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Abstract

The four LEP collaborations, ALEPH, DELPHI, L3 and OPAL, have searched for the neutral
Higgs bosons which are predicted by the Minimal Supersymmetric Standard Model (MSSM).
The data of the four collaborations are statistically combined and examined for their consistency
with the background hypothesis and with a possible Higgs boson signal. The combined LEP
data show no significant excess of events which would indicate the production of Higgs bosons.
The search results are used to set upper bounds on the cross-sections of various Higgs-like event
topologies. The results are interpreted within the MSSM in a number of “benchmark” models,
including CP-conserving and CP-violating scenarios. These interpretations lead in all cases to
large exclusions in the MSSM parameter space. Absolute limits are set on the parameter tan (3
and, in some scenarios, on the masses of neutral Higgs bosons.
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1 Introduction

One of the outstanding questions in particle physics is that of electroweak symmetry breaking
and the origin of mass. The leading candidate for an answer is the Higgs mechanism [1] whereby
fundamental scalar Higgs fields acquire nonzero vacuum expectation values and spontaneously
break the electroweak symmetry. Gauge bosons and fermions obtain their masses by interacting
with the resulting vacuum Higgs fields. Associated with this description is the existence of
massive scalar particles, the Higgs bosons.

The Standard Model [2] requires one complex Higgs field doublet and predicts a single
neutral Higgs boson of unknown mass. After extensive searches at LEP, a lower bound of
114.4 GeV/c? has been established for the mass of the Standard Model Higgs boson, at the
95% confidence level (CL) [3].

Supersymmetric (SUSY) [4] extensions of the Standard Model are of interest since they pro-
vide a consistent framework for the unification of the gauge interactions at a high energy scale
and for the stability of the electroweak scale. Moreover, their predictions are compatible with
existing high-precision data [5]. The Minimal Supersymmetric Standard Model (MSSM) (re-
viewed, e.g., in [6]) is the SUSY extension with minimal new particle content. It requires two
Higgs field doublets and predicts the existence of three neutral and two charged Higgs bosons.
The lightest of the neutral Higgs bosons is predicted to have a mass less than about 140 GeV /c?
including radiative corrections [7]. This prediction provided a strong motivation for the searches
at LEP energies.

Most of the experimental investigations carried out in the past at LEP and elsewhere were
interpreted in MSSM scenarios where CP conservation in the Higgs sector was assumed. In
such scenarios the neutral Higgs bosons are CP eigenstates. However, CP violation in the
Higgs sector cannot be a priori excluded [8]. Scenarios with CP violation are theoretically
appealing since they provide one of the ingredients needed to explain the observed cosmic
matter-antimatter asymmetry. The observed size of CP violation in B and K meson systems is
not sufficient to drive this asymmetry. In the MSSM, however, substantial CP violation can be
induced by complex phases in the soft SUSY-breaking sector, through radiative corrections, es-
pecially from third-generation scalar quarks [9]. In such scenarios the three neutral Higgs mass
eigenstates are mixtures of CP-even and CP-odd fields, with production and decay properties
different from those in the CP-conserving scenarios. Hence, the experimental exclusions pub-
lished so far for the CP-conserving MSSM scenarios may be weakened by CP-violating effects.
There is currently one publication on searches interpreted in CP-violating scenarios [10].

In this paper we describe the results of a statistical combination based on the searches of the
four LEP collaborations [10-13], which was carried out by the LEP Working Group for Higgs
Boson Searches. These searches include all LEP2 data up to the highest energy, 209 GeV; in
the case of Refs. [10,12] they also include the LEP1 data collected at energies in the vicinity
of 91 GeV (the Z boson resonance). The combined LEP data show no significant signal for
Higgs boson production. The search results are used to set upper bounds on topological cross-
sections for a number of Higgs-like final states. Furthermore, they are interpreted in a set of



representative MSSM “benchmark” models, with and without CP-violating effects in the Higgs
sector.

2 The MSSM framework

The LEP searches and their statistical combination presented in this paper are interpreted in
a constrained MSSM model. At tree level, two parameters are sufficient (besides the known
parameters of the Standard Model fermion and gauge sectors) to fully describe the Higgs sector.
A convenient choice is one Higgs boson mass (m, is chosen in CP-conserving scenarios and my+
in CP-violating scenarios), and the ratio tan f = vy/v; of the vacuum expectation values of
the two Higgs fields (ve and v; refer to the fields which couple to the up- and down-type
fermions). Additional parameters, Msysy, M2, p, A and mg, enter at the level of radiative
corrections. Msgysy is a soft SUSY-breaking mass parameter and represents a common mass
for all scalar fermions (sfermions) at the electroweak scale. Similarly, M, represents a common
SU(2) gaugino mass at the electroweak scale. The “Higgs mass parameter” f is the strength of
the supersymmetric Higgs mixing; A = A; = A}, is a common trilinear Higgs-squark coupling
at the electroweak scale and mj; the gluino mass. Three of these parameters define the stop and
sbottom mixing parameters X; = A — pcot 5 and X}, = A — ptan 5. In CP-violating scenarios,
the complex phases related to A and my, arg(A) and arg(m;), are supplementary parameters.
In addition to all these MSSM parameters, the top quark mass also has a strong impact on
the predictions through radiative corrections. In this paper, four fixed values are used in the
calculations: m; = 169.3, 174.3, 179.3 and 183.0 GeV/c?. For the purposes of illustration, m;
= 174.3 GeV/c? is used in producing the figures (unless explicitly specified otherwise), which
is a previous world-average value [14] and which is within the current experimental range of
172.74£2.9 GeV/c? [15]. The influence of the top quark mass on the exclusion limits is discussed
in Sections 5 and 6 along with the other results.

The combined LEP data are compared to the predictions of a number of MSSM “bench-
mark” models [16]. Within each of these models, the two tree-level parameters, tan 5 and
ma (in the CP-conserving scenarios) or my+ (in the CP-violating scenarios) are scanned while
the other parameters are set to fixed values. Each scan point thus represents a specific MSSM
model. The ranges of the scanned parameters and the values of the fixed parameters are listed
in Table 1 for the main scenarios studied. The first five models represent the main benchmarks
for CP-conserving scenarios while the last model, labelled CPX, is a benchmark model for CP-
violating scenarios. Some variants of these benchmark scenarios, which are also investigated,
are presented in the text below.

The scan range of tan 3 is limited by the following considerations. For values of tan 5 below
the indicated lower bounds, the calculations of the observables in the Higgs sector (masses,
cross-sections and decay branching ratios) become uncertain; for values above the upper bounds,
the decay width of the Higgs bosons may become larger than the experimental mass resolution
(typically a few GeV/c?) and the modelling of the kinematic distributions of the signal becomes



Benchmark parameters

(1) (2) (3) (4) (5) (6)
My -mazx no-mixing large-p gluophobic | small-c ¢ CPX
Parameters varied in the scan
tan 0.4-40 0.4-40 0.7-50 0.4-40 0.4-40 0.6-40
ma (GeV/c?) 0.1-1000 0.1-1000 0.1-400 0.1-1000 0.1-1000 -
myz (GeV/c?) —~ —~ —~ —~ —~ 4-1000
Fixed parameters

Mgusy (GeV) 1000 1000 400 350 800 500
Ms (GeV) 200 200 400 300 500 200
u (GeV) —200 —200 1000 300 2000 2000
mg (GeV/c?) 800 800 200 500 500 1000
X; (GeV) 2 Msysy 0 —300 —1750 —1100 A—pcotp
A (GeV) Xitpcot 5 | Xy+pcot | Xe+ucot B | Xe+pcot B | Xy+pcot 8 1000
arg(A)=arg(mz) - - - - - 90°

Table 1: Parameters of the main benchmark scenarios investigated in this paper. The values
of tan  and the mass parameters my (in the CP-conserving scenarios) or my+ (in the CP-
violating scenarios) are scanned within the indicated ranges. For the definitions of A and
X, the Feynman-diagrammatic on-shell renormalisation scheme is used in the CP-conserving
scenarios and the MS renormalisation scheme in the CP-violating scenarios.

inaccurate?. The scan range of my is limited in most cases to less than 1000 GeV /c?; at higher
values the Higgs phenomenology is insensitive to the choice of mj.

For a given scan point, the observables in the Higgs sector are calculated using two theo-
retical approaches, both including one- and two-loop corrections. The FeynHiggs2.0 code [17]
is based on a Feynman-diagrammatic approach and uses the on-shell renormalization scheme.
The SUBHPOLE calculation and its CP-violating variant CPH [18] are based on a renormalization-
group improved effective potential calculation [19] and use the MS scheme?.

In the CP-conserving case, the FeynHiggs calculation is retained for the presentation of the
results since it yields slightly more conservative results (the theoretically allowed parameter
space is wider) than SUBHPOLE does. Also, FeynHiggs is preferred on theoretical grounds since
its radiative corrections are more detailed than those of SUBHPOLE.

In the CP-violating case, neither of the two calculations is preferred on theoretical grounds.
While FeynHiggs contains more advanced one-loop corrections, the CPH code has a more precise
phase dependence at the two-loop level. We opted therefore for a solution where, in each scan
point, the CPH and FeynHiggs calculations are compared and the calculation yielding the weaker

2The DELPHI Collaboration included the variation of the Higgs boson decay width with tan/ in their
simulation for tan 8 between 30 and 50. With increasing tan 5, DELPHI observed an increase of the mass
resolutions and hence a loss in the signal detection efficiencies; but this was compensated by the increase of the
cross-sections, such that DELPHI found no significant drop in the overall sensitivity.

3New developments in this approach are implemented in the code CPsuperH [20].




exclusion (more conservative) is retained. However, we also discuss in Section 6 the effect of
using separately either one or the other of the two calculations. Rather large discrepancies
between the two codes are found in calculating the partial width for the Higgs boson cascade
decay I'(Hy — HiH1) (H1 and Hs are the lightest and the second-lightest neutral MSSM Higgs
bosons). Aiming at conservative exclusion limits, therefore, the CPH formula for this decay was
also used within the FeynHiggs code.

All codes are implemented in a modified version of the HZHA program package [21], which
takes into account initial-state radiation and the interference between identical final states from
Higgsstrahlung and boson fusion processes.

2.1 CP-conserving scenarios

Assuming CP conservation, the spectrum of MSSM Higgs bosons consists of two CP-even
neutral scalars, h and H (h is defined to be the lighter of the two), one CP-odd neutral scalar,
A, and one pair of charged Higgs bosons, H*. The following ordering of masses is valid at tree
level: mu<(My, ma)<my and my+<mgs. This ordering may be substantially modified by
radiative corrections [7] where the largest contribution arises from the incomplete cancellation
between top and scalar top (stop) loops. The corrections affect mainly the neutral Higgs boson
masses and decay branching ratios.

In eTe™ collisions at LEP energies, the main production processes of h, H and A are the
Higgsstrahlung processes ee”— hZ and HZ and the pair production processes ete — hA
and HA (in most of the MSSM parameter space only the hZ and hA processes are possible
by kinematics). The fusion processes ete™— (WW— h)v 77, and ete™— (ZZ— h)ete™ play a
marginal role at LEP energies but they are also taken into account in the derivation of the
results.

The cross-sections for Higgsstrahlung and pair production can be expressed in terms of the
Standard Model Higgs boson production cross-section o}l The following expressions hold for
the processes involving the lightest scalar boson h:

onz = sin’(f — a) oy, (1)
ona = cos?(f — a)\ oy, (2)

Here « is the mixing angle which diagonalises the CP-even Higgs mass matrix (at lowest order
it can be expressed in terms of my, My and tan 3) and A is a kinematic factor:

X = N2 INZ202E /s + Ag)] (3)

with

)‘ij = []_ — (m, + mj)2/S][]_ — (’ITLZ - mj)Q/S], (4)
where s is the square of the centre-of-mass energy. The cross-sections for the processes in-
volving the heavy scalar boson H are obtained by interchanging the MSSM suppression factors
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sin?(8 — ) and cos?(B — a) in Eqgs. 1 and 2 and replacing the index h by H in Egs. 1, 2 and 3.
The Higgsstrahlung and pair production cross-sections are complementary, as seen from Eqs. 1
and 2. At LEP energies, the process ete™— hZ is typically more abundant at small tan 3 and

eTe”™— hA at large tan 3, but the latter process can be suppressed also by the kinematic factor
A

The following decay features are relevant to the neutral MSSM Higgs bosons. The h boson
decays mainly to fermion pairs, with only a small fraction of WW* and ZZ* decays, since its
mass is below the threshold of the on-shell processes h— WW and h— ZZ. However, for
particular choices of the parameters, the fermionic final states may be strongly suppressed.
The A boson also decays predominantly to fermion pairs, independently of its mass, since its
coupling to vector bosons is zero at leading order. For tan3>1, decays of h and A to bb
and 77 pairs are preferred while the decays to c¢ and gluon pairs are suppressed. Decays
to c¢c may become important for tan f<1. The decay h— AA may be dominant if allowed
by kinematics [22]. Higgs boson decays into SUSY particles, such as sfermions, charginos or
invisible neutralinos, are suppressed due to the high values of the SUSY-breaking scale Msysy
which have been chosen.

In the following we describe the CP-conserving benchmark scenarios [16] which are examined
in this paper. The corresponding parameters are listed in Table 1.

2.1.1 The my-mazr scenario

In the my-max scenario the stop mixing parameter is set to a large value, X; = 2Msysy. This
model is designed to maximise the theoretical upper bound on my, for a given tan 5 and fixed my
and Mgysy (uncertainties due to unknown higher-order corrections are ignored). This model
thus provides the largest parameter space in the my, direction and conservative exclusion limits
for tan 3.

We also examine a variant of this scenario where the sign of s is changed to positive, since
this is favoured by presently available results on (g — 2), [23,24]. This variant is labelled
my-maz (a) below. Furthermore, we examine the case where, besides changing the sign of
i to positive, the sign of the mixing parameter X; is changed to negative. This choice of
parameters gives better agreement with measurements of the branching ratios and of the CP-
and isospin-asymmetries for the process b— sy [16,25]. This variant is labelled my-maz (b)
below.

2.1.2 The no-mizing scenario

In the no-mixing scenario the stop mixing parameter X; is set to zero, giving rise to a relatively
restricted MSSM parameter space. We also examine a variant of this scenario where the sign of
v is changed to positive, for a better agreement with recent measurements of (¢ — 2),, [23,24],
and Msysy is raised to 2 TeV in order to enlarge the parameter space of the standard no-mizing



scenario [16]. This variant is labelled no-mizing (a) below. In this case, tan 3 is scanned only
from 0.7 upward due to numerical instabilities at lower values in the diagonalisation of the mass
matrix.

2.1.3 Special scenarios

Some scenarios were designed to illustrate choices of the MSSM parameters for which the
detection of Higgs bosons at LEP, at the Tevatron and at the LHC is expected to be difficult
a priori due to the suppression of some main discovery channels [16].

e The large-p scenario is constructed in such a way that, while the h boson is accessible by
kinematics at LEP for all scan points, the decay h— bb, on which most of the searches
at LEP and at the Tevatron are based, is typically strongly suppressed. For many of the
scan points the decay h— 7177 is also suppressed, such that the dominant decay modes
are h— cc, gg and WW*. The detection of Higgs bosons thus relies mainly on flavour- and
decay-mode-independent searches. Moreover, for some of the scan points, the ete”— hZ
process is suppressed altogether by a small value of sin?(3 — «). In such cases, however,
the heavy neutral scalar H is within reach (myg < 111 GeV/c?) and the cross-section for
ete”™— HZ, proportional to cos?( — ), is large; the search may thus proceed via the
heavy Higgs boson H.

e The gluophobic scenario is constructed in such a way that the Higgs boson coupling to
gluons is suppressed due to a cancellation between the top and the stop loops at the hgg
vertex. Since at the LHC the searches will rely heavily on producing the Higgs boson in
gluon-gluon fusion, and since the mass determination will rely in part on the decays into
gluon pairs, such a scenario may present experimental difficulties.

e In the small-a.p; scenario the couplings governing the decays h— bb and h— 777~
are suppressed with respect to their Standard Model values by a factor — sin aeg/ cos
(gt s the effective mixing angle of the neutral CP-even Higgs sector including radiative
corrections). The suppression occurs mainly for large tan 5 and moderate my.

2.2 CP-violating scenarios

In CP-violating MSSM scenarios the three neutral Higgs mass eigenstates H; (i = 1,2, 3) do not
have well defined CP quantum numbers. Each of them can thus be produced by Higgsstrahlung
(efe”— M,Z) via the CP-even field component and in pairs (efe™— H;H; (i # j)). The
relative rates depend on the choice of the parameters describing the CP-even/odd mixing.

Experimentally, the CP-violating scenarios are more challenging than the CP-conserving
scenarios. For a wide range of model parameters, the coupling of the lightest Higgs boson
H1 to the Z boson may be suppressed. Furthermore, the second- and third-lightest H, and



‘Hs3 bosons may both have masses close to or beyond the kinematic reach of LEP. Also, in
CP-violating scenarios, the decays to the main “discovery channels”, H;— bb, H,— bb and
Ho,— HiH,— bbbb *, may have lower branching ratios. One therefore anticipates less search
sensitivity in the CP-violating scenarios than in the CP-conserving scenarios. An example
illustrating this situation is given in Table 2.

Parameters FeynHiggs  CPH
Ht (GeV/c?) 129.0 129.0
tan 8 5.0 5.0
my, (GeV/c?) 38.1 33.4
ms, (GeV/c?) 105.4 102.4
o(H1Z— bbZ) (pb) 0.0051 0.0019
o(HaZ— bbZ) (pb) 0.0156  0.0197
o(HoZ— HiH1Z— bbbbZ) (pb) | 0.0866  0.0978
o(H1Ho— bbbb) (pb) 0.0066  0.0094

Table 2: A typical parameter set which is difficult to address by the present searches. The
results of the two calculations, FeynHiggs and CPH, are given for a centre-of-mass energy of
206 GeV. The main input parameters are listed in the first two lines; all other input parameters
correspond to the CPX benchmark scenario and are listed in the last column of Table 1. The
output masses my;, , My, and the relevant topological cross-sections are listed below the second
horizontal line.

The cross-sections for Higgsstrahlung and pair production are given by [9]

OnZ = giizz UEII\Z/[ (5)
UHH-L]‘ = gzcn-t]-Z 5‘ O—EII\Z/[ (6)

(in the expression for A, Eq. 3, the indices h and A have to be replaced by H; and H;). The
couplings
Gu;77. = cos BOy; + sin SOy (7)

Iuin;7 = O3;(cos Oy — sin fOy) — Osj(cos fOy; — sin fO;) (8)

obey the complementarity relation

3
Zgiizz =1 (9)
i—1

4Regarding the decay properties, the CP-violating scenarios maintain a certain similarity to the CP-
conserving scenarios although the branching ratios are, in general, different. The lightest mass eigenstate
H, predominantly decays to bb if allowed by kinematics, with a small fraction decaying to 7t7~ and cc. The
second-lightest Higgs boson Hy may decay to H1H; when allowed by kinematics; otherwise it decays preferen-
tially to bb.



977 = EijkGrin; 7 (10)

where €;;;, is the usual Levi-Civita symbol.

In CP-violating scenarios, the orthogonal matrix O;; (i,j = 1,2,3) relating the weak CP
eigenstates to the mass eigenstates has non-vanishing off-diagonal elements. These elements,
giving rise to CP-even/odd mixing, are proportional to

(11)

with v = /v? + v2. Substantial deviations from the CP-conserving scenarios are thus expected
for small Mgysy and large Im(uA), which are obtained if the CP-violating phase arg(A) takes
values close to 90°. Furthermore, the effects from CP violation strongly depend on the precise
value of the top quark mass [15].

The parameters of the benchmark model CPX have been chosen [18] to maximise the phe-
nomenological differences with respect to the CP-conserving scenarios. Constraints from mea-
surements of the electron and neutron electric dipole moments [26] were also taken into account.
The basic set of parameters is listed in the last column of Table 1. Note that the scan of my+
started at 4 GeV/c? but values less than about 100 GeV/c? give unphysical results and are
thus considered as theoretically inaccessible.

The parameters which follow have been varied one-by-one while all the other parameters
were kept at their standard CPX value.

e Top quark mass: m; = 169.3,174.3,179.3 and 183.0 GeV/c?, embracing the current
experimental value, m; = 172.7 + 2.9 GeV/c? [15].

e The CP-violating phases: arg(A) = arg(mg) = 0°, 30°, 60°, 90° (CPX value), 135° and
180° (the values 0° and 180° correspond to CP-conserving limits).

e The Higgs mass parameter: p = 0.5, 1.0, 2.0 (CPX value) and 4.0 TeV.

e The SUSY-breaking scale: Mgysy = 0.5 TeV (CPX value) and 1.0 TeV. The proposal of
the CPX scenario [18] predicts a weak dependence on Mgysy if the relations |A| = |mg| =
p/2 = 2Msysy are preserved. This behaviour is examined by studying a model where

Mgysy is increased from 0.5 TeV to 1 TeV and the values of A, m; and p are scaled to
2000 GeV, 2000 GeV and 4000 GeV, respectively.

3 Experimental searches

The searches carried out by the four LEP collaborations are based on ete™ collision data
which span a large range of centre-of-mass energies, from 91 GeV to 209 GeV. The searches
include the Higgsstrahlung and pair production processes, ensuring by their complementarity
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a high sensitivity over the accessible MSSM parameter space. It is important to note that
the kinematic properties of the signal processes are to a large extent independent of the CP
composition of the Higgs bosons. This implies that the same topological searches can be applied
to study the CP-conserving and CP-violating scenarios. For Higgsstrahlung this is natural since
only the CP-even components of the Higgs fields couple to the Z boson. In pair production
involving CP-even and CP-odd field components, the similarity of the kinematic properties
(e.g., angular distributions) arises from the scalar nature of the Higgs bosons. Small differences
may occur from spin-spin correlations between final-state particles but these were found to have
no noticeable effect on the signal detection efficiencies. We therefore adopt in the following a
common notation for the CP-conserving and CP-violating processes in which H; (i = 1,2,3)
designate three generic neutral Higgs bosons of increasing mass, with undefined CP properties;
in the CP-conserving limit (arg(A) = arg(mg) = 0°), these become the CP eigenstates h, A, H
(the correspondence depends on the mass hierarchy).

In each of the four LEP experiments, the data analysis is done in several steps. A pres-
election is applied to reduce some of the largest backgrounds, in particular, from two-photon
processes. The remaining background, mainly from production of fermion pairs and WW or
ZZ (possibly accompanied by photon or gluon radiation), is further reduced by more selective
cuts or by applying multivariate techniques such as likelihood analyses and neural networks.
The identification of b-quarks in the decay of the Higgs bosons plays an important role in
the discrimination between signal and background, as does the kinematic reconstruction of the
Higgs boson masses. The detailed implementation of these analyses, as well as the data samples
used by the four collaborations, are described in the individual publications. A full catalog of
the searches provided by the four LEP collaborations for this combination, with corresponding
references to the detailed descriptions, is given in Appendix A.

3.1 Search topologies

Searches have been carried out for the two main signal processes, the Higgsstrahlung process
ete”— H;Z (which also apply in some cases to ete”— H,Z) and the pair production process
ete”™— HaoH,.

(a) Considering first the Higsstrahlung process eTe™— HZ, the principal signal topologies are
those used in the search for the Standard Model Higgs boson at LEP [3], namely:

e the four-jet topology, (H1— bb)(Z— qq), in which the invariant mass of two jets is close
to the Z boson mass My while the other two jets contain b-flavour;

e the missing energy topology, (H,— bb, 7777)(Z— v), in which the event consists of
two b-jets or identified tau decays and substantial missing momentum and missing mass,
compatible with My;

e the leptonic final states, (H;— bb)(Z— eTe™, u*p~), in which the invariant mass of the
two leptons is close to My;



e the final states with tau-leptons, (H;— 7777 )(Z— qq) and (H;— bb, 7777)(Z— 7+77),
in which either the 777~ or the qq pair has an invariant mass close to M.

Most of these signatures are relevant for Higgs boson masses above the bb threshold and rely
on the identification of b-quarks in the final state. Searches for lighter Higgs bosons, listed in
Appendix A, use signatures which are described in the specific publications. In some regions
of the MSSM parameter space, the #;— bb decay may be suppressed while decays into other
quark flavours or gluon pairs are favoured. The above searches are therefore complemented or
replaced® by flavour-independent searches for (H;— qq)Z in which there is no requirement on
the quark-flavour of the jets. Finally, the searches for Higgsstrahlung also include the Higgs
cascade decay ete™— HoZ— (H1 H1)Z, giving rise to a new class of event topologies. These
processes may play an important role in those regions of the parameter space where they are
allowed by kinematics.

(b) In the case of the pair production process, ete™— HyH;, the principal signal topologies
at LEP are:

e the four-b final state (Ho— bb)(H;— bb);
e the mixed final states (Ho— 777 )(H,— bb) and (Ho— bb)(H,— 7+77);

e the four-tau final state (Ho— 7777 )(H1— 7777).

The Higgs cascade decay, eTe”— HoHi— (HiHi)H1, gives rise to event topologies ranging
from six b-jets to six tau-leptons. Most of these searches are relevant for Higgs boson masses
above the 777~ threshold. Similarly to the Higgsstrahlung case, the above searches for pair
production are complemented or replaced, whenever more efficient, by flavour-independent
searches.

3.2 Additional experimental constraints

If the combination of the above searches is not sufficiently sensitive for excluding a given model
point, additional constraints are applied; these are listed below.

e Constraint from the measured decay width of the Z boson, I'z, and its possible deviation,
Al'z, from the Standard Model prediction. The model point is regarded as excluded if
the following relation between the relevant cross-sections is found to be true:

AT o
Z UHiZ(mZ) + Z Onin; (mz) > FZZ ) JtZ t(mZ)’ (12)
( (]

5The replacement is necessary whenever the overlap in terms of selected events is important, in order to
avoid double-counting.
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where ATy = 2.0 MeV [27] stands for the 95% CL upper bound on the possible additional
decay width of the Z boson, beyond the Standard Model prediction, and o%* is the Z pole
cross-section.

e Constraint from a decay mode independent search for ete™— 7,7 [28]. The model point
is regarded as excluded if the condition

On;7 > k(mﬂz) : O—EII\Z/[ (13)

is fulfilled, where k(m,,) is a mass-dependent factor which scales the Standard Model
Higgs production cross-section to the value that is excluded at the 95% CL.

e Constraint from a search for light Higgs bosons produced by the Yukawa process®. The
model point is regarded as excluded if the predicted Yukawa enhancement factor &(my,, ),
defined in [29], is excluded by this search. To be conservative, the weaker of the two
enhancement factors, for CP-even and CP-odd couplings, is used.

These additional constraints are particularly useful at small ms;, and ms,,, below the bb thresh-
old.

3.3 Statistical combination of search channels

The statistical method by which the topological searches are combined is described in Refs. [3,
30].

After selection, the combined data configuration (distribution of all selected events in several
discriminating variables) is compared in a frequentist approach to a large number of simulated
configurations generated separately for two hypotheses: the background (b) hypothesis and the
signal-plus-background (s + b) hypothesis. The ratio

Q= Lss/Lo (14)

of the corresponding likelihoods is used as the test statistic. The predicted, normalised,
distributions of ) (probability density functions) are integrated to obtain the p-values [31]
1-CLy=1- Pb(Q < Qobserved) and CLs-i-b = Ps-l—b(Q < Qobserved); these measure the com-
patibility of the observed data configuration with the two hypotheses. Here P, and Py, are
the probabilities for a single experiment to obtain a value of ) smaller than or equal to the
observed value, given the background or the signal-plus-background hypothesis. More details
can be found in Ref. [3].

Systematic errors are incorporated in the calculation of the likelihoods by randomly varying
the signal and background estimates in each channel” according to Gaussian error distributions

6Note that, in the case of DELPHI, the Yukawa channels are not used as external constraints but are
combined with the other search channels.

"The word “channel” designates any subset of the data in which a search has been carried out. These subsets
may correspond to specific final-state topologies, to data sets collected at different centre-of-mass energies or to
the subsets of data collected by different experiments.
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and widths corresponding to the systematic errors. For a given source of uncertainty, correla-
tions are addressed by applying these random variations simultaneously to all those channels
for which the source of uncertainty is relevant. Errors which are correlated among the experi-
ments arise mainly from using the same Monte Carlo generators and cross-section calculations
for the signal and background processes. The uncorrelated errors arise mainly from the limited
statistics of the simulated background event samples.

In a purely frequentist approach, the exclusion limit is computed from the confidence C'L;
for the signal-plus-background hypothesis: a signal is regarded as excluded at the 95% CL, for
example, if an observation is made such that C'L,,, is lower than 0.05. However, this procedure
may lead to the undesired situation in which a large downward fluctuation of the background
would exclude a signal hypothesis for which the experiment has no sensitivity since the expected
signal rate is too small. This problem is avoided by using the ratio

CL, = CL,.,/CL, (15)

instead of C'L,,,. We adopt this quantity for setting exclusion limits and consider a given model
to be excluded at the 95% CL if the corresponding value of C'L; is less than 0.05. Since C'L;
is a positive number less than one, C'L; is always larger than C'L, ., and the limits obtained in
this way are therefore conservative.

3.4 Comparisons of the data with the expected background

The distribution of the p-value 1 — C'L, over the parameter space covered by the searches
provides a convenient way of studying the agreement between the data and the expected back-
ground and of discussing the statistical significance of any local excess in the data. While a
purely background-like behaviour® would yield p-values close to 0.5, much smaller values are
expected in the case of a signal-like excess. For example, a local excess of three or five standard
deviations would give rise to a p-value 1 — C'Ly of 2.7 x 1072 or 5.7 x 1077, respectively.

One has to be careful, however, when interpreting these numbers as probabilities for lo-
cal excesses occurring over the extended domains covered by the searches. For example, the
probability for a fluctuation of three standard deviations to occur anywhere in the parameter
space is much larger than the number 2.7 x 1072 just quoted. A multiplication factor has
to be applied to the probability 1 — C'L, which reflects the number of independent “bins” of
the parameter space; this factor can be estimated from the total size of the parameter space
and the experimental resolutions. For example, the searches for the Higgsstrahlung process
ete”— H,Z, covering the range 0<mgy, <120 GeV/c? with a mass resolution Amy, of about
3 GeV/c?, would yield about twenty fairly independent mass-bins of width 2Amg,,; hence, a
multiplication factor of about twenty. Much bigger multiplication factors are expected in the
searches for the pair production process ete™— HoH; with two independent search parameters
(masses).

8Single, background-like, experiments have values of 1 — C'Ly uniformly distributed between zero and one.
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These simple considerations do not take into account, for example, possible correlations
from resolution tails extending over several adjacent bins or correlations between different
searches sharing candidate events. A more elaborate evaluation of the multiplication factor has
therefore been performed. A large number of background experiments was simulated, covering
the whole parameter space, using realistic resolution functions and taking correlations into
account. From these random experiments, the probability to obtain 1 — C'L; smaller than a
given value, anywhere in the parameter space of a given scenario, has been determined (the
mp-mazx scenario was taken for this study). A scale factor of at least 60 was obtained in this
manner. According to this estimate, the probability of observing a background fluctuation of
three standard deviations anywhere in the parameter space of a given scenario (e.g., my-maz)
can be 16% or more. Also, to observe two fluctuations with two standard deviations turns out
to be more likely than to observe only one.

Figure 1 shows the distribution of the p-value 1—C Ly, determined from the present combined
searches, for the CP-conserving benchmark scenario my-maz and the CP-violating scenario
CPX. Over the largest part of the parameter space, the local excesses are smaller than two
standard deviations. In the my-maz scenario, the lowest value, 1 — CL, = 1.3 x 1072, lies
within the vertical band at mj, around 100 GeV/c? and corresponds to 2.5 standard deviations.
This excess, and a less significant excess at about 115 GeV/c?, come from the Higgsstrahlung
search; both are discussed in Ref. [3] in the context of the search for the Standard Model
Higgs boson. In the CPX scenario, one observes two small regions at my, ~ 35-40 GeV/c?,
my, ~ 105 GeV/c? and tan 3 ~ 10, where the significance exceeds three standard deviations;
they arise from the search for the pair production process.

The exact position and size of these fluctuations may vary from one scenario to the other.
In Tables 3 and 4 we list the parameters of the most significant excesses for all CP-conserving
and CP-violating benchmark scenarios considered in this paper. The largest fluctuation of all
has a significance of 3.5 standard deviations; its probability is estimated as 3.6% at least, when
the scale factor of 60 or more is applied.

From these studies one can conclude that there is a reasonable agreement between the data
and the simulated background, with no compelling evidence for a Higgs boson signal, and that
the excesses observed are compatible with random fluctuations of the background.

4 Limits on topological cross-sections

In this section we present upper bounds on the cross-sections for the most important final-state
topologies expected from the Higgsstrahlung process ete™— H;Z and the pair production
process ete”— HoH,. These can be used to test a wide range of specific models.

We define the scaling factor
595 = Umax/arefa (16)

where o, is the largest cross-section compatible with the data, at the 95% CL, and o
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Benchmark my mup ma mp: tanf | 1—CL, o

(st.dev.)

myp-maz 99 253 169 184 0.7 | 1.3x1072 2.5
my-maz (a) | 99 277 156 171 0.6 | 1.4x1072 2.5
mu-maz (b) | 99 345 310 319 09 | 1.6x102 24

no-mizing 99 165 152 171 3.7 | 1.4x10°2 2.5
no-mizing (a) | 99 134 114 138 54 | 1.1x107? 2.5
large-p 59 108 67 104 3.1 | 1.0x1072 2.6
gluophobic 56 124 69 105 4.1 | 5.5x1073 2.8
small-oe;; | 60 121 75 109 55 | 24x107 3.0

Table 3: The most significant excesses with respect to the predicted background, for each of the
CP-conserving benchmark scenarios. Columns 2 to 6 show the mass parameters (in GeV/c?)
and tan 8 at which the excess occurs. Column 7 gives the corresponding p-values 1 — C'Ly. In
the last column, the significances of the excesses, in standard deviations, are listed.

is a reference cross-section. For the topologies motivated by Higgsstrahlung, o is taken to
be the Standard Model Higgs production cross-section; for final states motivated by the pair
production process, o, is taken to be the MSSM Higgs production cross-section of Eq. 2 with
the MSSM suppression factor set to 1. Numerical values for the cross-section limits are listed
in Appendix B.

Figure 2 shows the upper bound Sy for final states motivated by the Higgsstrahlung process
eTe”— H,Z (the figure is reproduced from Ref. [3]). In part (a), the Higgs boson is assumed to
decay into fermions and bosons with branching ratios as given by the Standard Model. Contri-
butions from the fusion processes WW— H; and ZZ— H,, according to the Standard Model,
corrected for initial-state radiation, are assumed to scale with energy like the Higgsstrahlung
process. In part (b) it is assumed that the Higgs boson decays exclusively to bb and in part (c)
exclusively to 777 . Besides representing bounds on topological cross-sections, this figure also
illustrates the overall agreement between the data and the expected background from Standard
Model processes. The largest deviations observed barely exceed two standard deviations.

Figure 3 shows contours of Sys for the cascade process ete™— HyZ— (HiH1)Z, projected
onto the (mgy,, ms,) plane, assuming that the 7, boson decays exclusively to H;H;. In part
(a) it is assumed that the 7; boson decays exclusively to bb and in part (b) exclusively to
7t77. In part (c), as an example, an equal mixture of #;— bb and H;— 77~ is assumed,
which implies 25% bbbbZ, 25% 777~ 7+t7~Z and 50% bbr*7~Z final states. The sensitivity of
the bbbbZ channel starts at the bb threshold and extends almost to the kinematic limit. In the
77777777 channel the sensitivity is altogether weaker (the discontinuities reveal the limited
and inhomogeneous mass coverage of the four experiments in this channel).
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my, my, my, mpt tanf | 1-CL, 1—CL, o
(CPH) (FeynH.) (st.dev.)

CPX scenario 35-40 105 120 120 10 |[1x107® 2x107° 3.1
my = 169 GeV/c? 40 100 125 120 10-15 [ 8 x 107* 9 x 1074 3.3
my = 179 GeV/c? 95 125 145 155 3 |4x10* 4x10°3 2.9
my = 183 GeV/c? 95 130 150 155 3 |4x107% 4x1073 2.9
arg(A)=arg(mz)=0° 40 95 125 115 12 [ 8x107* 1x 1073 3.1
arg(A)=arg(mz)=30° 45 100 125 110 10-20 [ 1 x10™® 1x 1073 3.1
arg(A)=arg(mz)=60° 45 95 130 115 520 |5x107* 6x 1074 3.5
arg(A)=arg(m;z)=135° | 40 105 120 110 >20 |[2x107% 3 x 1073 3.0
arg(A)=arg(mz)=180° | 95 130 170 170 6 |4x1073 4x1073 2.9
p =500 GeV 95 100 125 130 1 4x1073 4x1073 2.9
p = 1000 GeV 95 110 125 135 2 | 5x107% 5x1073 2.8
1= 4000 GeV 95 180 330 300 4 |5x107% 5x1073 2.8
Msysy=1 TeV 95 105 145 130 2 |4x107% 4x1073 2.9

Mgyusy=1 TeV, scaled | 40 105 120 130 10 |2x107% 2x1073 3.1

Table 4: The most significant excesses with respect to the predicted background in the CP-
violating benchmark scenario CPX and its variants. The first column indicates either the
CPX scenario or the parameter value which differs from the standard CPX set listed in the
last column of Table 1. Columns 2 to 6 show the mass parameters (in GeV/c?) and tan j3
at which the excesses occur (the more conservative of the CPH and FeynHiggs calculations is
used). Columns 7 and 8 give the corresponding p-values, 1 — C'Ly, using in turn the CPH and
FeynHiggs codes (note the overall agreement of the two calculations in this respect). In the
last column, the significances of the excesses, in standard deviations, are listed.

Figure 4 shows Sgs for final states motivated by the pair-production process ete™— HoH,,
for the particular case where the masses my, and my, are approximately equal. Such is the
case, for example, in the CP-conserving MSSM scenario my,-maz for tan 3 larger than about 10
and small my, (= ma). In part (a), the Hy and H; decay branching ratios correspond to the
my-maz benchmark scenario with tan 3 = 10 (see the caption for the exact values); in part (b),
both H, and H; are assumed to decay exclusively to bb; in part (c), one Higgs boson is assumed
to decay exclusively to bb while the other exclusively to 7+77; in part (d), Hs and H; are both
assumed to decay exclusively to 7777. At low masses, the exclusion limits are completed using
the constraint from the measured decay width of the Z boson (see Section 3.2). This figure also
illustrates the overall agreement between the data and the expected background from Standard
Model processes since the largest deviations are within two standard deviations.

Figure 5 shows contours of Sgs for final states motivated by the process ete™— HaHi,
projected onto the (msy,, my,) plane. In part (a), both Higgs bosons are assumed to decay
exclusively to bb and in part (b) exclusively to 7+7~. In parts (c) / (d), the Hy / H; boson
is assumed to decay exclusively to bb while the other boson is assumed to decay exclusively to
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Ttr.

Figure 6 shows contours of Sos for the cascade process e e™— HoHi— (HiH1)H1, projected
onto the (mgy,, ms,) plane, assuming that the 7, boson decays exclusively to H;H;. In part
(a), the H; boson is assumed to decay exclusively to bb and in part (b) exclusively to 7+7~.
In part (c), as an example, an equal mixture of H,— bb and H;— 777~ is assumed, which
implies 12.5% bbbbbb, 37.5% bbbbr*7~, 37.5% bbrtr=7r77~ and 12.5% 7+7—rt7~ 77~ final
states.

A word of caution is in place concerning the correlations which exist between some of the
above cross-section limits which arise from overlapping candidates in the corresponding selec-
tions. Such correlations are present, for example, between b-tagged and flavour-independent
searches of a given experiment or between searches addressing direct decays (e.g., H,Z—> bbbb)
and cascade decays (e.g., (Hy— H1H,)Z— bbbbbb); they may be a source of problems if several
of the cross-section limits are used in conjunction to test a given model. Note, however, that
these correlations are properly taken into account in the model interpretations which follow.

5 Results interpreted in CP-conserving MSSM scenarios

In this section, the search results are interpreted in the CP-conserving benchmark scenarios
presented in Section 2.1. The exclusion limits, which are shown in the figures below at the 95%
CL and the 99.7% CL, are obtained from the values of C'L; (see Eq. 15), for an assumed top
quark mass of m; = 174.3 GeV/c%. The exclusion limits are presented in four projections of
the MSSM parameter space. The limits expected on the basis of Monte Carlo simulations with
no signal, at the 95% CL, are also indicated. The exact mass bounds and exclusions for tan /3
are listed in Table 5, for four values of m;.

The exclusions for the my-maz benchmark scenario are shown in Figure 7. In the region
with tan 3 less than about five, the exclusion is provided mainly by the Higgsstrahlung process,
giving a lower bound of about 114 GeV/c? for my,. At high tan 3, the pair production process
is most useful, providing limits in the vicinity of 93 GeV /c? for both my, and my. For my, in the
vicinity of 100 GeV/c?, one observes a deviation between the expected and the experimental
exclusions. This deviation, which is also present in other CP-conserving scenarios, is due to the
excess in the Higgsstrahlung channel which was discussed in Ref. [3] and gives rise to the vertical
bands in Figures 1 (a) and (b). Note that the mass bounds obtained are largely insensitive to
the top quark mass.

The data also exclude certain domains of tan . This is best illustrated in the (my, tan J3)
projection (plot (b)) where the upper boundary of the parameter space along my, is indicated
for four values of my; the intersections of these boundaries with the experimental exclusions
define the regions of tan # which are excluded. The exclusion in tan 3, as a function of the
assumed top quark mass, is summarised in Figure 8; for m; larger than about 181.5 GeV/c?,
no 95% CL limit on tan 3 can be set in this scenario.
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One should be aware that the upper boundary of the parameter space along my, also depends
moderately on the choice of Msygy. For example, changing Mgysy from 1 TeV to 2 TeV would
broaden the parameter space by about 2 GeV/c? along my, with corresponding effects on the
exclusions in tan 5. This observation holds for all CP-conserving scenarios which follow.

Figures 9 and 10 show the same set of plots for the two variants, (a) and (b), of the my,-maz
scenario introduced in Section 2.1.1. The change of the sign of the Higgs mass parameter p or
of the mixing parameter X; barely affect the mass limits; however, sizable differences occur in
the exclusions of tan § (see Table 5). For example, in variant (b), a small domain of tan 3 is
excluded even for m; = 183.0 GeV/c?, which is not the case in the standard my-maz scenario
and its variant (a). Note, in Figure 9, the small domains at m; between 60 and 75 GeV/c?,
small m, and tan 3<0.9 which are excluded at the 95% CL but not at the 99.7% CL.

The exclusions for the CP-conserving no-mixing benchmark scenario are shown in Figure 11.
In this scenario, the theoretical boundaries of the parameter space are more restricted than in
the my-maz scenario. As a consequence, large domains of tan # are excluded for all the top
quark masses considered. Note the relatively strong variation of the exclusion limits with m; in
this scenario (see Table 5), which is caused by the proximity of the experimental lower bound
of my, from the Higgsstrahlung searches and the theoretical upper bound of my,.

An interesting feature of this scenario is that, for my larger than about 100 GeV/c? and
large tan 3, the heavy scalar boson H is within kinematic reach. Moreover, the cross-section
for the process ete”— HZ is increasing with tan 3, resulting in an improved search sensitivity;
this explains the nearly circular shape of the expected limit in Figure 11 (b).

Note the small domain at my, between 75 and 80 GeV/c?, small my and tan 3 < 0.7, barely
perceptible in the plots, which is not excluded in this scenario at 95% CL (this domain is
excluded for m; = 169.3 GeV/c?). The branching ratio for h— bb is small and the decay
h— AA is dominant in this region. The A boson, with mass below the 777~ threshold, may
decay to final states which are not sufficiently covered by the present searches. For this reason,
the mass limits given in Table 5 for this scenario and for my larger than 169.3 GeV /c? are valid
only for tan3 > 0.7. Conversely, for m; larger than 169.3 GeV/c?, the quoted exclusion of
tan 3 is valid only for my larger than about 3 GeV/c?.

Figure 12 shows the exclusion plots for the (a) variant of the no-mizing scenario introduced
in Section 2.1.2. The change of sign of the Higgs mass parameter p and the increase of the weak
SUSY-breaking scale from 1 TeV to 2 TeV affect only the theoretical bounds of the parameter
space but barely change the mass limits, except for m;=169.3 GeV/c?. There are moderate
changes though in the exclusions of tan /5. In the hatched domain (tan 5<0.7), the contributions
from top and stop quark loops to the radiative corrections are large and uncertain; hence, no
exclusions can be claimed there.

The exclusions for the large-u benchmark scenario are shown in Figure 13. As mentioned
in Section 2.3, this scenario was constructed to test the sensitivity of LEP to MSSM scenarios
which may be a priori difficult to handle experimentally since the Higgs boson decays to bb
are largely suppressed. It turns out that the flavour-independent and decay-mode-independent
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searches are sufficiently powerful to exclude all such situations at 95% CL, for top quark masses
up to 174.3 GeV/c?. There remains a thin strip at tan 3 larger than about 10 and running from
my of about 100 to about 200 GeV /c?, which is excluded at the 95% CL but not at 99.7% CL
because the suppression of the bb channel is particularly strong in that region. This strip is
found to grow with increasing m; and becomes gradually non-excluded at the 95% CL. Other
small, weakly excluded, regions are located at my ~ 60 GeV/c? and small m,, and along the
my = mya “diagonal” of plot (a).

Similar plots are shown in Figures 14 and 15 for the gluophobic and small-a.f¢ scenarios
defined in Section 2.1.3. These scenarios were designed to test situations which can be prob-
lematic at the Tevatron and LHC colliders. In both cases, large domains of the parameter space
are excluded by the LEP searches.

6 Results interpreted in CP-violating MSSM scenarios

In this section, the search results are interpreted in the CP-violating benchmark scenario CPX
presented in Section 2.2, and in some variants of CPX where the basic model parameters are
varied one-by-one. Note that in these scenarios my, is always larger than 120 GeV/c?, except
where the CP-violating phases arg(A) = arg(m;) are put to 0° or 180°.

The experimental exclusions for the CPX benchmark scenario are shown in Figure 16, in
four projections. For large my,,, the H; is almost completely CP-even; in this case the limit
on my, is close to 114 GeV/c?, the limit obtained for the Standard Model Higgs boson [3].
For example, for my, larger than 133 GeV/c?, one can quote a lower bound of 113 GeV/c? for
my, . Large CP-odd admixtures to H; occur, however, for smaller my,,, giving rise to domains
at lower my, which are not excluded.

The exclusion is particularly weak for tan $ between about 3.5 and 10. Here, the signal
is spread over several channels arising from the Higgsstrahlung and pair-production processes,
including the Ho— H,H;, cascade decays, which give rise to complex final states with six
jets. The parameter set of Table 2 is a typical example of this situation. This is illustrated
in Figure 17 where the main final-state cross-sections are plotted as a function of tan 3 (the
FeynHiggs calculation is used). In general, these signal contributions cannot be added up
statistically because of a large overlap in the selected events; hence, a relatively low overall
detection efficiency is expected. Moreover, one of the experiments presents a local excess of
about two standard deviations in this domain of tan 3 and for my, of about 45 GeV /c* [10],
which lowers the exclusion power below the expectation. Nonetheless, the region defined by
my, < 114 GeV/c* and tan 8 < 3.0 is excluded by the data (see Figure 16 (b)) and a 95% CL
lower bound of 2.9 can be set on tan  in this scenario.

Figure 18 illustrates the exclusions in the (my,, tan §) projection, using the CPH calculation
(part (a)) and the FeynHiggs calculation (part (b)). Differences occur mainly at large tan (3
where the FeynHiggs calculation predicts a larger Higgsstrahlung cross-section and hence a bet-
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ter search sensitivity than the CPH calculation. In parts (a) and (b) of the figure, one observes
two distinct domains at moderate tan 3, with my, <15 GeV/c? and 30 GeV /c?<my, <55 GeV/c?,
which are not excluded at the 95% CL. The values of 1 — C'L; indicate that these domains are
excluded, respectively, at the 55% CL and 77% CL using the CPH calculation, and at the 50%
CL and 66% CL, respectively, using the FeynHiggs calculation. A third domain appears in
part (b) at higher my, (where the CPH calculation indicates no exclusion power at all); this
domain is excluded at the 42% CL using FeynHiggs.

As explained in Section 2, neither of the two approaches, CPH or FeynHiggs, are preferred
on theoretical grounds. For this reason, part (c) of this figure was obtained by choosing in each
scan point of the parameter space the more conservative of the two approaches, i.e., the one for
which the less significant exclusion is observed. The same procedure was adopted in Figure 16
and in all the figures which follow.

The significant impact of the top mass on the CP-violating effects, indicated by Eq. 11,
is illustrated in Figure 19 where the (mgy,, tan ) projection is shown for four values of
my. With increasing mg, one observes a reduction of the exclusion power, especially in the
region of tan between 3.5 and 10. No lower bound on mgy, can be quoted in this do-
main. In plot (a) (for my = 169.3 GeV/c?), the two domains with mq, < 15 GeV/c* and
30 GeV/c? < my, < 55 GeV/c? are excluded at the 60% CL and 88% CL, respectively.

Figure 20 illustrates the exclusion in the (mj,, tan ) plane as a function of the CP-
violating phases, arg(A) = arg(mg), which are varied together. For phase angles close to
0°, the experimental exclusions are similar to those in the CP-conserving scenarios (see, for
example, Figure 7 but note the differences in the allowed parameter space). Sizable differences
are observed for larger phase angles, especially for arg(A) = arg(mz) = 90° (the CPX value).
At arg(A) = arg(mg) = 180° (another CP-conserving scenario), the allowed parameter space is
excluded almost completely. Note however that in the hatched region, with tan g greater than
about 12, the calculation of the bottom-Yukawa coupling has large theoretical uncertainties;
hence no exclusion can be claimed in this domain.

In Figure 21, the value of the Higgs mass parameter y is varied from 500 GeV through
1000 GeV and 2000 GeV (the CPX value) to 4000 GeV. At small values, the CP-violating
effects are small (see Eq. 11) and the exclusion power is strong (as in the CP-conserving case).
For p larger than 2000 GeV and large tan 3, the FeynHiggs and CPH calculations both provide
bottom-Yukawa coupling in the non-perturbative regime, giving rise to negative values for the
square of my, and to other unphysical results. For p < 2000 GeV this regime sets in only at
tan 3 larger than 40 whereas for p = 4000 GeV this situation already occurs at tan § abowe
20. Hence, in Figure 21 (d), the hatched domain should not be considered as being integrally
part of the allowed parameter space.

Figure 22 illustrates the dependence on the soft SUSY-breaking scale parameter, Msysy,
which is increased from the CPX value of 500 GeV in part (a) to 1000 GeV in part (b). This
decreases the CP-violating effects (see Eq. 11) and leads to a larger exclusion. The “scaling”
behaviour mentioned in Section 2.3, namely the relative insensitivity of the exclusions to changes
in Mgygy as long as the relations |Ayp| = [mg| = /2 = 2Mgygy are preserved, is qualitatively
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confirmed by comparing parts (a) and (c¢) of the figure.

7 Summary

The searches for neutral Higgs bosons described in this paper are based on the data collected
by the four LEP collaborations, ALEPH, DELPHI, L3 and OPAL, which were statistically
combined by the LEP Working Group for Higgs Boson Searches. The data samples include
those collected during the LEP 2 phase at eTe™ centre-of-mass energies up to 209 GeV; two
experiments also provided LEP 1 data, at energies in the vicinity of the Z boson resonance.
The searches address a large number of final-state topologies arising from the Higgsstrahlung
process eTe”— H,Z and from the pair production process e"e™— HyH;. The combined LEP
data do not reveal any excess of events which would indicate the production of Higgs bosons.
The differences with respect to the background predictions are compatible with statistical
fluctuations of the background.

From these results, upper bounds are derived for the cross-sections of a number of Higgs-
like event topologies. These upper bounds cover a wide range of Higgs boson masses and are
typically well below the cross-sections predicted within the MSSM framework; these limits can
be used to constrain a large number of theoretical models.

The combined search results are used to test several MSSM scenarios which include CP-
conserving and CP-violating benchmark models. These models are motivated mainly by physics
arguments but some of them are constructed to test specific situations where the detection of
Higgs bosons at the Tevatron and LHC colliders might present experimental difficulties. It is
found that in all these scenarios the searches conducted at LEP exclude sizable domains of the
theoretically allowed parameter space.

In the CP-conserving case, lower bounds can be set on the masses of neutral Higgs bosons
and the value of tan 8 can be restricted. Taking, for example, the CP-conserving scenario
my-maz and a top quark mass of 174.3 GeV/c?, values of my, and my less than 92.8 GeV/c?
and 93.4 GeV/c?, respectively, are excluded at the 95% CL. In the same scenario, values of
tan 3 between 0.7 and 2.0 are excluded, but this range depends considerably on the assumed
top quark mass and may also depend on Mgysy.

In the CP-violating benchmark scenario CPX and the variants which have been studied, the
combined LEP data show large domains which are not excluded, down to the lowest mass values;
hence, no absolute limits can be set for the Higgs boson masses. The excluded domains vary
considerably with the precise value of the top quark mass and the MSSM model parameters.
For example, in the CPX scenario with standard parameters and m; = 174.3 GeV/c?, tan j3
can be restricted to values larger than 2.9 at the 95% CL.
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Benchmark my (GeV/c?) | my (GeV/c?) | ma (GeV/c?) Exclusions of
scenario tan 3
p——— 169.3 92.9 (94.8) | 93.4 (95.1) | 0.62.6 (0.62.7)
174.3 92.8 (94.9) 93.4 (95.2) 0.7-2.0 (0.7-2.1)
179.3 92.9 (94.8) | 93.4 (95.2) | 0.9-1.5 (0.9-1.6)
183.0 92.8 (94.8) 93.5 (95.2) no excl. (no excl.)
my-maz 169.3 92.7 (94.9) | 93.1 (95.1) | 0.7-2.1 (0.7-2.2)
(a) 174.3 92.7 (94.8) | 93.1 (95.1) | 0.7-2.1 (0.7-2.2)
179.3 92.6 (94.8) 93.1 (95.1) 0.9-1.6 (0.8-1.7)
183.0 92.7 (94.8) 93.1 (95.1) no excl. (no excl.)
mp-maz 169.3 92.8 (94.8) | 932 (952) | 0.53.3 (0.5-3.5)
(b) 174.3 92.6 (94.9) 93.4 (95.1) 0.6-2.5 (0.6-2.7)
179.3 92.6 (94.8) | 93.4 (95.1) | 0.7-2.0 (0.7-2.1)
183.0 92.7 (94.7) 93.4 (95.1) 0.8-1.7 (0.8-1.8)
no-mizing 169.3 excl. (excl.) | excl. (excl.) excl. (excl.)
174.3 93.6 (96.0) | 93.6 (96.4) | 0.4-10.2 (0.4-19.4)
179.3 93.3 (95.0) 93.4 (95.0) 0.4-5.5 (0.4-6.5)
183.0 92.9 (95.0) 93.1 (95.0) 0.4-4.4 (0.4-4.9)
no-mizing 169.3 93.2 (95.2) | 93.4 (954) | 0.7-7.1 (0.7-9.3)
(a) 174.3 92.8 (94.9) 93.1 (95.1) 0.7-4.6 (0.7-5.1)
179.3 92.8 (94.9) | 93.1 (95.0) | 0.7-3.5 (0.7-3.8)
183.0 92.9 (94.8) | 93.1 (95.0) | 0.7-3.0 (0.8-3.2)
large-p 169.3 excl. (excl.) | excl. (excl.) excl. (excl.)
174.3 excl. (excl.) | excl. (excl.) excl. (excl.)
179.3 109.2 (109.2) | 225.0 (225.0) 0.7-43 (0.7-43)
183.0 95.6 (95.6) 98.9 (98.9) | 0.7-11.5 (0.7-11.5)
gluophobic 169.3 90.6 (93.2) | 95.7 (98.2) | 0.4-10.3 (0.4-21.5)
174.3 90.5 (92.3) 96.3 (98.0) 0.4-5.4 (0.4-6.4)
179.3 90.0 (91.8) 96.5 (98.2) 0.4-3.9 (0.4-4.2)
183.0 89.8 (91.5) | 96.8 (98.7) | 0.5-3.3 (0.5-3.6)
small-cor 169.3 88.2 (90.0) | 98.2 (99.6) | 0.46.1 (0.47.4)
174.3 87.3 (89.0) | 98.8 (100.0) | 0.4-4.2 (0.4-4.5)
179.3 86.6 (88.0) | 99.8 (100.7) | 0.5-3.2 (0.5-3.4)
183.0 85.6 (87.5) 101.0 (101.3) | 0.6-2.7 (0.5-2.9)
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Table 5: Lower mass bounds and exclusions in tan 3, at 95% CL, obtained in the case of the
CP-conserving MSSM benchmark scenarios, for various values of the top quark mass. In each
case, the observed limit is followed, between parentheses, by the value expected on the basis
of Monte Carlo simulations with no signal. In the my-maz scenario and its variant (a), there
is no exclusion in tan 8 for my; = 183.0 GeV/c? or larger. The no-miring scenario is entirely
excluded for m; = 169.3 GeV /c? or smaller. In the no-mizing scenario and for m; larger than
169.3 GeV /c?, the quoted mass limits are only valid for tan 3 > 0.7 and the exclusion in tan /3
is only valid for my larger than about 3 GeV/c?
my = 174.3 GeV/c? or smaller.

. The large-j1 scenario is entirely excluded for
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Appendix A: Catalog of searches

The searches of the four LEP collaborations which contribute to this combined analysis are
listed in Tables 6 to 13. The list is structured into two tables per experiment, one for the
Higgsstrahlung process ete™— H,Z and one for the pair production process ete™— HyH;. In
each of these tables, the upper part contains the final states of the direct process and the lower
part contains, where it applies, those of the cascade process Ho— HiH.

The final-state topologies are listed in the first column. In the notation adopted, H; repre-
sents the lightest and H5 the second-lightest neutral Higgs boson. In the CP-conserving case,
‘H, is identified with the CP-even eigenstate h. The Hy is identified in most cases with the
CP-odd eigenstate A (the cascade process Ho— H1H; is identified with h— AA).

The symbol q indicates an arbitrary quark flavour, u, d, s, ¢ or b. “Hadrons” include
quarks and gluons. In the missing energy channel, in addition to the HZ— H,vv process, the
W fusion process Hiv.v, (including interference) is also considered; similarly, in the leptonic
channel, in addition to the H,Z— H;¢T¢~ process, the Z fusion process Hiete™ (including
interference) is also considered.

The contributions based on LEP1 data (from two experiments only) can be identified by
their value “91” in the second column which indicates the eTe™ collision energy, /s (GeV); the
LEP1 data used in this combination represent an integrated luminosity £ of about 125 pb™'.
The LEP2 data span an energy range between 133 GeV and 209 GeV; they represent an inte-
grated luminosity of about 2400 pb™". The integrated luminosities for the individual searches
are listed in the third column.

Responding to the increasing data samples and e™e™ energies, the searches were gradually
upgraded or replaced so as to become more efficient in detecting Higgs bosons of higher masses.
The mass ranges where the searches are relevant are listed in the next column(s). In the last
column, references are given to the publications where the details of the searches can be found.
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V5 (GeV) L (pb™h) | Mass range (GeV/c?) Ref.
H1Z—> () () may1
(bb)(q _) (bb, cé 7T, 8¢) (VD) 189 176.2 75 - 110 [32]
(any)(ete™, utu ) 189 176.2 75 — 110 [32]
(bb)(rF77), (rF7)(qa) 189 176.2 65 — 110 [32]
(bb)(qq, W) 192 - 202  236.7 60 — 120 [33]
(bb, 777, cc gg)(e+e— ptp™) 192 - 202 236.7 60 — 120 [33]
(bb, 7t77,cc,gg)(rT77), (rT77)(qq) | 192 - 202  236.7 60 — 120 [33]
(bb)(qq) 199 - 209  217.2 75 — 120 [11,34]
(bb, 777, cc, gg, WW)(rF 77, vD) 199 — 209 217.2 75 — 120 [11,34]
(bb, 7777, cc,gg)(ete™, uTu ) 199 — 209 217.2 70 — 120 [11,34]
(bb, cc, ss, gg)(qq) 189 176.2 40 - 100 [35]
(bb, ct, s5, gg) (vD) 189 176.2 60 — 100 [35]
(bb, cc, ss, gg)(ete™, utu™) 189 176.2 60 — 115 [32,35]
(77 )(qq) 189 176.2 65— 110 [32]
(bb, cc, 58, gg)(qq) 192 — 202 236.7 40 — 110 [35]
(bb, ct, s5, gg) (vD) 192 - 202  236.7 60 — 116 [35]
(bb, cc, s8, gg)(ete™, utpu™) 192 - 202 236.7 60 — 115 (33, 35]
(rH7 )(qq) 192 - 202  236.7 60 — 120 [33]
(bb, cc, 58, gg)(qq) 199 — 209 217.2 40 - 115 [35]
(bb, cc, 58, gg) (v 199 — 209  217.2 75— 120 [35]
(bb, ct, s5, gg)(ete ™, utp™) 199 - 209  217.2 70 - 120 [11,34,35]
(rt77)(qq) 199 - 209  217.2 60 — 120 [11,34]

Table 6: Summary of the ALEPH searches for the Higgsstrahlung process ete™— H,Z. The
top part of the table lists the searches originally developed for the Standard Model Higgs boson.
The bottom part lists flavour-independent searches where the decays of the Higgs boson into a
quark pair of any flavour, a gluon pair or a tau pair were considered; the signal efficiencies were

evaluated for all indicated hadronic decays of the Higgs boson. In the cases of the (777~
and leptonic channels listed in the flavour-independent part, the event selections of the Standard

Model Higgs boson searches were used.
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V5 (GeV) L (pb™!) | Mass range (GeV/c?) | Ref.

