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Outline

I. Data analysis difficulties for prediction of LHC observables

Some problems with frequentist statistical methods

II. Bayesian statistics
Quick review of basic formalism and tools

Application to:
incompatible data sets,
model (theoretical) uncertainties.

III. Prospects for LHC predictions
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Some uncertainties in predicted cross sections

I. PDFs based on fits to data with:

imperfectly understood systematics,
not all data compatible.

II. Perturbative prediction only to limited order

PDF evolution & cross sections to NLO, NNLO...

III. Modelling of nonperturbative physics

parametrization of PDF at low Q7
details of flavour composition, ...
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LHC game plan

predicted a{ }measured o — New Physics

Understanding uncertainties in predicted cross sections 1s a
recognized Crucial Issue for LHC analyses, e.g.

extra dimensions, parton substructure, sin* 6,

For LHC observables we have
Opred = Z//fi(wi)fj(wj)aij dx; dx;
1,]

/ \

uncertainties uncertainties 1n
in PDFs parton cross sections
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PDF fit (symbolic)
stat + 0_7;Sy57

Given measurements: y; & o3 i=1,...,n,
" . stat Sys
and (usually) covariances: V5t V25

Predicted value: u(z;;0), expectation value E[y,] = u(z;;0) + b,
/N
control variable PDF parameters, c,, etc. bias

. __ y/stat
Often take: V;; = V5" + V2°
Minimize x*(0) = (7 - E@(6))" V(7 — i(9))

Equivalent to maximizing L(6) » e, .., least squares same
as maximum likelihood using a Gaussian likelithood function.
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Uncertainties from PDF fits

If we have incompatible data or an incorrect model, then

minimized y? will be high, but this does not automatically result in
larger estimates of the PDF parameter errors.

Frequentist statistics provides a rule to obtain standard deviation of
estimators (1o statistical errors):

,Z2 = szin + 1
but in PDF fits this results in unrealistically small uncertainties.
Trye.g. Y=y . +50,75,1007?

The problem lies 1n the application of a rule for statistical errors to
a situation dominated by systematics & model uncertainties.

— Try Bayesian statistical approach
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The Bayesian approach

In Bayesian statistics we can associate a probability with
a hypothesis, e.g., a parameter value 0.

Interpret probability of 8 as ‘degree of belief” (subjective).

Need to start with ‘prior pdf® (), this reflects degree
of belief about @ before doing the experiment.

Our experiment has data x, — likelithood function L(x|6).

Bayes’ theorem tells how our beliefs should be updated in
light of the data x:

L(z|6)7(6)

p(Ble) = [ L(2|0")7(0") do’

x L(x|0)r ()

Rev. Thomas ayes

Posterior pdf p(6x) contains all our knowledge about 6.
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A possible Bayesian analysis

Take  L(§0.5) ~ exp [—%@7— i(0) — 0T VI L (57— ji(0) — b)

7 Vg B

N | =

1 (B) ~ exp [—
Joint probability

m9(0) ~ const. / for all parameters

and use Bayes’ theorem: (9, b|3) o« L(#]60,b)my(0)my(b)

To get desired probability for 6, integrate (marginalize) over b:
p(017) = [ p(6.517) db

— Posterior 1s Gaussian with mode same as least squares estimator,
o, same as from y? = »? . + 1. (Back where we started!)
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Marginalizing with Markov Chain Monte Carlo

In a Bayesian analysis we usually need to integrate over some
(or all) of the parameters, e.g.,

L Probability density
p(0ly) = /p(H, bly) db ~ for prediction of

L observable 1 6)
p(uld) = [ 80 = 1prea()) p(6,B17) db do

Integrals often high dimension, usually cannot be done 1n
closed form or with acceptance-rejection Monte Carlo.

Markov Chain Monte Carlo (MCMC) has revolutionized Bayesian
computation. (Google words: Metropolis-Hastings, MCMC)

Produces a correlated sequence of points in the sampled space.
Correlations here not fatal, but stat. error larger than naive \n.
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Systematic uncertainty and nuisance parameters

In general we can describe the data better by including more
parameters in the model (nuisance parameters), e.g.,

Low (2 PDF: az’(1 — 2)°(L 4+ dyz +ex +...)
Unknown cofficients of higher order, higher twist terms, ...
Experimental biases, ...

But, more parameters — correlations — bigger errors.

Bayesian approach: include more parameters along with prior
probabilities that reflect how widely they can vary.

Difficult (impossible) to agree on priors but remember ‘if-then’
nature of result. Usefulness to community comes from sensitivity
analysis:

Vary prior, see what effect this has on posterior.

