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Outline

Glen Cowan DIS2006, Tsukuba, 22 April, 2006

I.  Data analysis difficulties for prediction of LHC observables

Some problems with frequentist statistical methods

II. Bayesian statistics

Quick review of basic formalism and tools

Application to:
incompatible data sets,
model (theoretical) uncertainties.

III. Prospects for LHC predictions
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Some uncertainties in predicted cross sections

Glen Cowan DIS2006, Tsukuba, 22 April, 2006

I.   PDFs based on fits to data with:

imperfectly understood systematics,
not all data compatible.

II.  Perturbative prediction only to limited order 

PDF evolution & cross sections to NLO, NNLO...

III. Modelling of nonperturbative physics

parametrization of PDF at low Q2, 
details of flavour composition, ...
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LHC game plan

Glen Cowan DIS2006, Tsukuba, 22 April, 2006

Understanding uncertainties in predicted cross sections is a
recognized Crucial Issue for LHC analyses, e.g.

extra dimensions, parton substructure, sin2 W

For LHC observables we have

uncertainties
in PDFs

uncertainties in
parton cross sections
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PDF fit (symbolic)

Glen Cowan DIS2006, Tsukuba, 22 April, 2006

Given measurements: 

and (usually) covariances:

Predicted value:

control variable PDF parameters, s, etc. bias

Often take:

Minimize

Equivalent to maximizing L() » e2/2, i.e., least squares same 
as maximum likelihood using a Gaussian likelihood function. 

expectation value
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Uncertainties from PDF fits

Glen Cowan DIS2006, Tsukuba, 22 April, 2006

If we have incompatible data or an incorrect model, then 
minimized 2 will be high, but this does not automatically result in 
larger estimates of the PDF parameter errors.

Frequentist statistics provides a rule to obtain standard deviation of 
estimators (1 statistical errors):     

2 = 2
min + 1

but in PDF fits this results in unrealistically small uncertainties.

Try e.g. 2 = 2
min + 50, 75, 100? 

The problem lies in the application of a rule for statistical errors to 
a situation dominated by systematics & model uncertainties.

→ Try Bayesian statistical approach
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The Bayesian approach
In Bayesian statistics we can associate a probability with
a hypothesis, e.g., a parameter value .

        Interpret probability of  as ‘degree of belief’ (subjective).

Need to start with ‘prior pdf’ (), this reflects degree 
of belief about  before doing the experiment.

        Our experiment has data x, → likelihood function L(x|).

Bayes’ theorem tells how our beliefs should be updated in
light of the data x:

Posterior pdf  p(|x) contains all our knowledge about .

DIS2006, Tsukuba, 22 April, 2006

Rev. Thomas Bayes
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A possible Bayesian analysis

Glen Cowan DIS2006, Tsukuba, 22 April, 2006

and use Bayes’ theorem:

To get desired probability for , integrate (marginalize) over b:

→ Posterior is Gaussian with mode same as least squares estimator, 
same as from 2 = 2

min + 1.  (Back where we started!)

Take

Joint probability
for all parameters
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Marginalizing with Markov Chain Monte Carlo

Glen Cowan DIS2006, Tsukuba, 22 April, 2006

In a Bayesian analysis we usually need to integrate over some
(or all) of the parameters, e.g., 

Probability density
for prediction of 
observable ()

Integrals often high dimension, usually cannot be done in 
closed form or with acceptance-rejection Monte Carlo.

Markov Chain Monte Carlo (MCMC) has revolutionized Bayesian
computation.  (Google words:  Metropolis-Hastings, MCMC)

Produces a correlated sequence of points in the sampled space.
Correlations here not fatal, but stat. error larger than naive √n.
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Low Q2 PDF:  
Unknown cofficients of higher order, higher twist terms, ...
Experimental biases, ...

Systematic uncertainty and nuisance parameters

Glen Cowan DIS2006, Tsukuba, 22 April, 2006

In general we can describe the data better by including more 
parameters in the model (nuisance parameters), e.g.,

But, more parameters → correlations → bigger errors.

Bayesian approach: include more parameters along with prior 
probabilities that reflect how widely they can vary.

Difficult (impossible) to agree on priors but remember ‘if-then’
nature of result.  Usefulness to community comes from sensitivity 
analysis:

Vary prior, see what effect this has on posterior.



