

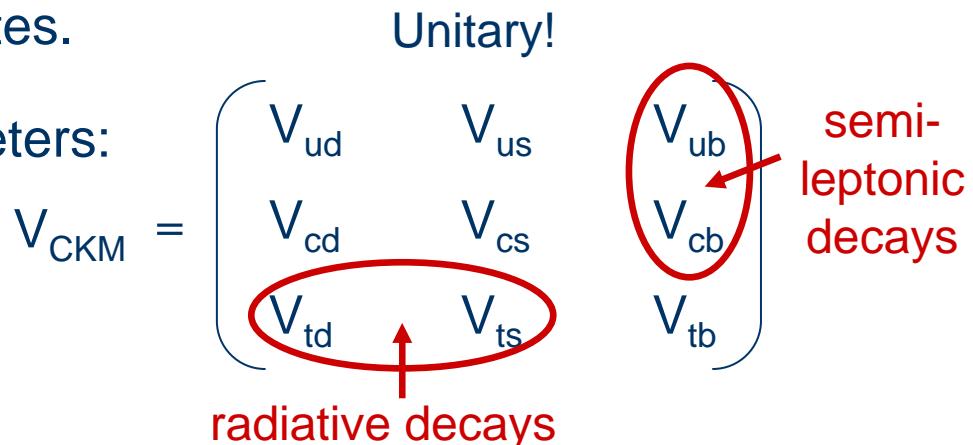
Rare B decays at the B Factories

Henning Flächer

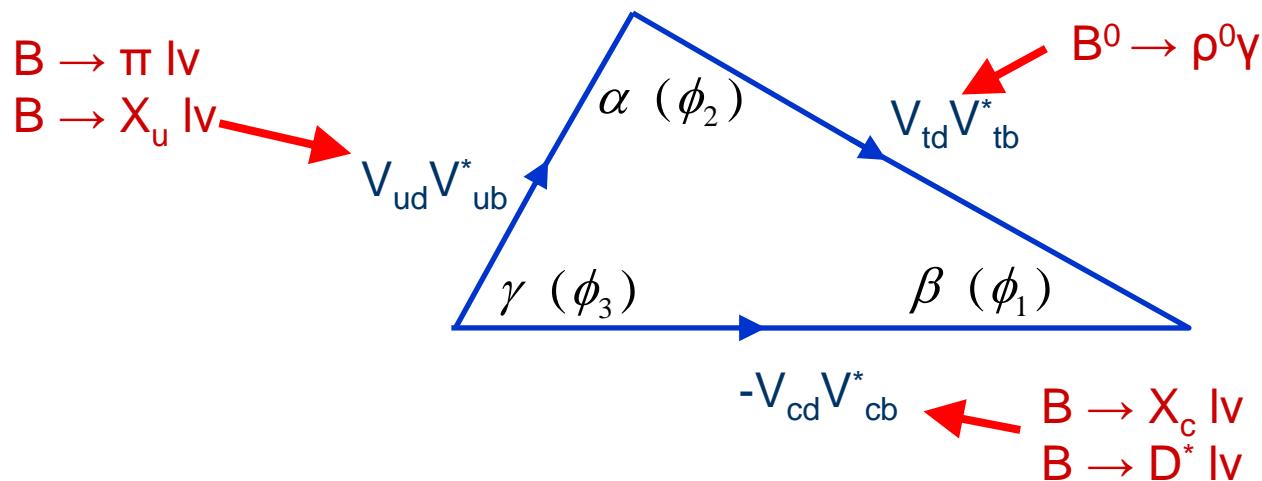
*Royal Holloway,
University of London*

Overview

- Motivation
- Semileptonic B Decays
 - Exclusive Decays
 - ❖ V_{cb} , V_{ub} and Form Factors
 - Inclusive Decays
 - ❖ V_{cb} & V_{ub}
- Radiative Penguin Decays
 - $b \rightarrow s\gamma$, $b \rightarrow d\gamma$
- Charmless Hadronic B Decays
 - Bounds on ΔS and $\sin 2 \beta$ from $B \rightarrow \eta' K_s$
 - $B^+ \rightarrow K^+ \pi^- \pi^+$
- $B \rightarrow$ Charm Decays via W-exchange and Annihilation
 - $B \rightarrow D_s D_s$
 - $B \rightarrow D_s \varphi$
- Conclusions

