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Precision measurements from the Large Hadron Collider and International Linear Collider will provide a detailed picture of
physics at the TeV scale. The particle spectrum at the TeV scale can then be evolved via the renormalization group equations
to the grand unified scale, where the underlying structure of nature may be revealed. The key principles involved in this

procedure are outlined and some representative analyses presented.

1. INTRODUCTION

The startup of the Large Hadron Collider (LHC) in 2007 will open a new view to physics at the TeV scale and should
reveal the key mechanisms behind the breaking of electroweak symmetry, by which the particles of the standard model
(SM) gain their masses. The grouping of matter particles into multiplet representations of higher groups, as discussed
in Section 2, suggests that Grand Unified Theories (GUTs) based on these higher groups may play a role at high energy
scales. Precision measurements at experimentally accessible energy scales can reveal the structure of physics at higher
energy scales by extrapolation using the Renormalization Group Equations (RGEs), as described in Section 3.

The symmetry breaking mechanism, discussed in Section 4, is commonly associated with a fundamental scalar

field, ¢, called the Higgs field which, if found at the LHC, will be the first such scalar field to be discovered. If a

fundamental scalar Higgs is indeed behind electroweak symmetry breaking then the question arises of why its mass is
so light. A possible solution, supersymmetry (SUSY) is introduced in Section 5, together with a discussion of how
SUSY is broken. The presence of SUSY in nature would lead to spectacular discoveries at the LHC and International
Linear Collider (ILC) and some representative experimental prospects are presented in Section 6. In Section 7 the use
of bottom-up extrapolation via RGEs is presented for a few select scenarios in order to reveal how this technique may

reveal the structure of nature at very high energy scales.

2. STANDARD MODEL MATTER FIELDS
The matter fields f of the SM consist of quarks and leptons, together with their anti-particles. An anti-particle can be

described by the conjugate field f © of the corresponding matter particle, which enables each generation of matter

particles to be arranged in suggestive multiplets, such as shown in Equation 1:
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The fact that it is possible to arrange the SM fields into such multiplet forms suggest that the matter fields may be

representations of higher groups, such as SU(5) in the arrangement of Eq.1. Even higher groups such as SO(10) are
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now attractive in order to include conjugate fields for the neutrino (as may be needed to explain neutrino masses), or

groups such as Eg, which arise naturally in string theories.

3. RENORMALISATION GROUP EQUATIONS

The gauge field theoretical description of particles and interactions associates a bare fermionic field, i, with each
particle and a bare gauge field A, for each interaction, described by a bare Lagrangian L, including bare masses
m, and couplings g, such as represented in Equation 3:
Lo =1%07,0"Wo = Mo oWo + 9o A Wor Wo + - 3)
In perturbation theory, the interactions give rise to quantum corrections to the bare quantities, which turn out to be
infinite. These infinities can be handled by the procedure of renormalization, where the bare Lagrangian is split up into
an infinite and a finite part at a specified energy scale E :
Ly = [Lo - 5‘-(E)]Jr é]-(E) “)
SL(E) is the measurable part of the Lagrangian, which has the same form as L :
AL=i77,0"y ~METy + GE)A Ty Y + .. 5)
but with all the terms now finite. The physical requirement that the bare quantities can not depend on the arbitrary

scale E leads to the renormalization group equations (RGEs) for the parameters such as masses, coupling constants and

field normalizations. The classic example of the application of RGEs to the strong coupling constant, g :
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where N is the number of colours and N is the number of quarks contributing to the radiative corrections. The

famous minus sign in this equation led to the understanding of asymptotic freedom in quantum chromodynamics.

RGEs similar to Equation (6) also apply to the SU(2),. coupling g, and the U(1)y coupling g,. By defining
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The RGEs for the «; then have the form
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for constants k; , whose values depend on the couplings and matter content in the entire theory; the couplings “run”

with the energy scale. Thus by plotting ai_l against log E , a straight line is obtained whose slope, k; , depends on the

matter and couplings of the entire theory. Inputting the SM particles and couplings into the RGEs the plot shown in
Figure 1 (Left) is obtained. The fact that the three lines are tending to meet at a common energy scale is suggestive of
grand unification taking place at a GUT scale of about 10"° GeV; however the interception is not exact and a GUT scale
of this magnitude is too low to account for the measured lower limits on proton lifetime; in GUTs proton decay is

mediated by heavy gauge particles whose mass is the same order of magnitude as the GUT scale.
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Both these problems are resolved by the introduction of more particle content into the RGEs, such as occurs in

SUSY as described in Section 5.
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Figure 1. Left: The RGE evolution (“running”) of the gauge fine structure parameters as a function of energy scale
for SM particle content. Right: the running of the gauge fine structure parameters in SUSY theories. The energy scale
at which precision measurements will be made at the LHC and ILC is indicated for illustrative purposes.

4. ELECTROWEAK SYMMETRY BREAKING

The SM requires that the SU(2). xU(1)y symmetry gets broken down to U(1)gy. Perhaps the simplest mechanism of

electroweak symmetry breaking is via the Higgs mechanism, where a fundamental scalar field¢ gains a non-zero
vacuum expectation value <¢> # 0 that both breaks the symmetry and provides a background field to which other fields
couple and thereby gain their mass. The Lagrangian for ¢ is given in Eq. 1
L=0,¢ 0"+ u’p* + 19" ©)
It must be that 4 > 0 in order that the potential is bounded from below, but it is possible that yz <0and in this case
the potential has the well-known Mexican hat form, where the lowest value of the potential occurs at a non-zero value
of ¢, giving <¢> # 0 and thereby breaking the electroweak symmetry.

A problem arises in this model when interactions are turned on in perturbation theory. The renormalization effects
introduced in Section 3 give corrections to the higgs mass that are quadratic in the energy scale. Such quadratic
divergences do not occur for the fermionic fields of the SM because there is a protective chiral symmetry that forbids
mass-terms such as ¥ wg being generated by radiative corrections. As a result, there is no symmetry to keep the
Higgs mass lighter than the next scale of new physics, which could be the GUT or the Planck scale, without extreme

fine tuning of the SM parameters.
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5. SUPERSYMMETRY

Supersymmetry (SUSY) is a symmetry that relates the fermionic and bosonic content of the theory. In SUSY
theories, for each SM fermionic spin-Y2 field there is bosonic spin-0 partner with exactly the same gauge quantum
numbers. Similarly, each SM spin-1 field has a SUSY spin-'2 partner. The Lagrangian is then made symmetric under
SUSY transformations that turn fermions into bosons and vice-versa. In this way SUSY uses indirectly the already-
present chiral symmetries to protect the masses of the scalars in the theory. The Higgs mass is then protected against
quadratic divergences and can be kept light naturally, without fine tuning.

In addition to allowing a naturally light Higgs field, the additional particle content in SUSY also allows an RGE
evolution of the gauge couplings such that they meet at a common point — and also at a higher GUT scale, which in turn
naturally suppresses the rate of proton decay. This new evolution is illustrated schematically in Figure 1 (Right).

While SUSY provides an elegant solution to the Higgs mass problem introduced by the heierarchy between the GUT
and electroweak energy scales, it needs to be broken at low energy scales since no SUSY particles have the same
masses as their SM counterparts. While it would be natural to attempt to break SUSY by a Higgs-like mechanism, the
Ferarra-Girardello-Palumbo sum rule [1]:

D1’ I+1MT =0 (10)
SpinJ

would require at least one SUSY field to be lighter than its SM partner, which is in conflict with observation. As a
result, SUSY breaking must take place in a hidden sector and be mediated to the observable sector by an indirect
mechanism. The result of this breaking can be parameterized in terms of “soft breaking” parameters, so called because
while they break SUSY, they do not do so in a way that can introduce quadratic divergences back into the theory. The

general form for these soft breaking terms for the SUSY scalar fields is given in Equation 11:
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The Ah terms are 3x3 matrices in general acting across generations. Once the sign of the g term is specified, its

magnitude can be calculated by requiring electroweak symmetry breaking to occur correctly. Corresponding soft

breaking terms for the SUSY gauge (gaugino) sector are parameterized by the three gaugino masses M,M,,M;
which give rise to the following mass-matrices for the charged gauginos ;?1%2 (which are mixtures of the SUSY partners

of the W* and the charged Higgses), the neutralinos ;?10_4 (which are mixtures of the SUSY partners of the Z°, y and

neutral Higgses), and the gluino § (the SUSY partner of the gluon).