11

The Full Bayesian Machine

Glen Cowan DIS2006, Tsukuba, 22 April, 2006

A full Bayesian PDF analysis could involve:

the usual two dozen PDF parameters,
a bias parameter for each systematic,
more parameters to quantify model uncertainties,...

as well as a meaningful assignment of priors

consultation with experimenters/theorists

and finally an integration over the entire parameter space to
extract the posterior probability for a parameter of interest, e.g., 
a predicted cross section:

ongoing effort, primary difficulties with MCMC 
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The error on the error

Glen Cowan DIS2006, Tsukuba, 22 April, 2006

Some systematic errors are well determined

Error from finite Monte Carlo sample

Some are less obvious

Do analysis in n ‘equally valid’ ways and
extract systematic error from ‘spread’ in results.

Some are educated guesses

Guess possible size of missing terms in perturbation series; 

vary renormalization scale

Can we incorporate the ‘error on the error’?

(cf. G. D’Agostini 1999; Dose & von der Linden 1999)
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Motivating a non-Gaussian prior b(b)

Glen Cowan DIS2006, Tsukuba, 22 April, 2006

Suppose now the experiment is characterized by

where si is an (unreported) factor by which the systematic error is 
over/under-estimated.

Assume correct error for a Gaussian b(b) would be sii
sys, so

Width of s(si) reflects
‘error on the error’.
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Error-on-error function s(s)

Glen Cowan DIS2006, Tsukuba, 22 April, 2006

A simple unimodal probability density for 0 < s < 1 with 
adjustable mean and variance is the Gamma distribution:

Want e.g. expectation value 
of 1 and adjustable standard 
deviation s , i.e., 

mean = b/a
variance = b/a2

In fact if we took s (s) » inverse Gamma, we could integrate b(b)
in closed form (cf. D’Agostini, Dose, von Linden).  But Gamma 
seems more natural & numerical treatment not too painful.

s(
s)

s
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Prior for bias b(b) now has longer tails

Glen Cowan DIS2006, Tsukuba, 22 April, 2006

Gaussian (s = 0)      P(|b| > 4sys)  =  6.3 £ 10-5

s = 0.5                    P(|b| > 4sys)  =  0.65%

b(
b)

b



16

A simple test

Glen Cowan DIS2006, Tsukuba, 22 April, 2006

Suppose fit effectively averages four measurements.

Take sys = stat = 0.1, uncorrelated.

Case #1: data appear compatible Posterior p(|y):

Usually summarize posterior p(|y) 
with mode and standard deviation:

experiment

m
ea

su
re

m
en

t


p(

|y
)
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Simple test with inconsistent data

Glen Cowan DIS2006, Tsukuba, 22 April, 2006

Case #2: there is an outlier

→ Bayesian fit less sensitive to outlier.

→ Error now connected to goodness-of-fit.

Posterior p(|y):

experiment

m
ea

su
re

m
en

t



p(

|y
)
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Goodness-of-fit vs. size of error

Glen Cowan DIS2006, Tsukuba, 22 April, 2006

In LS fit, value of minimized 2 does not affect size
of error on fitted parameter.

In Bayesian analysis with non-Gaussian prior for systematics,
a high 2 corresponds to a larger error (and vice versa).

2000 repetitions of
experiment, s = 0.5,
here no actual bias.

po
st

er
io

r 




2

 from least squares
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Is this workable for PDF fits?

Glen Cowan DIS2006, Tsukuba, 22 April, 2006

Straightforward to generalize to include correlations

Prior on correlation coefficients ~ ()
(Myth:   = 1 is “conservative”)

Can separate out different systematic for same measurement

Some will have small s, others larger.

Remember the “if-then” nature of a Bayesian result:  

We can (should) vary priors and see what effect this has 
on the conclusions.
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Uncertainty from parametrization of PDFs

Glen Cowan DIS2006, Tsukuba, 22 April, 2006

Try e.g. (MRST)

(CTEQ)or

The form should be flexible enough to describe the data;
frequentist analysis has to decide how many parameters are justified.

In a Bayesian analysis we can insert as many parameters as we
want, but constrain them with priors.

Suppose e.g. based on a theoretical bias for things not too bumpy,
that a certain parametrization ‘should hold to 2%’. 

