Automated software packaging and installation
for the ATLAS experiment

Simon George™”, Christian Arnault®, Michael Gardner®, Roger Jones®, Saul Y oussef*

! Department of Physics, Royal Holloway, University of London, TW20 OEX, UK supported by PPARC.
2LAL Orsay

% Department of Physics, Lancaster University, Lancaster LA1 4YB, UK.

“ Boston University

" Speaker

Abstract

Managing the distribution and installation of large and complex software suites such as that of the
ATLAS Particle Physics experiment [1] gives rise to avariety of problems. To be able to deploy software
on the Grid it must have a completely automated installation procedure that addresses issues such
compatibility, updates and external software required. Installations are needed to satisfy the different
requirements of the production run, a developer (with his’her own code) and the possibility to rebuild
from source.

A solution to this problem has been developed in the context of ATLAS software. ATLAS uses CMT [8]
to configure and manage packages, which are the basic units of the software. Crucially for this project,
CMT allows the definition and imposition of conventions for package metadata. Pacman [9] is a package
manager that facilitates transparent fetching, installation and management of software packages. These
two pieces of widely used software provide much of the functionality required to meet the packaging,
distribution and installation needs of ATLAS; the main work is to interface them and solve some
problems with the ATLAS software itself. To this end, additional tools have been developed to extract
files in common package formats (such as tar and RPM) and write the Pacman files. These files describe
all the information needed to fetch and install a package, including its dependencies on other packages.
External packages are handled by additional metadata written in interface packages, thus allowing them to
be packaged in a similar way. The presence of basic system packages is tested before the download and
installation commences.

developer releases every two weeks and snap-
shot builds every night.

It takes about 10 hours to build a release, but
only about 1-2 hours to download and install a
pre-built kit. This depends of course on the
speed of the network and local disk access.

1. Introduction

ATLAS [1][2] is a genera-purpose particle
physics experiment that will study topics
including the origin of mass, the processes that
allowed an excess of matter over antimatter in
the universe, evidence for Supersymmetry and

other new physics. The experiment is being
constructed by some 2000 scientists in over 100
ingtitutes in 6 continents. The experiment will
be located at the 27 km circumference Large
Hadron Collider a CERN, the European
Laboratory for Particle Physics near Geneva

A large software suite has been developed to
simulate and analyse data from the experiment.
It consists of around 2.5 GB of files organised
into about 500 packages, including around 50
external packages which are not developed
within the project. Production releases are made
approximately every 3-4 months, intermediate

Production releases will be used for large-scale
simulation, data mining and data analysis. Some
analysis is also done with intermediate releases.
Developers need access to the latest releases and
sometimes the latest night’s build. The primary
installation site is CERN, and a few other sites
maintain mirrors of this by semi-automated
processes.

Two ‘Data Challenge’ exercises have recently
been carried out [3][4] to gain experience with
the Grid working model, test software tools, and
harness available computing resources of
ATLAS collaborators around the world for the
production of large quantities of simulated data.
This required deployment of the ATLAS

software at participating sites. A first generation
of installation kits were made for this purpose,
using several different methods: see for example
[6]. The experience of this has been fed into the
development of new procedures and tools. This
paper describes the new approach taken to
packaging and installation and how the second
generation kits will be produced.

2. Requirements and constraints

In the language of GLUE [7], we are talking
about packaging, distribution and configuration
tools. Before packaging, it is assumed that the
software has been built with building tools.

2.1. Typesof kit required

The need for several different types of
installation kit has been identified:

a pre-built binary kit for data challenges
and productions on a supported platform;

a pre-built developers' kit which software
can be built and run against;

a full source kit will be needed to install
the software on non-standard platforms,
and for sites that want to be able to browse
the full source.

Just like releases, kits will have to be made for
all supported ATLAS platforms, compilers and
configurations (e.g. optimised and debug
builds). Currently’, the main platform for
ATLAS is Intel x86/Linux (RedHat 7.3). Sun
SPARC/Solaris 8 is also supported, but not
Intel/Windows.