Glen Cowan DIS2006, Tsukuba, 22 April, 2006



The Full Bayesian Machine

A full Bayesian PDF analysis could involve:

the usual two dozen PDF parameters,
a bias parameter for each systematic,
more parameters to quantify model uncertainties,...

as well as a meaningful assignment of priors

consultation with experimenters/theorists

and finally an integration over the entire parameter space to
extract the posterior probability for a parameter of interest, e.g.,
a predicted cross section:

ongoing effort, primary difficulties with MCMC
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The error on the error
Some systematic errors are well determined

Error from finite Monte Carlo sample

Some are less obvious

Do analysis 1n n ‘equally valid” ways and
extract systematic error from ‘spread’ in results.

Some are educated guesses
Guess possible size of missing terms in perturbation series;

vary renormalization scale  (u/2 < Q < 2u ?)

Can we incorporate the ‘error on the error’?

(cf. G. D’Agostini 1999; Dose & von der Linden 1999)
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Motivating a non-Gaussian prior 7,(b)

Suppose now the experiment 1s characterized by

az_stat O_S)/S

) i Sis 1 =1,...,n,

Yis

where s, 1s an (unreported) factor by which the systematic error is
over/under-estimated.

Assume correct error for a Gaussian 7,(b) would be 5,65, so

1 b2
mp(b;) = / V2rs.0%Y3 eXp [_5 (S'O_‘sys)z ms(si) ds;
Width of 7 (s,) reflects

‘error on the error’.
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Error-on-error function 7z(s)

A simple unimodal probability density for 0 <s <1 with
adjustable mean and variance 1s the Gamma distribution:

B a(as)b—le—as mean = b/a
Ts(s) = (b) variance = b/a?

Want e.g. expectation value
of 1 and adjustable standard

. . . _ _ 2
deviation o, ,1.., a =b=1/0;

In fact if we took 7, (s) » inverse Gamma, we could integrate 7,(D)

in closed form (cf. D’ Agostini, Dose, von Linden). But Gamma
seems more natural & numerical treatment not too painful.
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Prior for bias 7,(b) now has longer tails

) = [ agexp |- ] s d
(b)) = —— ms(s;) ds;
bR \ 27757;0@-53/5 8;0 ST

100 : . —
A~ 001} ]
= ,
l? —_ ,,,,’ .
.06 [ b
1e-08 - ;” -
110 g 6 4 2 0 2 4 6 8
b
Gaussian (0, =0)  P(|p|>40o,,) = 6.3£107
c,=0.5 P(|b] > 40o,,,) = 0.65%
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A simple test

Suppose fit effectively averages four measurements.

Take o..= o, = 0.1, uncorrelated.

Sys stat

Case #1: data appear compatible Posterior p(uy):

zZ . | '
Rl

5 o T

— ! .

= | | =

& i

Q) 05 2

E 1

experiment - 7 | |

Usually summarize posterior p(yy) 0s=0.0: p=1.000+0.071
with mode and standard deviation: os=0.5: f=1.000+0.072
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Simple test with inconsistent data

Case #2: there 1s an outlier Posterior p(lub/)
% 15 — 6
RN |
5 ]
2| =
Q
= .
experiment U
0s=0.0: [=11254+0.071
o0s=0.5: j=1.093%0.089
— Bayesian fit less sensitive to outlier.
— Error now connected to goodness-of-fit.
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Goodness-of-fit vs. size of error

In LS fit, value of minimized »? does not affect size
of error on fitted parameter.

In Bayesian analysis with non-Gaussian prior for systematics,
a high y? corresponds to a larger error (and vice versa).

009

2000 repetitions of
N goss L .
o - experiment, o, = 0.5,
008 | i s s .
— T O here no actual bias.
. 9 0.075 |- S }
—
L
"5 007 F ,\—
o
ST | o, trom least squares
0.0 | | | |
0 2 4 3] a 10
2
X
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Is this workable for PDF fits?

Straightforward to generalize to include correlations
Prior on correlation coefficients ~ 7(p)
(Myth: p=1 1is “conservative”)
Can separate out different systematic for same measurement

Some will have small o, others larger.

Remember the “if-then” nature of a Bayesian result:

We can (should) vary priors and see what effect this has
on the conclusions.
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Uncertainty from parametrization of PDFs

Tryeg azf(z)=az"(1-2)°(1 +dvz+ex) (MRST)
or vf(z) = ax?(1 — 2)%%%(1 + efz)/ (CTEQ)

The form should be flexible enough to describe the data;
frequentist analysis has to decide how many parameters are justified.

In a Bayesian analysis we can insert as many parameters as we
want, but constrain them with priors.

Suppose e.g. based on a theoretical bias for things not too bumpy,
that a certain parametrization ‘should hold to 2%’.