How to translate this into a set of prior probabilites?
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Residual function

Glen Cowan DIS2006, Tsukuba, 22 April, 2006

Try e.g. 
‘residual 
function’

where r(x) is something very flexible, e.g., superposition of

Bernstein polynomials, coefficients i:

 mathworld.wolfram.com

Assign priors for the i centred around 0, width chosen
to reflect the uncertainty in xf(x)  (e.g. a couple of percent).

→ Ongoing effort.
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Wrapping up

Glen Cowan RHUL HEP seminar, 22 March, 2006

A discovery at the LHC may depend crucially on assessing the
uncertainty a predicted cross section.

Systematic uncertainties difficult to treat in frequentist statistics,
often wind in with ad hoc recipes.

Bayesian approach tries to encapsulate the uncertainties in prior
probabilities for an enlarged set of model parameters

Bayes’ theorem says how where these parameters should lie in 
light of the data

Marginalize to give probability of parameter of interest
(new tool:  MCMC).

Very much still ongoing effort!
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Extra slides

Glen Cowan DIS2006, Tsukuba, 22 April, 2006
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Glen Cowan DIS2006, Tsukuba, 22 April, 2006
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Marginalizing the posterior probability density

Glen Cowan DIS2006, Tsukuba, 22 April, 2006

Bayes’ theorem gives the joint probability for all the parameters.
Crucial difference compared to freqentist analysis is ability to
marginalize over the nuisance parameters, e.g.,

Do e.g. with MC:   sample full (, b) space and look at 
distribution only of those parameters of interest.

In the end we are interested not in probability of  but
of some observable () (e.g. a cross section), i.e., 

Similarly do with MC:  sample (, b) and look at distribution
of ().
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Digression: marginalization with MCMC
Bayesian computations involve integrals like

often high dimensionality and impossible in closed form,
also impossible with ‘normal’ acceptance-rejection Monte Carlo.

Markov Chain Monte Carlo (MCMC) has revolutionized
Bayesian computation.  

Google for ‘MCMC’, ‘Metropolis’, ‘Bayesian computation’, ...

MCMC generates correlated sequence of random numbers:
cannot use for many applications, e.g., detector MC;
effective stat. error greater than √n .

Basic idea:  sample multidimensional 
look, e.g., only at distribution of parameters of interest. 

RHUL HEP seminar, 22 March, 2006
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MCMC basics:  Metropolis-Hastings algorithm
Goal:  given an n-dimensional pdf 

generate a sequence of points 

1)  Start at some point 

2)  Generate  

Proposal density
e.g. Gaussian centred
about

3)  Form Hastings test ratio

4)  Generate

5)  If

else

move to proposed point

old point repeated

6)  Iterate

RHUL HEP seminar, 22 March, 2006
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Metropolis-Hastings (continued)
This rule produces a correlated sequence of points (note how 
each new point depends on the previous one).

For our purposes this correlation is not fatal, but statistical
errors larger than naive

The proposal density can be (almost) anything, but choose
so as to minimize autocorrelation.  Often take proposal
density symmetric:

Test ratio is (Metropolis-Hastings):

I.e. if the proposed step is to a point of higher           , take it;  

if not, only take the step with probability 

If proposed step rejected, hop in place.

RHUL HEP seminar, 22 March, 2006
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Metropolis-Hastings caveats
Actually one can only prove that the sequence of points follows
the desired pdf in the limit where it runs forever.

There may be a “burn-in” period where the sequence does
not initially follow

Unfortunately there are few useful theorems to tell us when the
sequence has converged.

Look at trace plots, autocorrelation.

Check result with different proposal density.

If you think it’s converged, try it again with 10 times 
more points.

RHUL HEP seminar, 22 March, 2006
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Although numerical values of answer here same as in frequentist
case, interpretation is different (sometimes unimportant?)

Glen Cowan

Example:  posterior pdf from MCMC
Sample the posterior pdf from previous example with MCMC:

Summarize pdf of parameter of
interest with, e.g., mean, median,
standard deviation, etc.

RHUL HEP seminar, 22 March, 2006
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Bayesian approach to model uncertainty

Glen Cowan DIS2006, Tsukuba, 22 April, 2006

x

y 
(m

ea
su

re
m

en
t)

model:  

truth:

Model can be made to approximate the truth better by including
more free parameters.

systematic uncertainty
↔

nuisance parameters

In a frequentist analysis, the correlations between the fitted
parameters will result in large errors for the parameters of interest.

In Bayesian approach, constrain nuisance parameters with priors.