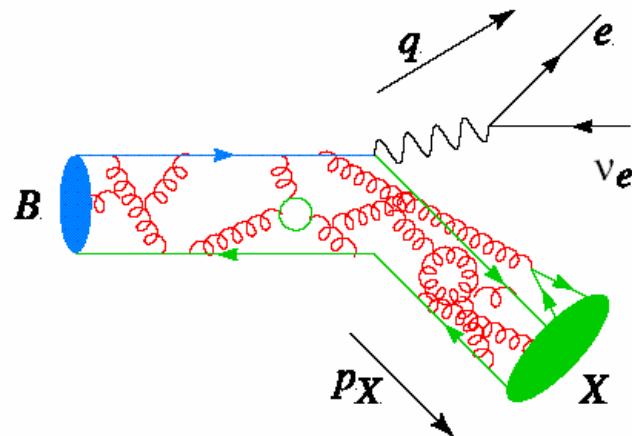

CKM matrix and Unitarity Triangle

In the Standard Model, couplings between quarks of different flavour are described by the CKM matrix.


It relates weak to mass eigenstates.

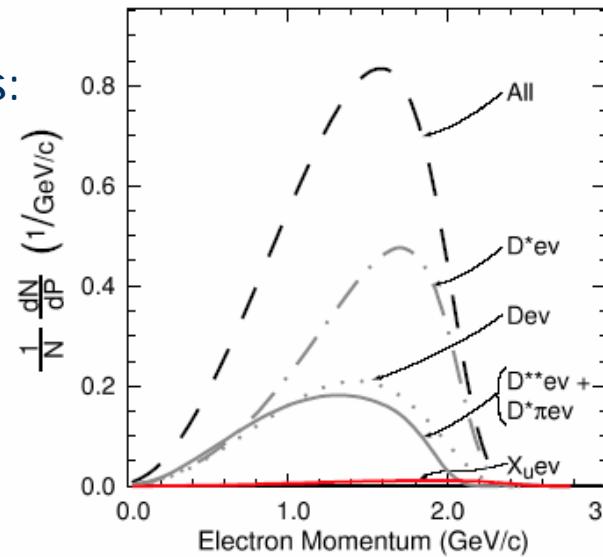
CKM matrix has 4 free parameters:

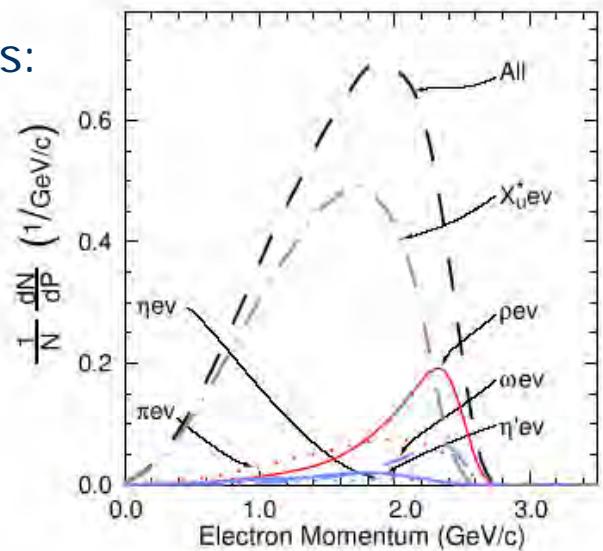
- 3 Euler angles
- 1 free phase


Can be visualised as triangle:

Semileptonic Decays

Why semileptonic decays?


$|V_{ub}|$ and $|V_{cb}|$ are crucial in testing CKM unitarity and SM mechanism for CP violation


Hadronic and leptonic currents factorise, theoretical uncertainties are under control giving access to $|V_{ub}|$ and $|V_{cb}|$

Different uncertainties in inclusive and exclusive decays → study both!

$b \rightarrow c \bar{l} \nu$
transitions:

$b \rightarrow u \bar{l} \nu$
transitions:

Exclusive $|V_{cb}|$

- In exclusive decays we need formfactors to relate $B \rightarrow D^* \ell \nu$ decay rate to $|V_{cb}|$

$$\text{BR}(B \rightarrow D^* \ell \nu) \sim |V_{cb}| F_{D^*}(w=1)^2$$

w: **D*** boost in B rest frame

- $F(w)$ is calculable at $w = 1$, i.e. zero-recoil

❖ encodes QCD ignorance of hadronisation

❖ $F(w) = 1$ at the heavy-quark limit ($m_b = m_c = \infty$)

❖ Lattice calculation gives

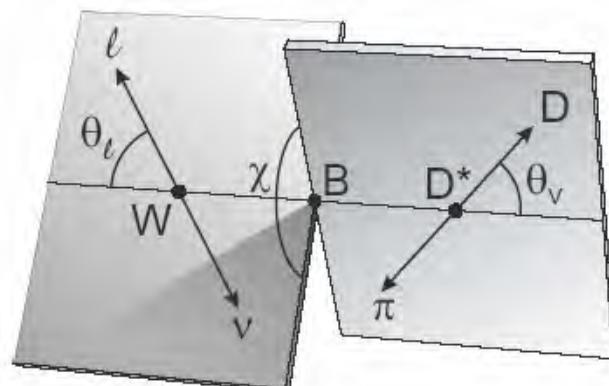
$F(1) = 0.919^{+0.030}_{-0.035}$ Hashimoto et al,
PRD 66 (2002) 014503

- Shape of $F(w)$ unknown

❖ Parameterized with ρ^2 (slope at $w = 1$) and R_1, R_2

- $B \rightarrow D^* \ell \nu$ decay rate in terms of helicity amplitudes is given by:

$$\frac{d\Gamma(B \rightarrow D^* \ell \nu)}{dq^2 d\cos \theta_\ell d\cos \theta_V d\chi} = \frac{3G_F^2 |V_{cb}|^2 P_{D^*} q^2}{8(4\pi)^4 M_B^2} \times$$


$$\{ H_+^2 (1 - \cos \theta_\ell)^2 \sin^2 \theta_V + H_-^2 (1 + \cos \theta_\ell)^2 \sin^2 \theta_V$$

$$+ 4H_0^2 \sin^2 \theta_\ell \cos^2 \theta_V - 2H_+ H_- \sin^2 \theta_\ell \sin^2 \theta_V \cos 2\chi$$

$$- 4H_+ H_0 \sin \theta_\ell (1 - \cos \theta_\ell) \sin \theta_V \cos \theta_V \cos \chi$$

$$+ 4H_- H_0 \sin \theta_\ell (1 + \cos \theta_\ell) \sin \theta_V \cos \theta_V \cos \chi \}$$

Angular kinematic variables :

The Helicity amplitudes H_i depend on Form Factor ratios R1 and R2

Exclusive $|V_{cb}|$: $B \rightarrow D^* l \nu$

New!

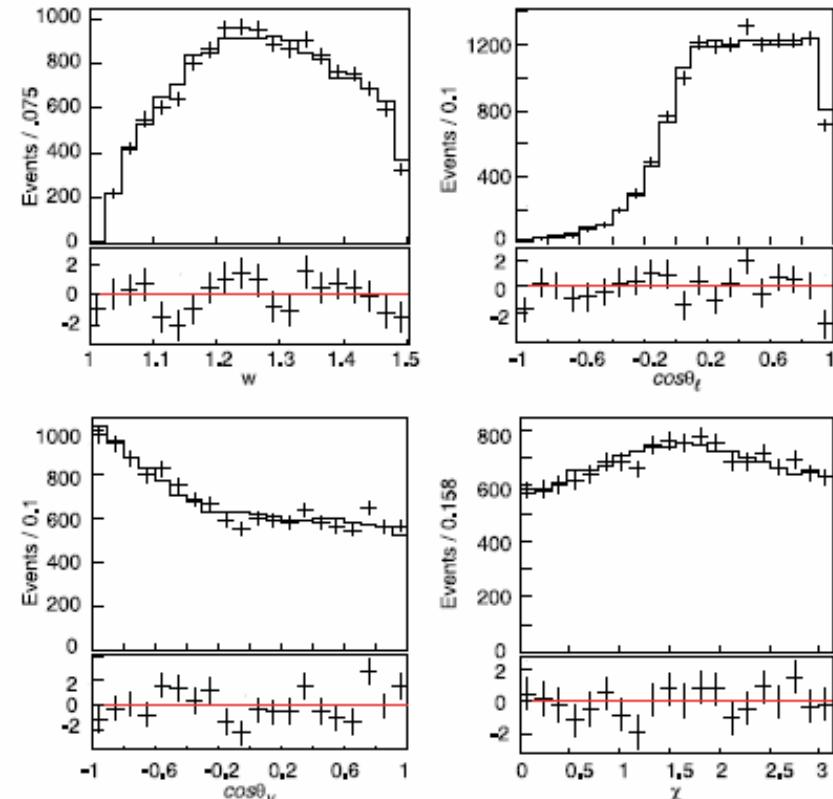
Extract $D^* l \nu$ form factors from unbinned maximum likelihood fit to full 4-dim PDF

stat. MC stat. syst.

$$R_1 = 1.396 \pm 0.060 \pm 0.035 \pm 0.027,$$

$$R_2 = 0.885 \pm 0.040 \pm 0.022 \pm 0.013,$$

$$\rho^2 = 1.145 \pm 0.059 \pm 0.030 \pm 0.035,$$


Compared to FF from previous CLEO measurement, uncertainty on $|V_{cb}|$ is reduced from $+2.9\% - 2.6\% \rightarrow \pm 0.5\%$

Factor 5 improvement of FF uncertainty

Systematic error on $|V_{cb}|$ from 4.5% $\rightarrow 3.5\%$

$$|V_{cb}| = 37.6 \pm 0.3(stat) \pm 1.3(syst) \quad {}^{+1.5}_{-1.3}(theory) \times 10^{-3}$$

One dimensional projections of the fit result:

hep-ex/0602023

Also leads to a reduction in systematic error on $|V_{ub}|$ from Babar endpoint analysis
 Systematic error on BF reduced from 6.7% $\rightarrow 2.8\%$

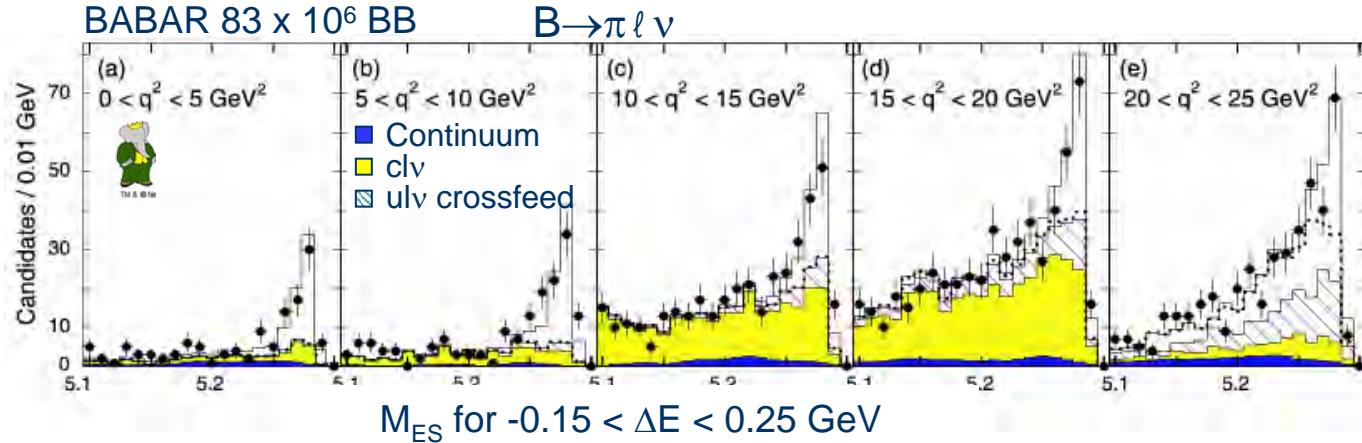
Exclusive $|V_{ub}|$

- Measure specific final states, e.g., $B \rightarrow \pi l \nu$, $B \rightarrow \rho l \nu$
 - Can achieve good signal-to-background ratio
 - Branching fractions are $O(10^{-4})$ → statistics limited
- Need form factors to extract $|V_{ub}|$

$$\frac{d\Gamma(B \rightarrow \pi \ell \nu)}{dq^2} = \frac{G_F^2}{24\pi^3} |V_{ub}|^2 p_\pi^3 |f_+(q^2)|^2$$

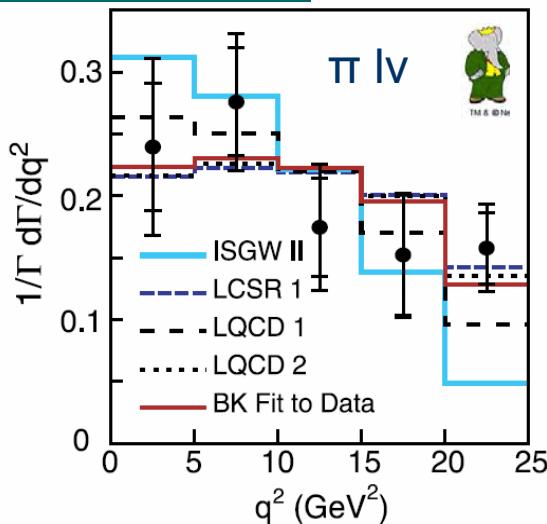
One FF for $B \rightarrow \pi l \nu$
(massless lepton)

- Theoretical Uncertainties complementary to inclusive approach!
- $f_+(q^2)$ calculations exist based on:
 - Lattice QCD ($q^2 > 16 \text{ GeV}^2$)
 - ❖ recent “unquenched” calculations → ~11% uncertainty
 - Light Cone Sum Rules ($q^2 < 14 \text{ GeV}^2$) → ~10% uncertainty
 - Quark models (ISGW2) ... and other approaches

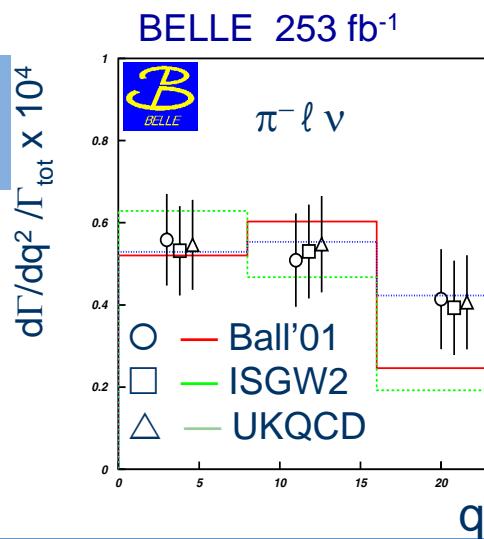

HPQCD
[hep-lat/0408019](https://arxiv.org/abs/hep-lat/0408019)
Fermilab
[hep-lat/0409166](https://arxiv.org/abs/hep-lat/0409166)
Ball, Zwicky
[hep-ph/0406232](https://arxiv.org/abs/hep-ph/0406232)

Exclusive $|V_{ub}|: B \rightarrow \pi \ell \nu$

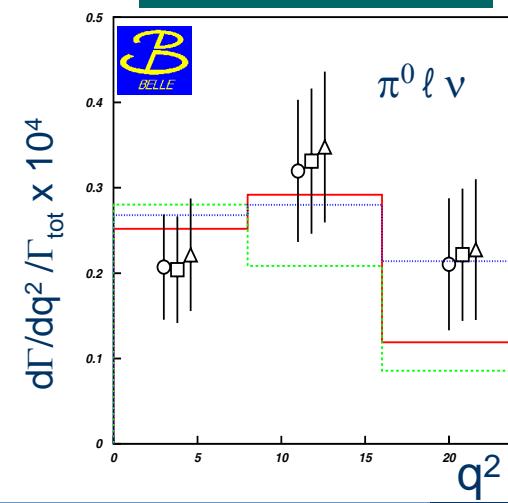
Babar untagged analysis:


v = missing (E, \vec{p}) of the event

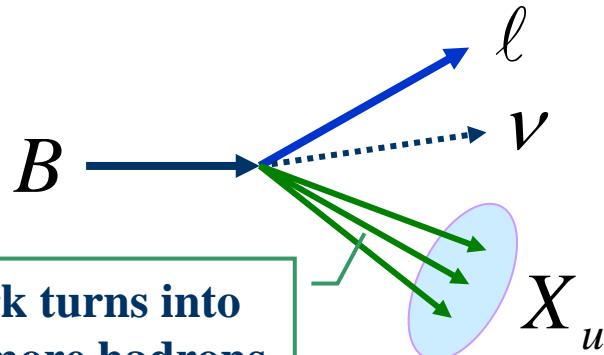
Fit of the signal yield using the B mass and ΔE in bins of q^2 .



- Measure q^2 -dependence of the form factor
- Compare with theoretical calculations