Some developers would like the possibility to
install everything needed to run a release on a
laptop, such that it can subsequently be used
without a network connection.

2.2. Installation

Site managers who need to install the software
want push-button deployment and automatic
configuration, which can be run unattended.
They need the freedom to locate the kit
anywhere. Scripts to set up the local user
environment should be included. Due to the
large size of the ATLAS software, duplicate
installation of unchanged packages is to be

! Thelist of supported platforms and level of
support is occasionally reviewed. Influences
include what equipment is available and market
trends.

avoided. Site managers would like clear list of
prerequisite software that is not included in the
distribution and preferably some automatic
check for this. This list should not be long nor
contain anything too obscure. Apart from this,
once installed, kits should be self-contained, so
for example they do not need to access fileson a
network file system such as AFS or remote
databases.

Users need to be able to install the ATLAS
software in their own file space without any
special access permission (e.g. “root” access).

The actions of the tools should be reversible, i.e.
tools should be able to unconfigure and remove
software.

2.3. User environment

Once installed and configured, there must be a
simple means to set up the user’'s environment.
Typicaly, his involves setting standard
environment variables in the user’s shell so that
executable programs and libraries may be found
(the environment variables PATH, and
LD LI BRARY_PATH respectively) along with
any other environment variables or
configuration files that are specific to the
software installed. User environment is an
important issue that configuration management
attemptsto solve.

2.4. The softwareitself

The ATLAS software contains two distinct
types of package: internal and external. Internal
packages are developed and managed within the
ATLAS software project. External packages are
software obtained from the Particle Physics
community or from the public domain, or can be
commercial products.

A release comprises a set of interna software
packages along with references to any external
software that is needed, but not the externa
software itself. External software is built and
installed as needed, asynchronous to the release
cycle.

The existing release and distribution procedure
isasfollows. A releaseisfirst built and installed
at the primary site using CMT. Once testing is
successfully completed, the same release is built
from scratch and installed at a few other sites,
following the same procedure, but this often
requires manual intervention. The reason is
usually an assumption about the location of
external software which is only valid at the
primary site, and the lack of a standard
distribution mechanism for external software.
External software packages are by their very

nature inconsistent in layout, installation and
use. One of the chalenges of software
distribution is to find a way to handle this
uniformly.

2.5. Toolsin use

ATLAS dready uses the Configuration
Management Tool (CMT) [8 to manage
configuration and building of its software and
set up the user environment. Thisis described in
the following sections.

3. Choice of tools
3.1. CMT

Given that ATLAS was already using CMT [§]
for configuration management and building
releases, it was an obvious choice to exploit
this. However, it is worth explaining why CMT
is particularly useful for this job.

CMT is a configuration management
environment and comprises severa shell-based
utilities. It is an attempt to formalize software
production, especially configuration
management, around a package-oriented
principle. The notion of packages represents a
set of software components (e.g. applications,
libraries, tools) that are to be used for producing
a system or a framework. In such an
environment, several persons are assumed to
participate in the development and the
components themselves are either independent
or related to each other. The environment
provides conventions (for naming packages,
files, directories and for addressing them) and
tools for automating as much as possible the
implementation of these conventions. It permits
description of the configuration requirements
and automatically deduces from the description
the effective set of configuration parameters
needed to operate the packages (typically for
building them or using them). It also derives and
provides a tool to set up the user environment
necessary to do thiss. CMT determines
dependency trees and can ‘visit’ every package
in atree to apply a command.

CMT has a broad user base, especialy in
Particle Physics and Astronomy software
projects.

3.2. Pacman

Pacman is a package manager. It can be used to
define how the software they wish to distribute
should be fetched, installed, configured and
updated. The packages can be any mix of tar-
balls, RPM or other types. Pacman doesn’t alter

these; instead the description goes in a separate
‘Pacman file' that references the package itself.
A directory of Pacman files, usualy accessible
viathe web, is known as a‘ Pacman cache’.

So the cache contains instructions on how to
fetch and install software, but not the software
itself. This can be anywhere else on the web.
Caches themselves are distributed and cross
cache dependencies are possible.

