas pressure

The ideal gas pressure can be obtained from the pressure integral (equation 4)
and the Maxwell-Boltzmann distribution (equation 5):
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But the last equation is almost exactly the same as equation 13. The differ-
ence is a multiplying factor of 2p/3, i.e.:
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So the solution of the iontegral is simple:
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A.3 Radiation press

ure

The radiation pressure, produced by the photon gas, can be calculated us-

ing the pressure integral, equ

ation 4, and Planck’s black-body distribution,

equation 9 (as this is given in terms of the frequency, v, this is the inte-

grating variable that we’ll use).
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In the last step, the following substitution was made: y =

The velocity is ¢ and the momentum is
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The integral above is evaluated in section A.5.4 (see equation 21) and is
simply equal to 7*/15. The radiation pressure is then:
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where a = 18;;’;; is called the radiation constant.

A.4 Photon gas internal energy

The internal energy of the photon gas is given by equation 3 with n given by
Planck’s black-body distribution, equation 9 and the energy given by € = hv.
Using the frequency as integrating variable:
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The last equation is very similar to equation 14. Comparing the two, we
immediately obtain:
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A.5 Evaluation of some useful integrals
A.5.1 Evaluation of [{°e *z"dz

For n = 0 the solution is trivial:
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For n > 0 we can evaluate the integral by parts:
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Equation 18 is a recurrence relation that can be used to calclate the
integral. Since we’ve got the integral for n = 0, from equation 17, we can in
principle evaluate all others. Incidently, if n is a positive integer:
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A.5.2 Evaluation of [j° e **z"dx

This is easily obtained from the results of the previous section:
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and we do an obvious substitution, y = ax, to get:
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A.5.3 Evaluation of [°e % dx

This integral can be solved using a little trick. Let’s write:
o0 2
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and let’s evaluate I2. Note that the integration variables are independent in
the two integrals, we’ll use x and y to distinguish them.
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Now, = and y may be considered as independent geometrical co-ordinates
in a plane as shown in the figure. This is equivalent to making the usual
variable substitution when converting from cartesian to polar co-ordinates.



The integral can, then, be written as:
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A.5.4 Evaluation of [°z°—1—dx
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This integral can be evaluated by expanding the integrand in a series. Re-
placing e~ with z, we can write*:
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Using Taylor’s formula, we can now expand ﬁ Taylor’s series about zero
can be written:
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so we must calculate each term, and evaluate the derivatives at z = 0:
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The integral then becomes:
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Where the following substitution was made: y = nz, dy = ndz. But, accord-
ing to equation 19, the integral is simply 3! = 6, which gives:
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This is a converging series which can be found to be 7*/90, and we finally
have:




