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. Statement of the problem
1. Why not frequentist methods?

I1l.  Bayesian analysis -- our approach to & difficulties with:
1) model uncertainties
1) goodness-of-fit
1) MCMC
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Parton densities for statisticians

Parton densities are a set of several functions described by
around n = two dozen parameters

6=(0,..0).
The functions have (roughly) the form
f(x) = ax® (1-x)¢(1+ corrections+ ...).

Given a set of parton density parameters 6, we can predict the

expected value of a measurable quantity y(0) (non-trivial
calculation).

The prediction cannot be calculated rigoroudy from the
fundamental theory (QCD). Several approximations enter, e.qg.,
perturbation theory to alimited order.
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Constraining the parton

densities | |
Many measurements have been carried out that constrain the

parton densities. The existing measurements constitute a set of
hundreds (perhaps even afew thousand) numbers

Y= (Yir eer Yin)-

They. are usually taken to be normally distributed. The standard
deviations o, are estimated for each measurement.

Gaussian model not justified in all cases (need longer tails).
Subsets of the y. correlated (covariances available).

Systematic biases can be significant -- some info on this
reported with measurement but can be very uncertain. E.qg.
measurements from different experiments of same quantity
don’t always agree.
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Frequentist approach

Most parton density analyses up to now have used Method of
L east Squares to estimate the parameters.

Goodness-of-fit typically poor; a number of important
measurements incompatible.

Variances of estimators from e.g.
X*(0) = X%mn 1
aretypicaly small, and do not reflect full uncertainty on the
parton densities. Try e.g.
X2(8) = X2, + some big number (50, 1007?)
Difficult to quantify model uncertainties

?Bayesian analysis.
Glen Cowan
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What we want to do with parton densities

We are not primarily interested in the parton density parameters 6
themselves, but rather we want to predict values for quantities that
have not yet been (but will soon be) measured.

Our goal isto quantify the uncertainty in the prediction for a
measurable quantity y(0).

Find posterior pdf for 6
p(8) o< L(§10)m(6)

For some new measurable quantity z(0) determine p(z) e.g. by
MCMC from p(0).
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Quantifying model uncertainties

Some of the model uncertainties stem from using perturbation
theory to afixed order. Very roughly,

y=a(0) (ba+ caz+ ..)

The expansion parameter a iIssmall, itself uncertain. Here suppose
b and ¢ are known, but higher order terms not yet calcul ated.

Try to quantify uncertainty due to higher order terms by taking e.g.
y = a(0) (ba + ca?+ da3)

Assign prior 11(d) using some guesses of people who have
experience computing e.g. b and c.

We can play asmilar game for avariety of model uncertainties.
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Assigning priors

Some rough guesses for the parton density parameters exist; use
these asaguide.

Parameter set 0 enlarged to include perhaps an even greater number
of nuisance parametersv:

Priors from interrogation of theoretical physicists.

Correlationsfor 1,(v) non-trivial

Problem now of even higher dimension (up to, say, 100).
Can we trust anyone’ sintuition in a high-dim. space?

For physics community, emphasise the “if-then” nature of the
result:

“If your uncertainty in v is such-and-such, then your
ceorresponding uncertainty in the observable z is so-ang;
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Approach to goodness-of-fit

One source of uncertainty isthe parametric form of the parton
density function, e.g.,

f(z) = az®(1 — 2)°(1 + dv/z — ex)

Suggestion by M. Goldstein (Durham) -- take, e.g.,

f@) =az’(1 —2)(1+...) + r()

“Residual function” r(x) very flexible, e.q., superposition of
Bernstein polynomials, coefficientsv.:

r(z) = > v;Bi(x)
Prior for v, concentrated around O, width chosen to reflect
uncertainty in f(x) (roughly a couple of percent).
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Residual function

So far residual function based on Bernstein polynomials.
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Test with Bernstein polynomials

Test example with residual function
r(z) = S0 oviB;a(x)
For prior take
vV~ N(O,V)

Vij =0o2pij, ouv~0.03

pij =1 — (Azjj/Azmax)’ =1 — (nxxﬂaJ

Set y to give desired correlation length (for now y = 1).
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Test with Bernstein polynomials, cont.

Generate Ssmulated measurementsy,, from
yi ~ N(pi, 07)
(1) p; = a + bx;
(2) w; = a—+ bx; + ca:z-2

To compute likelihood, use only with linear relation,
but include residual function r(x):

Hi = a + by + r(z;)
For (1) expect good fit, p(v) should be narrower than 1i(v).

From (2) bad fit, expect probabilitiesfor large v, to grow.
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Results of “good fit”

Generate pointsfrom line, model isalso aline.

Curves shown with ML estimates.
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Results of “bad fit”

Generate points from parabola, fitted model isaline.

With residual function, good fit.
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Sampling from p(09)

Sampl e posterior pdf with MCMC (Metropolis-Hastings):

Gaussian trial dendity, q, correlations match L (better: p)
Scale width of g to give acceptance fraction ~ 0.4
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MCMC sampling of p(0)

Autocorrelation:

autocorrelation
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Results of test analysis

To quantify goodness-of-fit, look at prior/posterior distribution of
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Difficulties with MCMC

Test problemslook OK. For the “real problem”, MCMC does not
converge well:
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Thistook 4.5 hrs CPU, did not include residual function.
How can we improve our MCMC?
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L east Squares, systematic errors, €etc.

Most analyses have used L east Squares (gives maximum
likelihood estimators if data Gaussian distributed).

|n addition to the measurements and their standard deviations,
experimenters typically report a*one standard deviation”
systematic error (plus correlations, if several measurements).

Thisissometimes used in ageneralized Least Squares, for
covariance matrix use V=V, + V.

With several measurements of the same quantity, we find outliers
more often than a Gaussian distribution for the data should allow.
| nterpretation isthat the experiment underestimated its systematic
error.

Need to use a sampling distribution for the data with longer tails.
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A better distribution for the data

Suppose each measurement reports aresult y and an estimate of its
standard deviation o,

In addition the experimenter triesto report a systematic error o

such that
T, = yzo_i,uz ~ N(O’ 1)

Wi o = \/asztat + 0ys

In addition to the reported numbers, each experiment is
characterized by avalue s (unreported), by which o ismis
estimated.
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Distribution of y and s

Takejoint pdf for y and s
f(y,s) = \/%806_@_“)2/2(”)2 £s(s)

fs(s) = (1 —¢q)é(s— 1) +q9(s; o, 3)

where g(s; a, B) isa Gammadistribution.

With probability 1-q the experimenter reports the correct error bar.

With probability q the error bar issignificantly incorrect. Choose
parameters of Gammadist. such that V[s] =1, E[5] = 2.

Integrateto find fy(y) = [ f(y,s) ds
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Marginal distribution of y

Assisnot reported, we must find
fy(y) = | f(y,s)ds

Integrating (numerically) givesacurve with longer tailsthan a
Gauss an:

0.B o :
Iy}, =28 p=4 --——--
Usein either afrequen- 03
tist or Bayesian analysi's. el
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Wrapping up

Over the past year, primary activity has been assembling the
computational machinery -- still much difficulty with MCMC.

An important task for the near future will be establishing
reasonable priors; rely heavily on advice of particle theorists.

Some progress on goodness-of-fit (isthisa*solved problem”?)

Some progress on a more appropriate distribution for the data
(longer tailsthan Gaussian).

“Final product” should be a software package that will allow the
user to compute the posterior pdf for the prediction of a
measurement; width should reflect uncertainty due to parton
dengities.
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