Pacman provides a flexible way to require or
test for the presence of prerequisite software. If
the test fails, it will stop before installing the
package and explain the problem. After
installation, Pacman provides a web interface
showing the status of al the installed software,
which would be convenient for remote
monitoring.

The advantage of using Pacman is that al the
details of installing software are taken care of
by the packager of the software, not the person
who installs it, thus reducing the total effort to
deploy software. The philosophy of Pacman is
to put the onus on the packager to make a fool-
proof cache file and solve problems that users
have.

Pacman is aready used by severa Particle
Physics experiments and GRID projects.

3.3. Package format

The first installation kits were binary only, for
Intel x86/Linux, and used the RPM [10] format.
RPM is a nice solution for packaging and
installation that is widely used with severa
popular Linux distributions, athough there are
some inconveniences associated with it. With
the default configuration it will only allow
software to be installed by “root”, athough
there is a way to work around this. RPM is not
commonly used on other operating systems.

With the functionality already provided by
CMT and Pacman, simple “tar” archives [11]
are sufficient for packaging files and can be
expected to work across a wide range of
machines. The tar files are compressed with
‘gzip’ to save disk space and reduce download
time.

The functionalities of CMT, Pacman and tar are
conveniently complementary and they do seem
able to meet all the requirements. On the other
hand, RPM has some overlap with each of them
SO it was retained as a second option for the
package format. The remaining task is to make
these tools work together to provide the
installation kit.

4. How it works

For each package, a shell script is run to obtain
the information needed and create a Pacman
file, tar file and, optionally, RPM file. This
process will be explained in detail, after which
the general procedure to create, install and use a
kit is described.

4.1. Packaging granularity

As ATLAS aready uses CMT, the software is
already organised into a hierarchy of inter-
dependent packages. One question was whether
this was the best granularity for packaging and
installation. For production purposes, it would
be just as good to install the entire ATLAS
software suite as a single package, and perhaps
simpler. However, this makes it harder to split
the software into several sub-releases, which is
planned. Furthermore, the way Pacman works,
only one package has to be requested, and then
al those packages it depends on are installed
automatically, so the number of packages has no
impact on the ease of installation. Finaly, it
would be convenient to maintain similarity
between source kits and pre-built binary kits. It
was therefore decided to retain the full
granularity.

4.2. Meta-data provided by the packages to
construct the distribution kits

The meta-data needed to construct the
distribution kit of a given package are expressed
inside its CMT requirements files (a sample is
shown in Figure 1). They are either directly
deduced from implicit CM T specifications (such
as dependencies, or congtituent definitions) or
from conventiona parameters (i.e. CMT
macros) parameterised by the current
configuration (platform, site, etc.).

The dependencies, specified by CMT
“use” statements, are used to generate
dependencies either in the RPM or
Pacman manifest.

Internal packages generally follow the ATLAS
policy for location of their binaries, of their
header files, etc and they describe their
congtituents (applications or libraries) in their
requirements files. The meta-data they provide
are;

Applications and libraries (i.e
constituents) using the corresponding
CMT statements (application and library).

Run time files, i.e. conventionally all files
from .. /share. It is expected in the

next developments that other locations can
also be specified, using a dedicated CMT
macro.

XML files specified in the use_xni s
CMT macro.

Header files, when the package provides
them in the conventional location,
.. I <package>

External packages are actually pure meta-data
packages: they only provide descriptions that
allow some external software to be handled in
the same way as internal packages. The red
software or the package can be at any arbitrary
location that is accessible when building or
packaging is done. The meta-data they provide
are therefore the list of file paths or directory
paths that should be exported into the
distribution kit of the package. This is specified
in one conventionah CMT macro named
cm _export _pat hs. This macro should be
declared in such a way that the value it takes at
installation time should be relative to one single
environment variable named SI TEROOT.

4.3. Directory structure of installed files

The structure of the kit itself is designed to be
relocatable, and able to support the incremental
installation of all packages below one single
installation area.

The entire software base is structured in terms
of sub-projects (following the usual software
base structuring expressed in the CMIPATH
environment variable). Each project is assigned
one global version identifier. Currently ATLAS
has two sub-projects:

1. the release of the interna ATLAS
software;

2. Gaudi [12] (the generic Particle Physics
software framework).

Any package may either belong to one of the
sub-projects or be an external package.

The resulting internal directory structure of the
kit reflects this organization in terms of sub-
projects and external packages as follows:

1) The CMT specification of each package in a
sub-project is stored so as to replicate the
original directory structure for al CMT
metadata files. This set of metadata files form
the complete configuration set for the software,
and remains separated from the package
contents.

2) The contents of each package in a sub-project
are stored in one single installation area below
the sub-project directory

3) The contents of each externa package are
stored in one top directory per package

One sees that:

this structure is designed to be identical to
the normal installation area of the ATLAS
software base;

both internal and external packages may
be incrementally installed below one
unique and shared root location (often
designated as SI TEROOT);

the installation is independent of this root
location (it is relocatable);

several versions of the sub-projects may
be installed below the same root location;

the binary files corresponding to several
different platforms may be incrementally
installed within the same structure.

Installing the kits amounts to expanding them
below one given root location, so to produce a
complete working system it is therefore a priori
sufficient:

to set an environment variable SI TEROOT
pointing at this root location;

to fill in the CMITPATH variable with the
proper set of <project>/<project-id>
entries in the software base.

Then, CMT will automatically find al the
information it needs to set up the user's
environment (such as LD LI BRARY_PATH,
PATH, other environment variables, include
search path, configuration file search path,
etc...), so the development kit can be used in
the same way as the original installation from
which it was built.

4.4, Pacman files

A typica Pacman file, for a package called
‘AthExHelloWorld’, is shown in Figure 2. It
was generated automaticaly using the tools
described, from the CMT requirements file
shown in Figure 1. Note that the source path,
shown in the example as a relative path to a
directory called dist, is one of severa
arbitrary parameters of the script that creates the
kit.

4.5. Creating theinstallation kit

The kit should be created by the central librarian
as the part of the release procedure. Everything
described below can in fact be scripted. Thefirst
step is to select a release and specify its
location.

An ATLAS release is defined by an empty
package called “AtlasRelease” that just has
dependencies on the set of packages and
versions that form the release. CMT is used to
visit every package in the release (the ‘cmt
br oadcast’ command) and there run the
script to create a Pacman file, tar file and,
optionally, RPM file for the package.

An option when walking the dependency tree is
to walk across different project areas (different
directoriesin CMTPATH). This option alows the
ATLAS distribution to include kits for other
projects such as Gaudi. CMT aso provides a
means to discover and work around cycles in
the package dependencies’, so each package
will only be visited once. Any cycles will be
arbitrarily broken so the Pacman files do not
contain cyclic dependencies.

A special package to perform post-installation
setup of the software is prepared. This does
things like fixing | ocation-dependent
configuration files and providing the user
environment.

Most releases have some problems to work
around. The philosophy is to deal with these
when the kit is created, so that the procedure to
install a kit remains independent of the release
asfar aspossible.

A typica kit size (compressed) is about
0.75 GB.

4.6. Installing the kit

The procedure for the end user or remote site
administrator is straightforward.

Install Pacman, if not already installed.

Install prerequisite software. On
RedHat 7.3, the only prerequisite not
typicaly installed is the compiler
gce-3.2 and Java SDK 1.4.1

Choose adirectory for the installation

2 Cyclesin the package dependencies may be
considered to be aflaw in the software, but it is
nonethel ess an example of a problem that had to
be worked around to produce an installation kit.

Choose which release to instal.
Available releases are listed on a web

page.

Get it with Pacman® by typing for
example:

pacrman -get ATLAS: Atl asRel ease-6.2.0

To test the installation or use it, some
environment variables have to be set (eg.
PATH, LD LI BRARY_PATH). This is done
with CMT, in a way that will be familiar to
those who have used the ATLAS software
directly from the primary site installation.