Hoti— (-)() ] (mag, +ma,)/2
(bb)(bb), (r77-)(bb), (bb)(rT7-) | 189 176.2 65 95 32]
(bb)(bb), (bb, 777 , T, gg)(1777),
__ (rfr7)(bb, 77 e, gg) | 192 2202 236.7 60 — \/s/2 [33]
(bb)(bb), (bb, 77, cc,gg)(r77),
(rT77)(bb, 777, cc,gg) | 199 — 209 217.2 75— \/s/2 [11,34]

Table 7: Summary of the ALEPH searches for the pair production process ete”— HoH,. The
searches are restricted to |mq, — may, | less than about 20 GeV /c?.
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Vs (GeV) L (pb™') | Mass ranges (GeV/c?) | Ref.
ete™— HiZ— (...)(...) My,
(any)(ete™, uTp~), (V°)(any) 91 2.5 <0.21 [36]
(2 prongs)(qq) 91 0.5 0.21 — 2 [37]
(jet)(ete™, pTp™) 91 0.5 1-20 [37]
(jet jet) (¢4, viv) 91 3.6 12 — 50 [38]
(jet jet)(ete™, ptp=, viv) 91 33.4 35— 170 [39]
(bb)(any), (7+77)(qq) 161,172 19.9 40 — 80 [40]
(bb)(any), (7+77)(qq) 183 52.0 45 — 95 [41]
(bb)(any), (7+77)(qq) 189 158.0 65 — 100 [42]
(bb)(any) 192-209 4524 12 — 120 [43,44]
(rF77)(qq) 192209  452.4 45 — 120 (43, 44]
(qq, gg)(qq, v, ete , utu) 189-209 610.4 4 —116 [45]
ete = HoZ— (H1H1)Z—> (.) () My, my,
(any)(qq) 91 16.2 12 - 70 <0.21 [46]
(VOV9)(any but 7+77) 91 9.7 0.5 —55 <0.21 [46]
(vy)(any) 91 12.5 0.5 — 60 < 0.21 [46]
(4 prongs)(any) 91 12.9 0.5—-60 0.21 —-10 [46]
(hadrons)(vp) 91 15.1 1 —60 0.21 — 30 [46]
(rtr=rtr7)(v) 91 15.1 9-173 3.5—12 [46]
(any)(qq, vv) 161,172 20.0 40 - 70 20 -35 [40]
(bbbb)(qq) 183 54.0 45 -85 12 —40 [41]
(bbbb, bbcg, ccce)(qq) 192-208 4524 | 30—105  12—50 | [43,44]
(ccet)(qq) 192-208 4524 | 10—-105  4—12 [47]

Table 8: List of the DELPHI searches for the Higgsstrahlung processes e*e™— H,Z and H,Z.
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V5 (GeV) L (pb™!) | Mass ranges (GeV/c?) | Ref.
ete ™ — HoH1— ()() M3, My,
4 prongs 91 5.3 02-10 02-10 [39]
(t77)(hadrons) 91 0.5 4—35 4 — 35 [48]
(7r77) (jet jet) 91 3.6 25 — 42 25 — 42 [49]
(bb)(bb), (bb)(ct) 91 33.4 15 — 46 15 — 46 [38]
7T77bb 91 79.4 4 —170 4 —70 [47]
bbbb 91 79.4 12 — 40 20 — 70 [50]
bbbb 133 6.0 40 — 68 35 — 73 [51]
bbbb, 7t7 bb 161,172 20.0 40 — 70 35— 175 [40]
bbbb, 7t7~bb 183 54.0 50 —80 25— 105 [41]
bbbb, 7t7~bb 189 158.0 65—90 40— 115 [42]

+77bb 192-208 4524 |50 —100 60 — 150 | [43,44]

bbbb 192-208 4524 | 12—-100 40 —190 | [43,44]
rhrortr 189-208 570.9 4—90 4 —170 [50]
bbbb 189-208 610.2 12—-70 30 —170 [50]
quarks or gluons 189-208 610.4 4 —170 4 —170 [45]
ete”— HoHi— (HaH1)Hi— () (--) M, M,
(vy)(vy) 91 12.5 0.5 — 60 <0.21 [46]
(4 prongs)(2 prongs) 91 12.9 0.5—-60 0.21-10 [46]
(hadrons) (hadrons) 91 15.1 1 -60 0.21 — 30 [46]
(rtr=rtro)(rtr) 91 15.1 9 — 60 3.5 — 12 [46]
(any )(any) 161,172 20.0 40 — 70 20 — 35 [40]

Table 9: List of the DELPHI searches for the pair production process ete™ — HoH,.
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Vs (GeV) L (pb 1) | Mass ranges (GeV/c?)

ete = HiZ— (...)(...) my,

(bb)(any),(7* 7 )(qd) 189 176.4 60 — 100 [52]
(bb)(any),(t777)(qq) 192 - 202 2332 60 — 110 [53]
(bb)(any), (77~ )(qq) 203 209  217.3 60 — 120 [54]
(bb, ct, gg)(any) 189 176.4 60 — 100 [55]
(bb, cc, gg)(any) 192 - 202 2332 60 — 110 [55]
(bb, &, gg)(any) 204 - 209 2145 60 — 120 [55]
ete”— HoZ— (H1H1)Z— (...)(...) My, my,

(H1— bb,cc,geg)(aq) 189 — 209 626.9 30 — 85 10 — 42 [56]

Table 10: List of the L3 searches for the Higgsstrahlung processes ete™— H,Z and HsZ.

V5 (GeV) L (pb™ ') | Mass ranges (GeV/c?) | Ref.
e+§_—>7 H2H71—> ()() _ M, My,
(bb)(bb), (bb)(rT77), (r777)(bb) 189 176.4 50 — 95 50 — 95 [57]
(bb)(bb), (bb)(*77), (r*77)(bb) | 192 -202 2332 |50 105 50 - 105 | [58]
(bb)(bb), (bb)(r*t77), (rT77)(bb) | 204 —209  216.6 | 50— 110 50— 110 | [56]

Table 11: List of the L3 searches for the pair production process eTe™— HoH,;.
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V5 (GeV) L(pb ') | Mass ranges (GeV/c?) Ref.
H1Z— () ( ) ma,
(bb)(qq) 161-172 20.4 40 — 80 (59, 60]
(bb)(qq) 183 54.1 40 — 95 [61]
(bb)(qq) 189 172.1 40 — 100 [62]
(bb)(qa) 192-209 421.2 80 — 120 [63]
(bb)(vo) 161-172 20.4 50 — 70 59, 60]
(bb)(vD) 183 53.9 50 — 95 [61]
(bb)(vv) 189 171.4 50 — 100 [62]
(bb)(vo) 192-209 419.9 30 — 120 [63]
(bb)(rt77), (777)(qq) 161-172 20.4 30 — 95 (59, 60]
(bb)(r+77), (r777)(qq) 183 53.7 30 — 100 [61]
(bb)(rt77), (777)(qq) 189 168.7 30 — 100 [62]
(bb)(r+77), (r777)(qq) 192-209 417.4 80 — 120 [63]
(bb)(ete™), (bb)(utu™) 183 55.9 60 — 100 [61]
(bb)(ete™), (bb)(utp™) 189 170.0 70 — 100 [62]
(bb)(eTe™), (bb)(utp~) 192-209 418.3 40 — 120 [63]
(aq, gg) (777, vi), (t777)(qq) 91 46.3 0—70 [64,65]
(qq, gg)(ete , ptu~) 91 46.3 20 — 70 [64,65]
(any)(ete™, utpu™) 161-172 20.4 35 — 80 [59,60]
(qa, gg)(aq) 189 174.1 60 — 100 [66]
(qa, gg)(aq) 192-209 424.2 60 — 120 [67]
(qq, gg)(vo) 189 171.8 30 — 100 [66]
(qa, gg)(vp) 192-209 414.5 30 — 110 [67]
(q@, gg) (7T 77), (t777)(qq) 189 168.7 30 — 100 [66]
(qd, gg)(7t77), (rF77)(qq) 192-209 418.9 60 — 115 [67]
(qq, gg) (e+e ) 189 170.0 70 — 100 [66]
qq, gg)lete , ptu) 192-209 422.0 60 — 120 [67]
e+e — HQZ-) (H1H1)Z—> ( )( ) my, mi,
(qqad) (vo) 91 46.3 10 — 75 0—35 (64, 65]
(bbbb)(qq) 183 54.1 40 — 80 10.5 — 38 [61]
(bbbb) (qq) 189 172.1 40 — 100 10.5 — 48 [62]
(bbbb)(qq) 192209 4212 | 80—120 12—my,/2 | [10]
(bbbb) (vi7) 183 53.9 50 —95  10.5 —mg,/2 | [61]
(qqaq) (vo) 189 171.4 | 50 —100 10.5—my,/2 | [62]
(bbbb) (vi7) 199-209 207.2 | 100 — 110 12 — my, /2 [10]
(bbbb)(r+77) 183 53.7 30 —100 10.5 —mg,/2 | [61]
(bbbb)(7+77) 189 168.7 | 30 —100 10.5—my,/2 | [62]
(bbbb, bbrtr=, rtr=r77)
(v, ete™, ptu™) 189-209 598.5 45 — 90 2 —-10.5 [68]

Table 12: List of the OPAL searches for the Higgsstrahlung processes ee™— H,7Z and H.Z.
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Vs (GeV) L (pb 1) Mass ranges (GeV/c?) Ref.
HoH1— () () my, ma, Ref.
(bb)(bb) 130-136 5.2 Y=80-130 A=0-50 [60]
(bb)(bb) 161 10.0 Y=80-130 A=0-60 | [59,60]
(bb)(bb) 172 10.4 Y=80-130 A=0-60 |[59,60]
(bb)(bb) 183 54.1 $=80-150 A =0-60 [61]
(bb)(bb) 189 172.1 »=80-180 A =0-70 [62]
(bb)(bb) 192 28.9 $=83-183 A=0-70 [10]
(bb)(bb) 196 74.8 »=80-187 A=0-170 [10]
(bb)(bb) 200 77.2 $=80-191 A=0-70 [10]
(bb)(bb) 202 36.1 »=80-193 A=0-70 [10]
(bb)(bb) 199-209 207.3 | ¥ =120—190 A =0-70 [10]
(bb)(bb) 199-209 207.3 | ¥ =100—-140 A =60—100 | [10]
(bb)(7F77), (r+77)(bb) 161 10.0 40 — 160 52 — 160 [59,60]
(bb)(rF77), (rF77)(bb) 172 10.4 37 — 160 28 — 160 [59,60]
(bb)(7F77), (r+77)(bb) 183 53.7 N$=70-170 A =0-70 [61]
(bb)(rt77), (rF77)(bb) 189 168.7 Y=70-190 A=0-90 [62]
(bb)(r+77), (rF77)(bb) 192 28.7 Y=10-174 A =0-182 | [10]
(bb)(rH77), (7 77)(bb) 196 74.7 ¥=10-182 A=0-191 [10]
(bb)(7F77), (r+77)(bb) 200 74.8 »=10-182 A=0-191 [10]
(bb)(rH77), (7 77)(bb) 202 35.4 Y=10-174 A =0-182 [10]
(bb)(7F77), (r+77)(bb) 199-209 203.6 Y$=70-190 A =0-90 [10]
(qd)(rF77), (rF77)(qq) 91 46.3 12-75 10 — 78 [64,65]
ete — HoHi—

 (HaH)Ha—= (L)) M3, ma,

(bbbb) (bb) 91 27.6 40 — 70 5—35 [64,65]
(bbbb)(bb) 130-136 5.2 55 — 65 > 27.5 [60]
(bbbb) (bb) 161 10.0 55 — 65 > 20.0 [59,60]
(bbbb)(bb) 172 10.4 55 — 65 25 — 35 [59,60]
(bbbb) (bb) 183 54.1 30 — 80 12 — 40 [61]
(bbbb)(bb) 189 172.1 24 — 80 12 — 40 [62]
(bbbb) (bb) 199-209 207.3 $=90-200 A =40-160| [10]
67, 472q, 274q 91 46.3 30 — 75 4 — 30 [64,65]

Table 13: List of the OPAL searches for the pair production process ete™— HoH,. The symbols

¥ and A stand for the mass sum my;, + my, and mass difference |ms, — ms, |.
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Appendix B: Limits on topological cross-sections

The tables presented below summarise the 95% CL upper bounds, as a function of the
Higgs boson masses, of the scaling factor Sg; defined in the text (see Eq. 16). Tables 14, 15
and 16 refer to final-state topologies arising from the Higgsstrahlung processes ete™— H,Z
and ete”— (Ho— HiH1)Z; Tables 18 to 21 refer to those arising from the pair production
processes ete”— HoH; and ete”— (Ho— HiHi)H1. The corresponding figures, showing the
same results, are mentioned in the table captions.
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my, | @ ) © | me | @ B (@
(GeV /c?) (GeV/c?)