M;r:[ M, x/EchﬁJ (12)
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Mg =M; (14)
where the notation is that €, =cos S etc., where tan S is the ratio of the two neutral Higgs vacuum expectation

values (in SUSY two Higgs fields are required; one to give masses to up-type fields and one to down-type fields).

The scalar-fermion f masses are parameterized by

2
mz m;a

M2=| o TR (15)
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m%R = MéR +e; sin? Ay cos2,6’m§ +m% (17)
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The SUSY spectrum depends on the values of these soft-breaking parameters, which in turn arise from the specific
mechanism of SUSY breaking employed. A variety of mediating mechanisms have been proposed, including gravity
mediated (e.g. minimal supergravity or mSUGRA) theories, gauge-mediated SUSY breaking (GMSB) theories, and

anomaly mediated (AMSB), among others; some representative spectrums are shown in Figure 2 (Left).
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Figure 2.Left: Some typical SUSY mass spectra arising from different mechanisms of SUSY breaking. Right: the
detailed spectrum for the MSSM point SPS1a.

The Minimal Supersymmetric Standard Model (MSSM) is a generic expression for the models based on a minimal

set of soft breaking parameters; the scalar mass parameter M, the gaugino mass parameter M,,,, the tri-linear
term A, tan £ and the sign of . A set of such points have been defined [2] for the purposes of studying generic

experimental cases in order to optimise detector performances and possible collider running modes. One such point,

called SPSla has M, =100GeV, M,,, =250GeV, A=-100GeV and sign( u ) =+. These parameters are defined at
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the GUT scale; their values at the electroweak scale will be different because, in common with all Lagrangian
parameters, their values will run with energy scale according to the RGEs for the theory. SPSla will be used in the next
section to discuss experimental prospects for exploring SUSY at future colliders. The particle spectrum for this model

is shown in Figure 2 (Right).

6. EXPERIMENTAL PROSPECTS

The next decade will bring a step-change in our understanding of physics at the TeV scale, as the LHC gets up to full
luminosity, colliding protons at a centre of mass energy of 14 TeV. Two general purpose detectors (in addition to two
other detectors; ALICE specialized for heavy-ion collisions and LHC-b specialized for studying b-physics) will study
the final states resulting from these collisions; ATLAS and CMS. ATLAS is shown in Figure 3 (Left); it has diameter
25m and total weight of 7000 tonnes. The other general purpose detector, CMS, has diameter 15m and total weight
12,500 tonnes. Both detectors will be well-equipped to search for SUSY events, as discussed below.
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Figure 3. Left: schematic of the ATLAS detector at the LHC. Right: schematic of a typical SUSY event; the typical
signature is missing transverse momentum accompanied by high-momentum jets and leptons.

The fundamental collision at a proton collider is between the constituent quarks or gluons. As a result, the exact

centre of mass energy\/; is not known but the total transverse momentum is zero. This gives the key to identifying

SUSY events, because a large amount of missing energy/momentum is carried away by the neutralinos in the final state;
these are only weakly interacting and so will escape the detector. The underlying event is in general complicated by the
presence of cascade decays as shown for the case of gluino production in Figure 3 (right). In order to understand the
underlying event, invariant mass distributions of the final state products can be constructed and the particle masses
inferred by determining the end-points of such distributions. An example is shown in Figure 4 (left) where the jet-

lepton-lepton invariant mass is plotted for the case of gluino mass production at the LHC in the model SPS1a.

In contrast the ILC will collide elementary particles (electrons and positrons) so+/S is known precisely , which
provides an important constraint when reconstructing kinematic variables. This is illustrated in Figure 4 (right) where
the energy is plotted of the final state muons from the process € eg —> figiig = u* ;(10 7 ;(10 . The sharp endpoints

enable both the mass of the smuon and the mass of the lightest neutralino to be obtained with high precision, as listed in

Table 1.
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Figure 4: Left: invariant mass distribution of the jet plus two leptons from gluino decay at the LHC, using 100 fb™' of
data and assuming the SPSla model. Right: muon energy distribution from smuon production at the ILC with CMS
400 GeV and 200 fb' of data [3].
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Figure 5. Left: Correlations at the LHC between the masses of the right-handed sleptons and the lightest neutralino.
By measuring the latter to high precision at the ILC, the error on the former can be reduced dramatically [3]. Right:
threshold scans at the ILC can be used to make very high precision mass measurements; illustrated is the case for

chargino production in SPS1a where the process is € ez — 7, 71 =t 20tz [3].