It would be perfectly possible to run automatic
testsas afinal step of the installation.

The full procedures and associated scripts can
be found in the ATLAS Deployment package
[13].

5. Conclusions and outlook

The current product broadly satisfies the
requirements for run-time and developers’ kits.
The tools and procedures will now be improved
though testing and widespread use.

It is intended to test this at the tail end of the
current ATLAS data challenge, along side
existing methods. It is hoped to put it into
production by the end of 2003, when it should
become an integral part of the ATLAS software
release procedure.

Further possible enhancements include:

Include some standard ATLAS tests at the
end of the automated installation.

Better handling of prerequisite software
and platform compatibility checks. The
EDG WPA4 configuration management task
[14] may be helpful for this.

A full source kit distribution, so the
software can build from scratch.

The automated procedure has the potential
to work with an installation on demand

mechanism.
The ATLAS software may be divided into
sub-projects (e.g. simulation,

reconstruction, analysis, externa), in

%It isintended to include the ATLAS cachein
the registry of predefined caches whose location
is known by Pacman; otherwise afull URL to
the cache should be given.

which case it would be straightforward to
provide entry points to the same Pacman
cache to download only the packages
needed for one of these sub-projects.

The relationship of this project to
LCG/EDG/iVDGL GLUE [7] will be
explored.

Finally, it is noted that version 3 of Pacman will
soon be released, with many new features that
this project could benefit from.

6. References
[1] ATLAS experiment http://atlas.ch/

[2] GridPP ATLAS introduction
http://www.gridpp.ac.uk/atlas’ATL A Sl ntroducti
on.htm

[3] F.Brochueta., EDG integration and
validation in the framework of ATLAS Data
Challenges', these proceedings.

[4] G. Poulard for the ATLAS Collaboration,
ATLAS Data Challenges, Paper 541, CHEPO3.

[5] ATLAS offline software
http://atlas.web.cern.ch/Atlass GROUPS/SOFT
WARE/OQO/

[6] A.deSavo, ATLASRPM kits
https.//classisOl.romal.infn.it/atl as-farm/atl as-
kit/RPMKIT-install.html

[7] O.Barring et al, A GLUE Meta-Packaging

proposal for Grid Middleware and Applications
http://www.griphyn.org/documents/document_s
erver/show_docs.php?category=ext&id=523

[8] CMT http://www.cmtsite.org/

[9] Pacman

http://physi cs.bu.edu/~youssef/pacman/
[10] RPM www.rpm.org

[11] Tar
http://www.gnu.org/software/tar/tar.html

[12] Gaudi
http://proj-gaudi.web.cern.ch/proj-gaudi/

[13] ATLAS software deployment tools and
procedures http://atlas-sw.cern.ch/cgi-
bin/cvsweb.cgi/offline/Deployment/

[14] European Data Grid, Work Package 4:
Fabric Management, Configuration
Management task. http://hep-proj-grid-
fabric.web.cern.ch/hep-proj-grid-
fabric/Tasks/Configuration/

7. Figures

package At hExHel | oWorld

aut hor Paol o Cal afi ura Paol o. Cal afi ura@ern. ch
use Atl asPolicy At | asPol i cy-01-*

use Gaudil nterface Gaudilnterface-01-* External
library AthExHel | oWrld *.cxx -s=conponents *.cxX
appl y_pattern conmponent _library

appl y_pattern declare_runtine

Figure 1: sample CMT reguirementsfilefor a package'AthExHelloworld'.

descri pti on=' Package At hExHel |l oWrl d-00-01-04 in rel ease 6.2.0'

url ="http://atlas.web. cern.ch/ Atl as/ GROUPS/ SOFTWARE/ OO Devel oprent /'
source = '../dist'

download = { '"*':' AthExHel |l oWwrl d-6.2.0.tar.gz"' }

depends = ['AtlasPolicy-6.2.0" , 'Gaudilnterface-6.2.0"]

Figure 2: sample Pacman file for a package ‘AthExHelloworld'.