12 0.0204 0.0154 0.0925 66 0.0236 0.0218 0.0287
14 0.0176 0.0143 0.0899 68 0.0236  0.0218 0.0287
16 0.0158 0.0134 0.0923 70 0.0271 0.0246 0.0287
18 0.0150 0.0131 0.0933 72 0.0291 0.0274 0.0271
20 0.0156 0.0139 0.1060 74 0.0320 0.0301 0.0297
22 0.0177 0.0156 0.1080 76 0.0421 0.0380 0.0351
24 0.0194 0.0174 0.1110 78 0.0469 0.0424 0.0350
26 0.0207 0.0186 0.1140 80 0.0435 0.0410 0.0316
28 0.0223 0.0195 0.1110 82 0.0467 0.0475 0.0281
30 0.0203 0.0181 0.0893 84 0.0539 0.0585 0.0222
32 0.0193 0.0173 0.0796 86 0.0762 0.0816 0.0257
34 0.0191 0.0172 0.0682 88 0.112  0.118 0.0296
36 0.0241 0.0187 0.0653 90 0.153  0.152 0.0331
38 0.0299 0.0235 0.0634 92 0.179  0.175  0.0354
40 0.0333 0.0267 0.0615 94 0.229  0.214 0.0491
42 0.0367 0.0297 0.0599 96 0.239  0.220 0.0570
44 0.0378 0.0310 0.0594 98 0.256  0.233  0.0565
46 0.0387 0.0328 0.0572 100 0.244  0.216  0.0582
48 0.0391 0.0337 0.0575 102 0.237  0.216 0.0588
50 0.0363 0.0316 0.0445 104 0.255  0.227  0.0704
52 0.0386 0.0344 0.0454 106 0.263  0.223  0.0896
54 0.0387 0.0349 0.0464 108 0.266  0.227  0.110
56 0.0384 0.0360 0.0403 110 0.297 0.244 0.144
58 0.0390 0.0367 0.0427 112 0.435 0.343  0.212
60 0.0398 0.0365 0.0456 114 0.824  0.640  0.410
62 0.0293 0.0264 0.0444 116 1.41 1.79 1.79
64 0.0278 0.0258 0.0394

Table 14: The 95% CL upper bound, Sqs, obtained for the normalised cross-section (see text) of
the Higgsstrahlung process ete™— H,Z, as a function of the Higgs boson mass. The numbers
listed in this table correspond to the observed limit (full line) in Figure 2, which is reproduced
from Ref. [3]. In the columns labelled (a) the Higgs boson is assumed to decay as in the
Standard Model; in columns (b) it is assumed to decay exclusively to bb and in columns (c)

exclusively to 7.
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ma, (GeV/c?) ma, (GeV/c?)
10 15 20 25 30 35 40 45 50 55
20 0.020
25 0.026
30 0.037 0.046
35 0.048 0.042
40 0.053 0.056 0.051
45 0.066 0.059 0.046
50 0.087 0.058 0.048 0.049
55 0.11  0.055 0.050 0.050
60 0.29 0.103 0.094 0.094 0.053
65 0.30 0.099 0.091 0.088 0.084
70 0.25 0.098 0.097 0.095 0.083 0.059
75 0.34 0.11  0.10 0.11  0.10 0.096
80 039 013 014 014 0.13 0.12 0.13
85 0.52 020 020 020 021 0.19 0.18
90 >1 023 023 023 027 026 024 0.28
95 >1 029 027 029 031 0.29 0.28 0.30
100 >1 030 029 031 030 027 028 029 0.29
105 >1 027 032 036 040 036 031 035 0.35
110 >1 044 054 055 09 097 >1 >1 089 >1

Table 15: The 95% CL upper bound, Sys, obtained for the normalised cross-section (see text)
of the Higgsstrahlung cascade process ete™— (Ho— H1H1)Z— (bbbb)Z, as a function of the
Higgs boson masses my;, and my,. The numbers correspond to the contours shown in Figure 3

(a).
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10 | 0.26

15 | 0.033

20 | 0.048 0.32

25 | 0.070  0.076

30 | 0.10 0.11 0.38

35 0.18 0.19 0.51

40 | 0.22 022 0.40 0.39

451 0.30 031 049 0.49

50 | 0.18 0.38 0.66 0.66 0.63

55| 0.18 0.37 0.68 0.69 0.68

60 | 0.20 0.38 0.95 0.96 0.96 0.94

65| 020 038 >1 >1 >1 >1

70020 043 >1 >1 >1 >1 >1

750 019 046 >1 >1 >1 >1 >1

80| 020 044 0.83 0.83 083 083 084 0.84
85| 025 056 >1 >1 >1 >1 >1 >1

Table 16: The 95% CL upper bound, Sys, obtained for the normalised cross-section (see text)
of the Higgsstrahlung cascade process ete™— (Ho— Hi1H1)Z— (tT7-7777)Z, as a function
of the Higgs boson masses my, and my,. The numbers correspond to the contours shown in
Figure 3 (b).

39



matma | @) 0 @ (@) | mtmn | @ ) © (@
(GeV/c?) (GeV/c?)
0 0.0237 0.0237 0.0237 0.0237 105 0.0243 0.0213 0.0354 0.0300
) 0.0238 0.0238 0.0238 0.0238 110 0.0297 0.0250 0.0418 0.0313
10 0.0242 0.0242 0.0242 0.0242 115 0.0472 0.0387 0.0484 0.0332
15 0.0248 0.0248 0.0248 0.0248 120 0.0682 0.0599 0.0409 0.0348
20 0.0255 0.0255 0.0255 0.0255 125 0.0676 0.0542 0.0493 0.0387
25 0.0266 0.0266 0.0266 0.0042 130 0.0688 0.0541 0.0524 0.0429
30 0.0054 0.0054 0.0018 0.0043 135 0.0618 0.0478 0.0571 0.0604
35 0.0044 0.0041 0.0018 0.0043 140 0.0669 0.0524 0.0660 0.0665
40 0.0029 0.0026 0.0021 0.0048 145 0.0600 0.0540 0.0506 0.0739
45 0.0033 0.0030 0.0021 0.0051 150 0.0798 0.0726 0.0591 0.0847
50 0.0036 0.0034 0.0017 0.0055 155 0.0967 0.0895 0.0696 0.0995
55 0.0043 0.0042 0.0016 0.0067 160 0.136  0.125 0.0847 0.118
60 0.0055 0.0057 0.0016 0.0083 165 0.179  0.122  0.175 0.144
65 0.0073 0.0070 0.0010 0.0097 170 0.323 0.237 0.234  0.188
70 0.0097 0.0106 0.0021 0.0117 175 0.352  0.294  0.245 0.269
75 0.0142 0.0163 0.0029 0.0134 180 0.765 0.596 0408 0.391
80 0.0203 0.0227 0.0043 0.0165 185 0.838 0.702 0.582  0.700
85 0.0357 0.0383 0.0101 0.0198 190 1.04 0.8556  0.764 1.07
90 0.0527 0.0522 0.0292 0.0247 195 1.93 1.81 1.10 2.88
95 0.0520 0.0493 0.0400 0.0266 200 6.97 6.47 3.49 5.29
100 0.0298 0.0257 0.0370 0.0283

Table 17: The 95% CL upper bound, Sos, obtained for the normalised cross-section (see text)
of the pair production process ete — HoH,, as a function of the Higgs boson mass sum
my, + My,. The bounds are given for the particular case where my, and my, are approxi-
mately equal. This occurs, for example, in the CP-conserving MSSM scenario my-max for tan (3
greater than 10 and small my,, (= my). The numbers listed in this table correspond to the four
plots in Figure 4 (see the corresponding labels). For my, + my, less than 30 GeV/c?, the
bounds are derived from the measured decay width of the Z boson, see Section 3.2. Columns
labelled (a): the Higgs boson decay branching ratios correspond to the my-max benchmark sce-
nario with tan f=10, giving 94% for H,— bb, 6% for H,— 77, 92% for H,— bb and 8% for
Hy— 7777 ; columns (b): both Higgs bosons are assumed to decay exclusively to bb; columns
(c): one Higgs boson is assumed to decay exclusively to bb only and the other exclusively to
7717 columns (d): both Higgs bosons are assumed to decay exclusively to T77~.
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i, (GeV/?) M (GeV/?)
10 15 20 25 30 35 40 45 50
15 >1  0.012
20 >1  0.013 0.010
25 >1  0.017 0.013 0.011
30 >1  0.015 0.013 0.012 0.020 0.023
40 >1  0.016 0.018 0.022 0.028 0.039  0.043
45 >1  0.029 0.029 0.026 0.037 0.048 0.067  0.041
50 >1  0.035 0.026 0.042 0.044 0.069 0.043 0.035  0.028
55 >1  0.063 0.056 0.076 0.071  0.058 0.050 0.038  0.030
60 >1  0.075 0.084 0.098 0.051 0.051 0.050 0.044  0.039
65 >1 0.14 0.13 0.10  0.065 0.064 0.070 0.068  0.069
70 >1 0.20 0.16 0.11  0.072 0.074 0.066 0.072  0.071
75 >1 0.23 0.13 0.14  0.076 0.075 0.083 0.066  0.093
80 >1 0.26 0.19 0.12  0.078 0.089 0.072 0.064  0.093
85 >1 0.26 0.17 0.13  0.095 0.080 0.070 0.071  0.10
90 >1 0.18 0.13 0.11  0.073 0.070 0.076 0.081  0.13
95 >1 0.20 0.13  0.095 0.073 0.078 0.081  0.11 0.15
100 >1 0.21 0.12  0.092 0.085 0.091  0.12 0.16 0.18
105 >1 0.16 0.13 0.12 0.11 0.13 0.18 0.20 0.20
110 0297  0.16 0.14 0.15 0.14 0.17 0.20 0.20 0.19
115 0.338  0.22 0.20 0.20 0.18 0.20 0.21 0.21 0.23
120 0.355  0.28 0.25 0.23 0.22 0.22 0.23 0.27 0.36
125 0.409  0.29 0.26 0.25 0.22 0.25 0.29 0.40 0.51
130 0.494  0.35 0.32 0.32 0.24 0.32 0.46 0.57 0.72
135 0.617  0.44 0.42 0.42 0.36 0.51 0.67 0.84 0.98
140 0.696  0.57 0.53 0.66 0.62 0.83 0.97 >1 >1
145 0.811  0.73 0.80 > 1 0.94 > 1 > 1 > 1 >1
65 70 75 80 85 90 95 100 105
65 0.067
70 0.082  0.078
75 0.10 0.10  0.098
80 0.11 0.11 0.14 0.14
85 0.12 0.14 0.16 0.15 0.21
90 0.17 0.16 0.17 0.25 0.24 0.41
95 0.19 0.21 0.30 0.35 0.44 0.51 0.64
100 0.21 0.31 0.39 0.42 0.43 0.74 >1 >1
105 0.32 0.42 0.55 0.53 0.90 >1 >1 >1 >1
110 0.47 0.55 0.63 >1 >1 >1 >1 >1 >1
115 0.56 0.65 >1 >1 >1 >1 >1 >1 >1
120 0.64 >1 >1 >1 >1 >1 >1 >1 >1
125 > 1 > >1 > >1 > >1 > >1

Table 18: The 95% CL upper bound, Sys, obtained for the normalised cross-section (see text)
of the pair production process ete™— HyH;— bbbb, as a function of the Higgs boson masses
my, and my,. The numbers correspond to the contours shown in Figure 5 (a).
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ma, (GeV/c?) ma, (GeV/c?)
5 10 15 20 25 30 35 40 45 50
5 0.00041
10 0.00047 0.00035
15 0.0036 0.0032 0.0032
20 0.0033 0.0035 0.0037 0.0040
25 0.0037 0.0039 0.0043 0.0043 0.0046
30 0.0052 0.0058 0.0045 0.0047 0.0055 0.0060
35 0.0060 0.0058 0.0056 0.0065 0.0070 0.0081 0.0084
40 0.0063 0.0064 0.0071 0.0070 0.0078 0.0092 0.011 0.0099
45 0.0079 0.0068 0.0066 0.0083 0.0088 0.011 0.011 0.012 0.016
50 0.0096 0.011 0.0086 0.0089 0.011 0.011 0.015 0.018 0.017 0.018
60 0.013 0.012 0.011 0.014 0.017 0.019 0.022 0.022 0.024 0.024
65 0.015 0.015 0.015 0.016 0.019 0.022 0.023 0.023 0.024 0.026
70 0.019 0.017 0.017 0.021 0.021 0.022 0.023 0.024 0.025 0.033
75 0.023 0.023 0.021 0.023 0.024 0.024 0.025 0.028 0.031 0.035
80 0.028 0.026 0.024 0.025 0.025 0.026 0.030 0.032 0.036 0.041
85 0.032 0.029 0.028 0.027 0.030 0.031 0.032 0.035 0.040 0.043
90 0.033 0.031 0.028 0.030 0.031 0.032 0.035 0.041 0.045 0.049
95 0.037 0.034 0.031 0.034 0.036 0.037 0.041 0.047 0.050 0.054
100 0.040 0.036 0.036 0.037 0.038 0.044 0.048 0.053 0.059 0.062
105 0.045 0.040 0.042 0.043 0.047 0.052 0.055 0.065 0.068 0.072
110 0.051 0.044 0.050 0.053 0.054 0.057 0.062 0.076 0.081 0.085
115 0.055 0.050 0.060 0.065 0.064 0.069 0.074 0.083 0.089 0.105
120 0.067 0.060 0.071 0.075 0.077 0.083 0.085 0.093 0.12 0.145
125 0.075 0.071 0.086 0.084 0.089 0.097 0.109 0.12 0.17 0.198
130 0.085 0.088 0.10 0.10 0.11 0.13 0.14 0.16 0.20 0.317
135 0.11 0.11 0.13 0.15 0.16 0.16 0.19 0.23 0.31 0.436
140 0.14 0.13 0.18 0.19 0.21 0.23 0.26 0.30 0.50 >1
145 0.18 0.18 0.25 0.26 0.28 0.33 0.42 0.59 >1 >1
150 0.25 0.26 0.35 0.37 0.42 0.51 0.69 > 1 > 1 > 1
55 60 65 70 75 80 85 90 95 100

55 0.021
60 0.025 0.028
65 0.030 0.033 0.036
70 0.033 0.039 0.039 0.042
75 0.038 0.040 0.044 0.048 0.049
80 0.043 0.049 0.047 0.051 0.057 0.064
85 0.048 0.050 0.055 0.061 0.071 0.075 0.097
90 0.053 0.059 0.065 0.077 0.080 0.10 0.14 0.21
95 0.059 0.067 0.076 0.080 0.10 0.14 0.21 0.38 0.70
100 0.069 0.077 0.086 0.11 0.15 0.21 0.39 0.71 >1 >1
105 0.083 0.096 0.11 0.15 0.22 0.39 0.73 >1 >1 >1
110 0.11 0.13 0.16 0.21 0.39 0.76 >1 >t >t S1
115 0.14 0.20 0.27 0.36 0.79 >1 > >1 >1 >1
120 0.19 0.28 0.49 0.83 >1 >1 >1 >1 >1 >1
125 0.26 0.53 0.65 >1 >1 >1 >1 >1 >1 >1
130 0.46 0.85 >1 >1 >1 >1 >1 St St S
135 0.89 > 1 >1 >1 >1 >1 >1 St St >

