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1 Introduction

A partial reconstruction technique has been used in the past to select large samples of reconstructed
B mesons with a D*~ in the final state [1] and to measure properties of the B%. In this method
the D' is not reconstructed, but its four-momentum is inferred from the kinematics of the a;, the
slow pion (7s) from D*~ decay and the decay constraints. The B® — D*~a] branching fraction®
measurement is performed as one of the necessary steps to prove that this technique can provide a
way to measure the combination of the Cabibbo-Kobayashi-Maskawa [2] unitarity triangle angles
sin(2f3 + ) using this channel®.

2 The BABAR detector

The BABAR experiment is located at the PEP-II storage ring at the Stanford Linear Accelerator
Center. A detailed description of the detector and of the algorithms used for the track reconstruction
and selection of BB events can be found in Ref. [3]. For the partial reconstruction analysis of
B® — D*~aj only charged tracks are used: particles with transverse momentum pr > 170 MeV/c
are reconstructed by matching hits in the Silicon Vertex Tracker (SVT) with track segments in the
Drift Chamber (DCH). Low pr particles do not leave signals on many wires of the DCH due to the
bending caused by the magnetic field and are reconstructed using only the information from the
SVT.

Electron, muon and kaon identification is used in the analysis as a veto in the selection of
pions used to reconstruct the aq candidates. Electron candidates are identified by the ratio of
the energy deposited in the electromagnetic calorimeter (EMC) to the track momentum (E/p)
and by the energy loss in the DCH (dE/dz). Muons are primarily identified by the measured
number of hadronic interaction lengths traversed from the outside radius of the DCH through the
instrumented flux return iron (IFR). Kaons are distinguished from pions and protons on the basis
of the dE/dx in the SVT and DCH and the number of Cherenkov photons and the Cherenkov angle
in the Detector for Internally Reflected Cherenkov radiation (DIRC).

3 Data sample

The data used in this analysis were collected by the BABAR detector in 1999 and 2000. These data
correspond to an integrated luminosity of 20.6 fb™! collected at the 7'(4S) resonance and 2.6 fb™!
collected 40 MeV below the resonance for background studies (the “off-resonance” sample). Monte
Carlo samples of BB events and continuum events were analyzed using the same analysis procedure
as the data. The equivalent luminosity of the generic simulated data is approximately one fourth
of the on-resonance data, while the number of signal B® — D* a] Monte Carlo (MC) events is
approximately ten times the number expected in the on-resonance data.

“By a] we refer to the 77 7~ 7" final state with the criteria specified in Sec. 5.
5Since the selection of D*~af and D**aj are identical, the charge conjugate state is implied throughout the

paper.



4 The partial reconstruction technique

In the decay chain B® — D* af, D*~ — Eowg only the a; and the m; from D* decay are
reconstructed. In particular, in this analysis the a; is reconstructed via the decay chain aj — pn+.
The angle between the momenta of the B and the a; in the Center of Mass frame (CM) is then
computed:

M%*— — Méo — Mgl + EcmEo, (1)
2Pp |ﬁa1 |
where M, is the mass of particle x, F,, and p,, are the measured CM energy and momentum of
the a1, Fconr is the total CM energy of the beams and P = ,/E%M/Zl - Méo. Given cos fpg,
and the measured four-momenta of the m; and the a1, the B four-momentum can be calculated
up to an unknown azimuthal angle ¢ around p,,. For every value of ¢, the expected D" four-
momentum, Pro, is determined from four-momentum conservation and the ¢-dependent “missing
mass” is calculated, mmiss(¢) = 4 /|P50 |2. With m,in and myq, being the minimum and maximum

values of mmiss(¢p) obtained by varying ¢, the missing mass mmiss = %(mmw + Mpin) is defined.

cosfpg, =

For signal events, this variable peaks at the D’ mass, while for background events it has a broader
distribution. For this reason, mmigs can be used to determine the fractions of signal and background
events in the data sample.

5 Event selection
Data and Monte Carlo events are first selected with the following initial loose requirements:
- R2, the ratio of the 2nd to the Oth Fox Wolfram moments [4], is required to be less than 0.35;

- at least one a; candidate such that:

- the a1 invariant mass mg, is between 1.0 and 1.6 GeV/c?;

- the a1 momentum p,,, computed in the CM frame, is between 1.85 and 2.30 GeV/c;

the vertex probability obtained from a vertex fit of the 3 pions is greater than 1%;

the invariant mass of at least one of the two possible 777~ combinations (m,) is in the
range [0.278, 1.122] GeV/c?;

- at least one additional track (the 7s) with CM momentum p,, between 50 and 700 MeV /c;

- for each selected D*a; candidate, there must be at least 2 additional particles (charged or
neutral).

The fraction of events selected by applying these cuts on the signal and background MC samples
and on the off-resonance data is summarized in Table 1.

The main source of background in this analysis is continuum ¢q events, where ¢ = u,d, s, c.
A neural network is used in order to separate BB events, irrespective of any particular B decay
channel, from the continuum background.