The very high precision determination at the ILC of the lightest neutralino ( ;(10 ) mass will input into many LHC

analyses, where the )(10 appears at the end of all the decay chains (assuming R-parity to hold), resulting in a strong

correlation between the ;(10 mass and other masses determined at the LHC. By knowing this mass precisely, these

correlations can be resolved, as illustrated in Figure 5 (left). An additional advantage of the ILC is that s can be

varied precisely so that the shape of the pair production cross section at threshold can be determined to high precision.

By fitting the shape of this excitation curve to the mass of the pair-produced particles, a very accurate determination of
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the particle mass is possible. This technique works especially well for the production of spin-/2 particles (gauginos) in

the s-channel where the production threshold increases sharply, being proportional to the relativistic #=v/c. In
contrast, scalar particle production turns on as 3° so threshold scans are less favourable compared to the end-point

determinations discussed above. However a sharp threshold can be obtained for €;€; by operating the ILC in

electron-electron mode [4].

By combining LHC measurements with those from the ILC, the optimal errors on the particle masses can be

determined, as illustrated in Table I.

Table I: Representative experimental mass errors at LHC and ILC separately, and also by combining analyses from

both colliders. The spectrum assumed is that for MSUGRA point SPS1a. All units in GeV/c?

Particle Mass LHC LHC LHC+LC
7 181.5 - 0.55 0.55
7 381.2 - 3.0 3.0
70 97.7 8.4 0.05 0.05
70 183.0 8.2 1.2 0.08
70 3633 -

70 381.0 8.9 2.0
&y 143.9 8.4 0.05 0.05
8 206.6 8.8 0.2 0.2
7, 190.5 - 0.7 0.7
Zin 143.8 8.4 0.2 0.2
A 206.6 8.8 0.5 0.5
7, 190.4 -

7 1345 8.6 0.3 03
7 210.4 - 1.1 1.1
v 189.6 - - -
s 5478 13.6 - 74
0, 564.9 13.8 - 33

7. REPRESENTATIVE RGE EXTRAPOLATIONS

Once the particle spectrum has been determined using data from the LHC and ILC, the MSSM parameters can be
extracted by inverting Equations (12)-(18) above. In addition to providing the MSSM parameters themselves, the
knowledge of the particle spectrum and couplings enables the RGEs to be determined and this in turn enables the
parameters measured at the electroweak scale to be extrapolated to the GUT scale. In the following sections this
bottom-up approach is illustrated for two representative cases of SUSY breaking; mSUGRA and GMSB. An example

of the top-down approach is also provided for a string-effective theory.
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7.1. Minimal Supergravity

The mass spectrum of the spin-% partners of the gauge bosons (the gauginos) is determined by the gaugino mass
parameters M;, M, and M; which, analogously to the gauge coupling parameters, should meet after RGE extrapolation

at a common point at the GUT scale. This behavior, for SPS1a, is illustrated in Figure 6.
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Figure 6. Left: extrapolation of the reciprocals of the SPS1a gaugino mass parameters from the electroweak scale to
the GUT scale using the RGEs with experimental input from prospective measurements at the LHC and ILC. Right: the
intersection ellipses of the gaugino parameters at the GUT scale, which are formed by intersecting in independent pairs
the error bands from the RGE expansion.