How to translate this into a set of prior probabilites?
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Residual function

‘residual
Trye.g zf(z)=az’(1 —2)°(1+...)+r(z) - function’

where r(x) 1s something very flexible, e.g., superposition of

Bernstein polynomials, coefficients v;; r(z) =Y v;B;(x)

Elpff:l Blllff_) B,g[})
1 -
-
/.f b
0.5 0.5 0.5 e
0.5 T ' 0.5 1T 0.5 T B ] xz(l — x)n v
,n 7
Bi5ir) Bialr) B;s(r)

0.5 1
mathworld.wolfram.com

Assign priors for the v, centred around 0, width chosen

to reflect the uncertainty in xf(x) (e.g. a couple of percent).
— Ongoing effort.
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Wrapping up

A discovery at the LHC may depend crucially on assessing the
uncertainty a predicted cross section.

Systematic uncertainties difficult to treat in frequentist statistics,
often wind 1n with ad hoc recipes.

Bayesian approach tries to encapsulate the uncertainties in prior
probabilities for an enlarged set of model parameters

Bayes’ theorem says how where these parameters should lie in
light of the data

Marginalize to give probability of parameter of interest
(new tool: MCMC).

Very much still ongoing effort!
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Extra slides
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Marginalizing the posterior probability density

Bayes’ theorem gives the joint probability for a/l the parameters.
Crucial difference compared to fregentist analysis 1s ability to
marginalize over the nuisance parameters, €.g.,

p(61) = [ p(6, 515 db

Do e.g. with MC: sample full (8, b) space and look at
distribution only of those parameters of interest.

In the end we are interested not in probability of 6 but
of some observable 1(6) (e.g. a cross section), 1.e.,

Pl = [ 6(1 — 1prea(9)) p(8, Bl db o

Similarly do with MC: sample (6, b) and look at distribution
of 1(6).
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Digression: marginalization with MCMC

Bayesian computations involve integrals like

p(6olz) = [ p(00,612) db1 .

often high dimensionality and impossible in closed form,
also 1impossible with ‘normal’ acceptance-rejection Monte Carlo.

Markov Chain Monte Carlo (MCMC) has revolutionized
Bayesian computation.

Google for ‘MCMC’, ‘Metropolis’, ‘Bayesian computation’, ...

MCMC generates correlated sequence of random numbers:
cannot use for many applications, e.g., detector MC;
effective stat. error greater than Vn .

—

Basic 1dea: sample multidimensional 6,
look, e.g., only at distribution of parameters of interest.
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MCMC basics: Metropolis-Hastings algorithm
Goal: given an n-dimensional pdf p(0) ,

generate a sequence of points 01, 0, 53, e

Proposal density ¢(6; 03)
e.g. Gaussian centred

2) Generate § ~ q(6;0p) about 6

1) Start at some point 50

3) Form Hastings testratio o = min |1

p(8)q(f0; 9) ]
" p(00)q(8; 60)

4) Generate u ~ Uniform|[O0, 1]
5 If u<a, 51 =0 , +— move to proposed point

else 61 = 0y «— old point repeated
6) Iterate
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Metropolis-Hastings (continued)

This rule produces a correlated sequence of points (note how
each new point depends on the previous one).

For our purposes this correlation is not fatal, but statistical
errors larger than naive \/n .

The proposal density can be (almost) anything, but choose
so as to minimize autocorrelation. Often take proposal
density symmetric: g(60; 0g) = q(0g; 0)

p(6)
p(0o)
I.e. 1f the proposed step is to a point of higher p(é), take 1t;

if not, only take the step with probability p(8) /p(6p) .
If proposed step rejected, hop in place.

Test ratio 1s (Metropolis-Hastings): o = min |1,
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Metropolis-Hastings caveats

Actually one can only prove that the sequence of points follows
the desired pdf in the limit where 1t runs forever.

There may be a “burn-in” period where the sequence does
not initially follow p(0) .

Unfortunately there are few useful theorems to tell us when the
sequence has converged.

Look at trace plots, autocorrelation.
Check result with different proposal density.

If you think 1t’s converged, try it again with 10 times
more points.
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Example: posterior pdf from MCMC
Sample the posterior pdf from previous example with MCMC:

9 0008 — o
: 200 =
1 a0
Rt L
0L =1
LS e
hele] .
0o ot
LOBS .
.06
i.:"\
0,055 i
s sy
ppan Lol L S NEFRENE A o . : ks
A5 AA % ) 05 006 007 Dos ole

| Summarize pdf of parameter of
ok 4 — interest with, e.g., mean, median,

B . .
standard deviation, etc.

Although numerical values of answer here same as in frequentist
case, interpretation 1s different (sometimes unimportant?)
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Bayesian approach to model uncertainty

Model can be made to approximate the truth better by including
more free parameters.

model: vy = a + Bz
truth: v = o+ Bx + 7:132 4oex3+ ...

systematic uncertainty

!

nuisance parameters

y (measurement)

X

In a frequentist analysis, the correlations between the fitted
parameters will result in large errors for the parameters of interest.

In Bayesian approach, constrain nuisance parameters with priors.
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