The NN has three layers, with 11 input nodes, 15 hidden nodes and one output. Its definition
relies on the different topologies of signal and background at a B Factory: while BB events are
more “spherical”, ¢g events are more “jet-like”. The variables used to discriminate jet-like from
isotropic events are Ry; the thrust of the event [4]; the two invariant masses squared, obtained by
adding the four momenta of all particles going into each of the hemispheres divided by the plane
perpendicular to the thrust axis and the angle of the thrust axis with respect to the eTe™ direction.

The signal to background separation becomes more complicated when one or more gluons are
emitted, which is more likely to happen when light quarks are produced. In this case there are
multiple privileged axes, so that the event shape more closely resembles that of the signal. To
discriminate further between signal and background in this case, the tracks are clustered into 3 or
4 jets using the so called “Durham” algorithm [5,6].

The event is first clustered into four jets and the following discriminating variables are added
to the previously defined ones in order to build up the network: y4, the jet metric [5,6] obtained
when the event is clustered in 4 jets; the QCD matrix element [7]; the cosine of the maximum
angle between each pair of jets; the angle between the plane defined by the two most energetic jets
and that defined by the other two jets; the angle between the lowest and second lowest energy jet.
Then, the event is further clustered into 3 jets and the jet metric y3 is also added to the list of
network input variables.

The distributions of BB MC events and on-resonance data that passed the event selection
criteria are shown in Fig. 1. The on-resonance distribution is shown after the subtraction of the
off-resonance distribution, scaled by the ratio of the on-resonance to off-resonance luminosities and
the CM energy squared. By selecting events for which the NN output (Oyp) is greater than 0.25,
66% of the continuum events are rejected. The fractions of events selected by this cut in the various
samples analyzed are shown in Table 1.

After the NN cut, further selection requirements are applied. There must be at least one a;m
combination with net charge equal 0; the three pion invariant mass must be in the range [1.0, 1.45]
GeV/c?; the three pion momentum in the CM frame must be in the range [1.9, 2.25] GeV /c; of the
3 ay daughter 7’s, at least one 77~ combination must have invariant mass in the range [0.65, 0.9]
GeV/c?; the vertex probability of the 3w plus the m, must be greater than 3%.

The fractions of events selected by these cuts are summarized in Table 1.

Table 1: Fractions of events selected by the cuts applied in the analysis on MC samples and
off-resonace data events.

Cuts applied B — D*~a B'BY | B*B~ | qg

(no signal) MC

Reconstruction Efficiency 38.3% 14.6% 13.9% | 6.4%
Onn > 0.25 85.4% 91.9% 92.1% | 45.2%
Gaoy—7 =0 94.2% 86.7% 85.2% | 83.5%
1.0 < mg, < 1.45 GeV/c? 81.7% 71.8% L% | 73.6%
1.9 < pg, <2.25 GeV/c 94.8% 92.4% 92.5% | 93.3%
0.65 < myy < 0.9 GeV/c? 76.4% 59.1% 60.5% | 64.3%
Vertex Prob 47 > 0.03 80.0% 74.2% 73.9% | 76.9%

| Total Efficiency | 146% | 34% | 32% [0.82% |
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Figure 1: Distribution of the neural net output for (a) B°B9 MC, (b) BTB~ MC and (c) on-
resonance (off-resonance subtracted) data events, superimposed on the total BB MC events. All
events satisfy the event selection criteria.
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6 Results

Applying all of the selection criteria, the mmiss distribution of on-resonance and off-resonance data
is obtained for “right-sign”events, which are events where the a; and 7, candidates have opposite
electrical charges. The off-resonance distribution is then scaled to take into account the difference
in luminosities and CM energies between the two samples and subtracted bin-by-bin from the on-
resonance distribution. The resulting plot is fitted, using a minimum x? fit, to a linear combination
of the mp;ss distributions of the following two types of events:

1. BB Monte Carlo events, excluding correctly reconstructed signal events;
2. correctly reconstructed signal Monte Carlo events.

In Fig. 2(a) the mp;ss distribution of “right-sign” on-resonance data, off-resonance subtracted,
is shown, together with the distributions of BB background MC and signal MC events. The signal
yield that is obtained is 18400 % 1200 events. The BB contribution to the fit is 0.995 £ 0.015 of
the value expected, given the total number of BB events in the data and in the Monte Carlo.

Given this yield, the a; branching fraction®, the total signal efficiency of Table 1 and the
fraction of events with multiple signal candidates, the following branching fraction is obtained:

B(B® — D*"a]) = (1.20 + 0.07)%, (2)

where the error is statistical only. The result is in very good agreement with the current best
measurement of (1.30 +0.27)% [8-11].

Several tests were conducted to verify that the background shapes in data and MC agree and do
not give rise to spurious signal. Charged a; candidates were combined with tracks of the same charge
into “wrong-sign” combinations, and were analyzed in the same way as “right-sign” combinations.
The mpy;ss distribution of these candidates, shown in Fig. 2(b), shows a good agreement between
data and MC in the signal region (mmiss > 1.854 GeV/c?). The BB contribution to the fit is
0.990 + 0.016 of the value expected from MC simulation.