In mSUGRA, the scalar parameters should also meet at the same scale, since there is only one relevant scale present
(the GUT scale, close to the Planck scale) due to the fact that gravity is blind to the gauge and flavour quantum
numbers. This behaviour is shown clearly in Figure 7, where the error bands meet at a common point for all the squark,

slepton and higgs mass breaking parameters

7.2. Gauge Mediated Supersymmetry Breaking

In the case of GMSB, SUSY breaking is mediated from the hidden sector via a new set of messengers fields that
couple to the gauge quantum numbers and break SUSY at a new energy scale, the messenger scale M. This
mechanism will give ruse to new experimental signatures [5] and also yield a different spectrum from mSUGRA at the
electroweak scale. Furthermore, in this scenario regular soft-breaking parameter values are not expected to emerge at
the GUT scale because the fields gain their masses instead at M,,, not Mgy, with values that depend on their gauge
quantum numbers. This behaviour is demonstrated in Figure 8 (Left) for the GMSB point M,,= 200 TeV, A = 100TeV,

Ns=1, tanf = 15, sign(p) = +, where after extrapolation to the GUT scale, the curves do not meet at a point at Mgyr.
The fields L, and H, have the same SU(2)xU(1) gauge quantum numbers and so will have the same value of their soft

breaking terms at M,,. This fact enables the messenger scale to be determined by the intersection of the RGE-

extrapolated error bands, as illustrated in Figure 8 (Right).
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Figure 7. Model-independent RGE extrapolation of SPS1a scalar parameters from the electroweak scale to the GUT
scale using the RGEs with experimental input from prospective measurements at the LHC and ILC [6].
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Figure 8. Left: Model-independent RGE extrapolation of scalar mass parameters for GMSB point M,,=200 TeV,
A=100 TeV, Ns=1, tanp=15, sign(pn) = +. Right: The error ellipse at the intersection of the L, and H, mass parameters;
these have the same gauge quantum numbers and so should have the same value at the messenger scale M,

7.3. String Effective Theory

When discussing RGE extrapolation of low-energy parameters to the GUT scale, the proximity of the GUT and
Planck scales suggests that any theory that provides a more consistent treatment of particle physics and gravity (such as
string theory) may also provide predictable corrections to the soft breaking parameters at the GUT scale. A candidate
string effective theory has been explored [6] in this context; in this theory the soft breaking spectrum is determined by a
new set of parameters, including integer-valued modular weights. In this effective theory, the bottom-up RGE
extrapolation of the gaugino parameters does not show a meeting point at the GUT scale (the latter being defined by the
intersection of the gauge coupling parameters) because the universality is broken by string threshold corrections, as
shown in Figure 9. Once such a generic string-inspired model has been established, the detailed parameters can then be

determined by a top-down fit to the string parameters. A representative set of the resulting fit errors is shown in Table
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II, which shows that the integer nature of the modular weights n; can in principle be determined experimentally, given

the prospective particle mass measurement accuracy at the LHC/ILC.

Table II: Representative errors on the parameters from a string effective theory, using as input the experimental errors
that may be obtained at the LHC and ILC [6].

Parameter] Ideal] Reconstructed
ms) 180 | 179.9+0.4 GeV
<S> 2 1.998 £ 0.006 TeV
<T> 14 14.6 £0.2 TeV
Sin26 0.9 | 0.899+0.002
Gy 0.5 | 0.501+0.002
das 0 0.1+04

np -3 -2.94 +0.04

ng -1 -1.00 = 0.05

ng 0 0.02£0.02

ny -2 -2.01+0.02

np 1 0.80 £ 0.04

ny -1 -0.96 = 0.06

Ny -1 -1.00 +0.02
Tanf 10 10.00 +0.13

LN - -1
0.01 L M;1(GeV)
0.008
0.006 -
0.004 -
0.002 | M,
Q(GeV)
O’ \3! il “6“ il w\g\\ il \‘12‘ | ‘.1‘5"]6
10 10 10 10 1010

Figure 9. Model-independent bottom-up RGE extrapolation for a representative string effective theory. Universality
at the GUT scale has been broken by string threshold corrections.
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8. SUMMARY

Some of the major problems raised by the Higgs mechanism of electroweak symmetry breaking can be alleviated by
the introduction of SUSY. If SUSY is indeed realized in nature, then its breaking will require a new mechanism for
SUSY mass generation and determining this mechanism should yield new insights into the structure of physics at very
high energy scales, especially the GUT scale. Access to even higher scales (notably the Planck scale) may then be
apparent through threshold corrections at the GUT scale, such as are predicted from string effective theories. If nature
is to be probed at these very high energy scales using RGE extrapolation, then high precision measurements at the
electroweak scale will be crucial. The first of such measurements will be performed at the LHC and, if eventually

constructed, significant improvements and new insights will emerge from the ILC.
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