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Parton densities for statisticians
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Parton densities are a set of several functions described by 
around n = two dozen parameters 

θ = (θ1, ..., θn).  

The functions have (roughly) the form 

f(x) = a xb (1 - x)c (1 + corrections + ... ).

Given a set of parton density parameters θ, we can predict the 
expected value of a measurable quantity y(θ) (non-trivial 
calculation).

The prediction cannot be calculated rigorously from the 
fundamental theory (QCD).  Several approximations enter, e.g., 
perturbation theory to a limited order.



Constraining the parton 
densities
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Many measurements have been carried out that constrain the 
parton densities.  The existing measurements constitute a set of 
hundreds (perhaps even a few thousand) numbers

 y = (y1, ..., ym).

The yi are usually taken to be normally distributed.  The standard 

deviations σi are estimated for each measurement.

Gaussian model not justified in all cases (need longer tails).

Subsets of the yi correlated (covariances available).

Systematic biases can be significant -- some info on this 
reported with measurement but can be very uncertain.  E.g. 
measurements from different experiments of same quantity 
don’t always agree.



Frequentist approach
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Most parton density analyses up to now have used Method of 
Least Squares to estimate the parameters.

Goodness-of-fit typically poor; a number of important 
measurements incompatible.

Variances of estimators from e.g.

χ2(θ) = χ2
min + 1

are typically small, and do not reflect full uncertainty on the 
parton densities.  Try e.g. 

χ2(θ) = χ2
min + some big number (50, 100?)

Difficult to quantify model uncertainties 

? Bayesian analysis.



What we want to do with parton densities
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We are not primarily interested in the parton density parameters θ 
themselves, but rather we want to predict values for quantities that 
have not yet been (but will soon be) measured.

Our goal is to quantify the uncertainty in the prediction for a 
measurable quantity y(θ).

Find posterior pdf for θ

For some new measurable quantity z(θ) determine p(z) e.g. by 
MCMC from p(θ).



Quantifying model uncertainties
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Some of the model uncertainties stem from using perturbation 
theory to a fixed order.  Very roughly,

y = a(θ)  (bα + cα2 + ... )

The expansion parameter α is small, itself uncertain.  Here suppose 
b and c are known, but higher order terms not yet calculated.

Try to quantify uncertainty due to higher order terms by taking e.g.

y = a(θ)  (bα + cα2 + d α3)

Assign prior π(d) using some guesses of people who have 
experience computing e.g. b and c.

We can play a similar game for a variety of model uncertainties.



Assigning priors
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Some rough guesses for the parton density parameters exist; use 
these as a guide.

Parameter set θ enlarged to include perhaps an even greater number 
of nuisance parameters ν:

Priors from interrogation of theoretical physicists.

Correlations for πν(ν) non-trivial

Problem now of even higher dimension (up to, say, 100).  
Can we trust anyone’s intuition in a high-dim. space?

For physics community, emphasise the “if-then” nature of the 
result:

“If your uncertainty in ν is such-and-such, then your 
corresponding uncertainty in the observable z is so-and-so.”



Approach to goodness-of-fit
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One source of uncertainty is the parametric form of the parton 
density function, e.g.,

Suggestion by M. Goldstein (Durham) -- take, e.g.,

“Residual function” r(x) very flexible, e.g., superposition of 
Bernstein polynomials, coefficients νi:

Prior for νi concentrated around 0, width chosen to reflect 
uncertainty in f(x) (roughly a couple of percent).



So far residual function based on Bernstein polynomials.

Test done with Bi,4, eventually need higher order (?)

Residual function
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 mathworld.wolfram.com



Test with Bernstein polynomials
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Test example with residual function

Set γ to give desired correlation length (for now γ = 1).

For prior take



To compute likelihood, use only with linear relation, 
but include residual function r(x):

Test with Bernstein polynomials, cont.
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Generate simulated measurements yi, from 

(1)

(2)

For (1) expect good fit, p(ν) should be narrower than π(ν).

From (2) bad fit, expect probabilities for large νi to grow.



Results of “good fit”
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Generate points from line, model is also a line.

Curves shown with ML estimates.



Results of “bad fit”
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Generate points from parabola, fitted model is a line.

With residual function, good fit.



Sampling from p(θ)
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Some trace plots:

Sample posterior pdf with MCMC (Metropolis-Hastings):

      Gaussian trial density, q, correlations match L (better:  p)
      Scale width of q to give acceptance fraction ~ 0.4



MCMC sampling of p(θ)
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Autocorrelation:



Results of test analysis
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To quantify goodness-of-fit, look at prior/posterior distribution of 

solid = 
prior

dashed = 
posterior

good fit

bad fit



Difficulties with MCMC
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Test problems look OK.  For the “real problem”, MCMC does not 
converge well:

This took 4.5 hrs CPU, did not include residual function.
How can we improve our MCMC?



Least Squares, systematic errors, etc.
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Most analyses have used Least Squares (gives maximum 
likelihood estimators if data Gaussian distributed).

In addition to the measurements and their standard deviations, 
experimenters typically report a “one standard deviation” 
systematic error (plus correlations, if several measurements).

This is sometimes used in a generalized Least Squares; for 
covariance matrix use V = Vstat + Vsys.

With several measurements of the same quantity, we find outliers 
more often than a Gaussian distribution for the data should allow.  
Interpretation is that the experiment underestimated its systematic 
error.

Need to use a sampling distribution for the data with longer tails. 



A better distribution for the data
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Suppose each measurement reports a result y and an estimate of its 
standard deviation σstat.

In addition the experimenter tries to report a systematic error σsys 
such that

In addition to the reported numbers, each experiment is 
characterized by a value s (unreported), by which σ is mis-
estimated.

with



Distribution of y and s
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Take joint pdf for y and s

where g(s; α, β) is a Gamma distribution.

With probability 1-q the experimenter reports the correct error bar.

With probability q the error bar is significantly incorrect.  Choose 
parameters of Gamma dist. such that V[s] = 1, E[s] = 2.

Integrate to find 



Marginal distribution of y
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As s is not reported, we must find 

Integrating (numerically) gives a curve with longer tails than a 
Gaussian:

Use in either a frequen-
tist or Bayesian analysis.



Wrapping up
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Over the past year, primary activity has been assembling the 
computational machinery -- still much difficulty with MCMC.

An important task for the near future will be establishing 
reasonable priors; rely heavily on advice of particle theorists.

Some progress on goodness-of-fit (is this a “solved problem”?)

Some progress on a more appropriate distribution for the data 
(longer tails than Gaussian).

“Final product” should be a software package that will allow the 
user to compute the posterior pdf for the prediction of a 
measurement; width should reflect uncertainty due to parton 
densities. 