Table 19: The 95% CL upper bound, Sos, obtained for the normalised cross-section (see text)
of the pair production process ete — HoH;— 777 777, as a function of the Higgs boson
masses my;, and my;,. The numbers correspond to the contours shown in Figure 5 (b).
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may, (GeV/c?) ma, (GeV/c?)
10 15 20 25 30 35 40 45 50 55 60
20 >1
25 0.096
30 0.11  0.17
35 0.13 0.075
40 0.028 0.034 0.19
45 0.15 0.047 0.034
50 0.063 0.063 0.029 0.039
95 0.074 0.087 0.042 0.055
60 0.11  0.12 0.099 0.086 0.12
65 0.25 0.17 0.13 0.14 0.13
70 >1 0.15 014 013 0.12 0.13
75 0.72 0.17 0.16 0.14 0.13 0.13
80 099 018 0.14 0.11 0.11 0.12 0.13
85 >1 0.19 0.15 0.13 0.14 0.14 0.16
90 >1 0.19 0.15 0.15 0.15 0.16 0.15 0.17
95 >1 020 017 0.17 0.16 0.15 0.17 0.20
100 >1 0.22 020 0.19 0.18 0.18 0.20 0.23 0.30
105 >1 0.26 022 021 023 024 027 032 0.38
110 >1 0.30 0.26 027 0.28 0.31 036 040 0.43 0.55
115 >1 035 032 033 033 038 043 047 0.54 0.70
120 >1 043 039 039 042 046 050 058 0.71 093 >1
125 >1 053 049 048 0.51 056 0.63 077 099 >1 >1
130 >1 0.66 059 062 064 072 086 >1 >1 >1 >1
135 >1 082 066 075 084 098 >1 >1 >1 >1 >1
140 >1 >1 090 096 098 >1 >1 >1 >1 2>1 >1

Table 20: The 95% CL upper bound, Sgs, obtained for the normalised cross-section (see text) of
the pair production cascade process ete”— (Ha— H1H1)H1— (bbbb)bb, as a function of the
Higgs boson masses my;, and my,. The numbers correspond to the contours shown in Figure 6

(a).

43



M (GeV /c2) M (GeV/?)

5 10 15 20
10 0.0006
15 0.0016
20 0.0017 0.011
25 0.0018 0.0019
30 0.0021 0.0021 0.013
35 0.0024 0.0025 0.017
40 0.0009 0.0016 >1 >1
45 0.0010 0.0019 >1 >1
50 0.0013 0.0023 >1 >1
55 0.0017 0.0029 >1 >1
60 0.0024 0.0043 >1 >1
65 0.0058 0.014 >1 >1

Table 21: The 95% CL upper bound, Sqs, obtained for the normalised cross-section (see text) of
the pair production cascade process ete”— (Ho— HiHi)H1— (t77 7177 )77, as a function
of the Higgs boson masses my, and my,. The numbers correspond to the contours shown in
Figure 6 (b).
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Figure 1: Contours of the observed p-values, 1 — C'Ly, indicating the statistical significances
of local excesses in the data. Plots (a) and (b) refer to the CP-conserving MSSM benchmark
scenario my-max and plots (c) and (d) to the CP-violating scenario CPX. For each scenario, the
parameter space is shown in two projections. Regions which are not part of the parameter space
(labelled “Theoretically Inaccessible”) are shown in light-grey or yellow. In the medium-grey
or light-green regions the data show an excess of less than one standard deviation above the
expected background. Similarly, in the dark-grey or dark-green regions the excess is between
one and two standard deviations while in the darkest-grey or blue regions it is between two
and three standard deviations. In plots (¢) and (d), two small regions with excesses larger than
three standard deviations are shown in white. The dashed lines show the expected exclusion
limit at 95% CL. The hatched areas represent regions where the median expected value of C'L
in the background hypothesis is larger than 0.4; apparent excesses in these regions would not
be significant.
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Figure 2: The 95% CL upper bounds, Sos (see text), for various topological cross-sections
motivated by the Higgsstrahlung process ete”— H1Z, as a function of the Higgs boson mass
(the figure is reproduced from Ref. [3]). The full lines represent the observed limits. The
dark (green) and light (yellow) shaded bands around the median expectations (dashed lines)
correspond to the 68% and 95% probability bands. The horizontal lines correspond to the
Standard Model cross-sections. In part (a) the Higgs boson decay branching ratios are assumed
to be those predicted by the Standard Model; in part (b) the Higgs boson is assumed to decay
exclusively to bb and in part (c) exclusively to 757.
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Figure 3: Contours of the 95% CL upper bound, Sys (see text), for various topological cross-
sections motivated by the Higgsstrahlung cascade process ee™— (Hao— HiH1)Z, projected
onto the (msy,, my, ) plane. The scales for the shadings are given on the right-hand side of each
plot. In plot (a) the H, boson is assumed to decay exclusively to bb and in plot (b) exclusively
to 7H7~; in plot (c) it is assumed to decay with equal probabilities to bb and to 7777,
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Figure 4: The 95% CL upper bounds, Sos (see text), for various topological cross-sections
motivated by the pair production process ete — HoH,. The bounds are obtained for the
particular case where my, and my, are approximately equal. Such is the case, for example, in
the CP-conserving MSSM scenario my-maz for tan 8 greater than 10 and small my, (= ma).
The abscissa is the sum of the two Higgs boson masses. The full lines represent the observed
limits. The dark (green) and light (yellow) shaded bands around the median expectations
(dashed lines) correspond to the 68% and 95% probability bands. The curves which complete
the exclusions at low masses are obtained using the constraint from the measured decay width
of the Z boson, see Section 3.2. Plot (a): the Higgs boson decay branching ratios correspond
to the my-maz benchmark scenario with tan 3=10, namely 94% H,— bb, 6% H,— 7t1~, 92%
Hy— bb and 8% Hy— 77 ; plot (b): both Higgs bosons are assumed to decay exclusively
to bb; plot (c): one of the Higgs bosons is assumed to decay exclusively to bb and the other
exclsively to 777 ; plot (d): both Higgs bosons are assumed to decay exclusively to 77.
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Figure 5: Contours of the 95% CL upper bound, Sys (see text), for various topological cross-
sections motivated by the pair production process ete”— HsHq, projected onto the (msy,,
my, ) plane. The scales in terms of the shadings are given on the right-hand side of each plot.
In plot (a) both Higgs bosons are assumed to decay exclusively to bb and in plot (b) exclusively
to 7T7~. In plot (c) the Hy boson is assumed to decay exclusively to bb and the H, boson
exclusively to 7+7~ and in plot (d) the H; boson is assumed to decay exclusively to bb and the
‘H, boson exclusively to 777~ . The dashed lines represent the approximate kinematic limits of

the processes.
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Figure 6: Contours of the 95% CL upper bound, Sys (see text), for various topological cross-
sections motivated by the pair production cascade process ete”— (Ho— HiH1)H1, projected
onto the (my,, my, ) plane. The scales in terms of the shadings are given on the right-hand
side of each plot. In plot (a) the H, boson is assumed to decay exclusively to bb and in plot
(b) exclusively to 7"7~. In plot (c) the H; boson is assumed to decay with equal probability
to bb and to 7F7~. The dashed line in part (a) represents the approximate kinematic limit of
the process.
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Figure 7: Exclusions, at 95% CL (medium-grey or light-green) and the 99.7% CL (dark-
grey or dark-green), in the case of the CP-conserving my-maz benchmark scenario, for
my = 174.3 GeV/c®. The figure shows the theoretically inaccessible domains (light-grey or
yellow) and the regions excluded by this search, in four projections of the MSSM parameters:
(a): (mn, ma); (b): (my, tan3); (c): (ma, tan§); (d): (myzx, tan $). The dashed lines indicate
the boundaries of the regions which are expected to be excluded, at 95% CL, on the basis of
Monte Carlo simulations with no signal. In the (my, tan/3) projection (plot (b)), the upper
boundary of the parameter space is indicated for four values of the top quark mass; from left
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to right: m, = 169.3, 174.3, 179.3 and 183.0 GeV /2.
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Figure 8: Domains of tan f which are excluded at the 95% CL (light-grey or light-green) and
the 99.7% CL (dark-grey or dark-green), in the case of the CP-conserving my-maz benchmark
scenario, as a function of the assumed top quark mass.
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Figure 9: Exclusions in the case of the CP-conserving my-maxz benchmark scenario, variant (a)
(see Section 2.1.1.). See the caption of Figure 7 for the legend. Note the small domains at my,
between 60 and 75 GeV/c?, small my and tan 8 < 0.9 which, although excluded at the 95%
CL, are not excluded at the 99.7% CL.
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Figure 11: Exclusions in the case of the CP-conserving no-mizing benchmark scenario. See the
caption of Figure 7 for the legend. Note the small domain at my, between 75 and 80 GeV/c?,
small myx and tan 8 < 0.7 which is not excluded at the 95% CL.
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Figure 12: Exclusions in the case of the CP-conserving no-mizing benchmark scenario, variant
(a) (see Section 2.1.2). See the caption of Figure 7 for the legend. In the hatched domain
(tan 8 < 0.7), the contributions from top and stop quark loops to the radiative corrections are
large and uncertain. Note the small domain at my, between 56 and 72 GeV/c?, small my and
tan 8 < 1 which, although excluded at the 95% CL, is not excluded at the 99.7% CL.
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Figure 13: Exclusions in the case of the CP-conserving large-y» benchmark scenario (see Section
2.1.3). See the caption of Figure 7 for the legend. In the hatched domain (tan 3 < 0.7), the
contributions from top and stop quark loops to the radiative corrections become large and
uncertain; hence, no exclusions can be claimed there.
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Figure 14: Exclusions in the case of the gluophobic benchmark scenario (see Section 2.1.3). See
the caption of Figure 7 for the legend.
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Figure 15: Exclusions in the case of the CP-conserving small-cs; benchmark scenario (see
Section 2.1.3). See the caption of Figure 7 for the legend.
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Figure 16: Exclusions, at 95% CL (medium-grey or light-green) and the 99.7% CL (dark-grey
or dark-green), for the CP-violating CPX scenario with m; = 174.3 GeV /c%. The figure shows
the theoretically inaccessible domains (light-grey or yellow) and the regions excluded by the
present search, in four projections of the MSSM parameter space: (my,, my,), (my,, tan ),
(may,, tan ) and (my+, tan ). The dashed lines indicate the boundaries of the regions expected
to be excluded, at the 95% CL, on the basis of Monte Carlo simulations with no signal. In
each scan point, the more conservative of the two theoretical calculations, FeynHiggs or CPH,
is used.
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Figure 17: Cross-sections, as a function of tan (3, for some of the dominant signal processes, in
the CP-violating scenario CPX, using the FeynHiggs calculation, with a centre-of-mass energy
of 202 GeV, my = 175 GeV /%, and m4, between 35 and 45 GeV /c?.
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Figure 18: Exclusions, in the case of the CP-violating CPX scenario, for the two theoretical
approaches, CPH and FeynHiggs. See the caption of Figure 16 for the legend. In part (a) the
CPH calculation is used and in part (b) the FeynHiggs calculation. In part (c¢) the procedure
is adopted where, in each scan point of the parameter space, the more conservative of the two
calculations is used.
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Figure 19: Exclusions, in the case of the CP-violating CPX scenario, for four top quark masses:
my = 169.3 GeV/c?, 174.3 GeV/c?, 179.3 GeV/c* and 183.0 GeV/c?. See the caption of

Figure 16 for the legend.
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Figure 20: Exclusions, in the case of the CPX scenario with various CP-violating phases,
arg(A) = arg(mg): 0°, 30°, 60°, 90° (the CPX value), 135° and 180°. See the caption of

Figure 16 for the legend. In the hatched region in part (f) the calculations are uncertain (see
text).
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Figure 21: Exclusions, for the CP-violating CPX scenario with various values of the Higgs mass
parameter pu: 500 GeV, 1000 GeV, 2000 GeV (the standard CPX value) and 4000 GeV. See

the caption of Figure 16 for the legend. In the hatched region in part (d) the calculations are
uncertain (see text).
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Figure 22: Exclusions, for the CP-violating CPX scenario with various values of the soft SUSY-
breaking scale Msysy. (a): Msysy=500 GeV (the standard CPX value); (b): Msysy=1000 GeV
while all other parameters are kept at their standard CPX values; (¢): Msysy=1000 GeV while
A, mgz and p are “scaled” to 2000 GeV, 2000 GeV and 4000 GeV, respectively. See the caption
of Figure 16 for the legend.
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