Among events collected on-resonance, the fraction containing more than one a;m combination
that passes all the analysis cuts in the signal region, defined by muyiss > 1.854 GeV/c?, is F =
(15.10 + 0.14) %. This agrees with the fraction Fy;c = (15.51 & 0.26) % obtained on a weighted
mix of off-resonance, BB and signal MC events. It was verified that the reconstruction efficiency
in gg MC and data are in good agreement.

7 Systematic errors

The selection criteria applied in the analysis are varied within a certain range around their chosen
values. The branching fraction and its error are recalculated for each cut value, obtaining N
different measurements for N different choices of the cut [12]. The variation of the N results with
respect to their average, taking into account statistical correlations between them [13], is taken as a
systematic error. The method of Ref. [14] is used in order to disentangle the statistical fluctuations
from the systematic ones.

The final contributions to the error on the branching ratio due to the variation of the cuts are
shown in Table 2. It has been verified that the systematic error obtained for each cut does not
depend on the range studied for each cut value.

In this analysis it is assumed that B(af’ — p07r+) = 0.4920, based on isospin considerations and phase space
corrections.
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Figure 2: (a) mpyjss distribution of continuum-subtracted on-resonance data events (data points),
BB background MC events (dashed histogram) and BB background plus signal events (solid his-
togram) for “right-sign” a;7 combinations. The histograms are the result of the fit procedure
described in the text. (b) Same distributions for “wrong-sign” a7 combinations.
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Table 2: Systematic errors on B(B® — D*~a]) due to changing the value of some of the cuts in
the analysis.

Cut applied Range Studied in | N | Error (%)
OnN > Onin Omin = 0.15 to 0.35 1.37 | 5 4.2
Mmin < Mgy < Mmax Mmin = 1.0 GeV/CZ
Mmax = 1.4 to 1.5 GeV/c? 099 | 5 negl.
Prin < Pa; < Prmax Prmin = 1.85 to 1.95 GeV/c?

Pmax = 2-15 to 2.25 GeV/c? | 1.96 | 5 6.6

Vertex Prob 37 > Py | Puin = 0.01 to 0.15 1.15 | 5 2.4

Vertex Prob 47 > Ppin | Pmin = 0.01 to 0.1 1.10 | 5 2.2
Mmin < My < Mpax Muin = 0.65 to 0.75 GeV/c?

Mmax = 0.8 to 0.9GeV/c? 1.45 | 5 4.6

Total error 9.6

A conservative systematic error of 0.35% is determined from MC due to the dependence of the
7, reconstruction efficiency on the 7y, momentum. The systematic error due to track reconstruction
efficiency is 4.2% and the uncertainty in the total number of B mesons in the data sample is 1.6%.

The BB background peaks slightly under the signal mpy;ss peak (Fig. 2). This is due mostly
to signal events in which one or more of the selected tracks did not originate from the signal B°.
The contribution of this background is varied in the BB MC by +,/(0.07/1.2)2 + 0.1042, i.e., by
the relative statistical error in the central value of the branching fraction plus the total relative
systematic error calculated up to this point, added in quadrature. This results in a 4.5% variation
of the signal yield, which is added to the total systematic error. The total systematic error is 11.5%.

Other possible sources of systematic error have been investigated. The non-resonant decay
channel B — D*~p%r* would contribute to the peaking background under the signal peak. The
measured branching fraction of this mode is 0.57£0.31% [8,10]. Since the central value is inconsis-
tent with the total B(B® — D*~7tx~7"), this channel is ignored in our fit. A branching fraction
of 0.57% is then used to evaluate a possible bias in our measurement, yielding a systematic bias of

GBESDTTT) — _3.3% x B(B® — D*~p0n+) /0.57%.

The decay B — D**a; could affect the signal yield obtained in the analysis’. To study its effect,
D** MC events are added to the generic BB sample at the level of B** = B(B — D**a;) x B(D** —
D*rr) = 0.35% [15], and the fit to the missing mass distribution is repeated. This results in a
reduction of the signal yield of 4.3%. Since the B(B — D**a;) has not yet been measured, based

on this result the following systematic bias is quoted: o5, = —4.3% x B**/0.35%.

8 Conclusions

With a partial reconstruction, 18247 + 1200 B — D**afr events have been found in the BABAR
data set of 20.6 fb~! on-resonance events. This corresponds to the branching fraction

B(B° = D*"a]) = (1.20 + 0.07 £ 0.14)%, (3)

"D** denotes the sum of Dy, Dll and D; states.
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where the first error is statistical and the second is systematic. The bias due to the uncertainty in the
contribution of B® — D*~ p'7F events in the signal sample is —3.3% x B(B® — D* p%x%)/0.57%
and that due to the unknown value of B** = B(B — D**a;) x B(D** — D*r) is found to be
—4.3% x B**/0.35%. The result is in good agreement with the current world average value of
(1.30 £ 0.27)% [8-11] and has half the uncertainty.
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