hep-ex/0507003

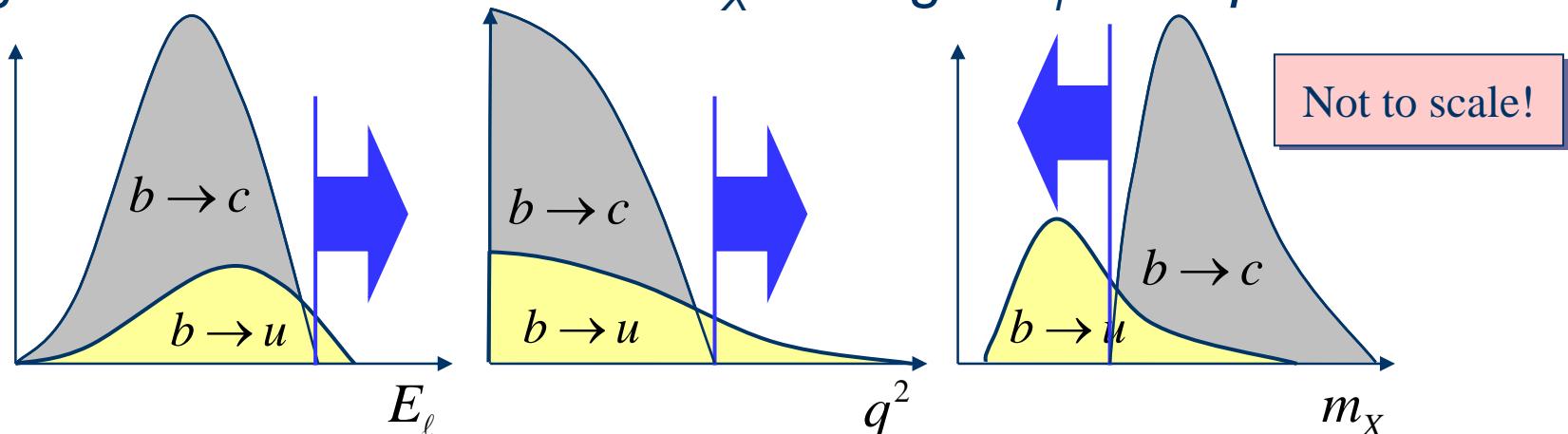
Belle with
D*lv tag



hep-ex/0508018

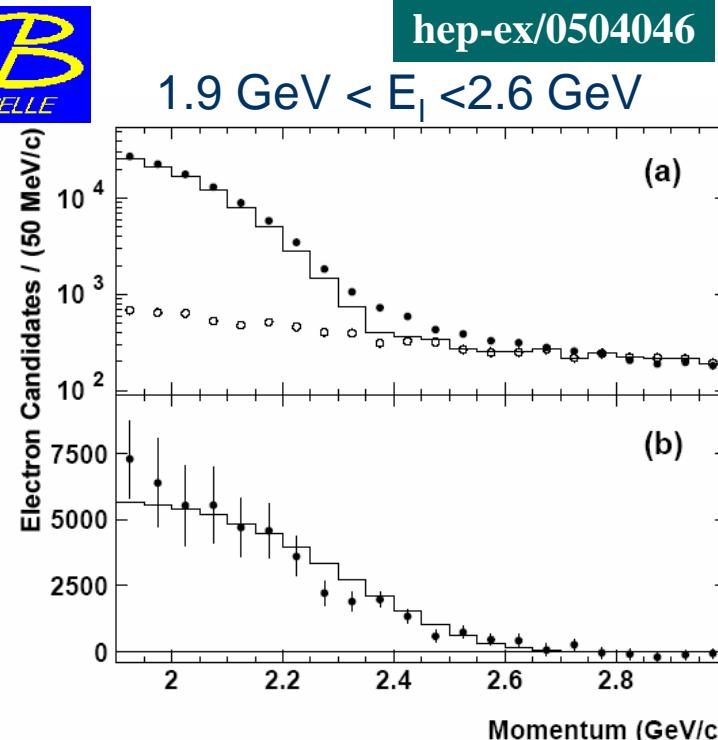
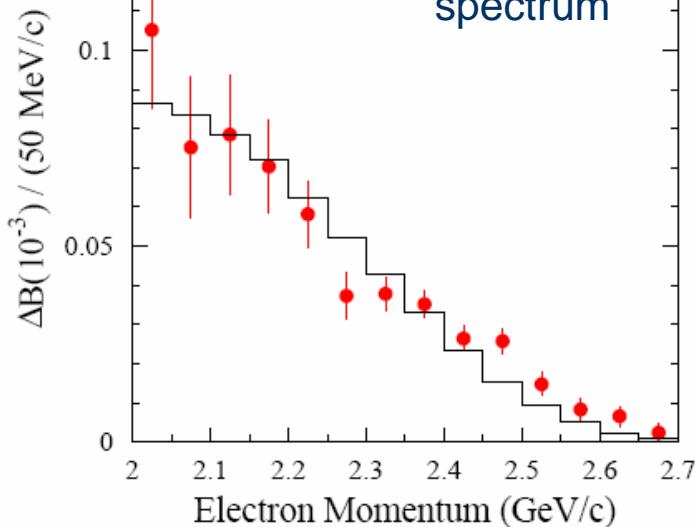
Inclusive $b \rightarrow u/\nu$: Strategies

- We use 3 variables to describe $B \rightarrow X/\nu$ decays:


E_ℓ = lepton energy

q^2 = lepton-neutrino mass squared

m_X = hadron system mass



Combine cuts on these variables to maximise phase space and minimise theory uncertainty

- Signal events have smaller m_X \rightarrow larger E_ℓ and q^2

Inclusive $|V_{ub}|$: Endpoint

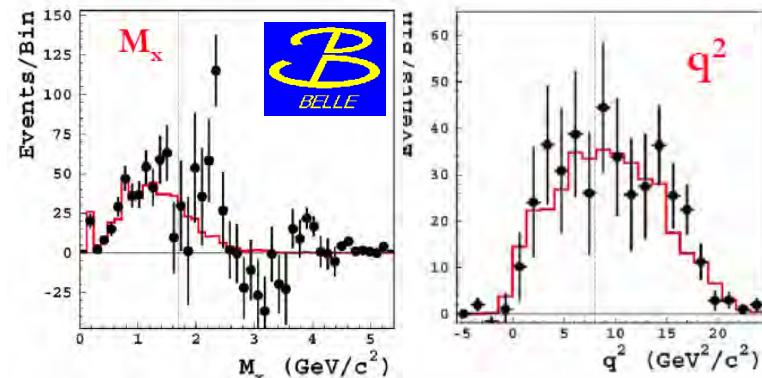
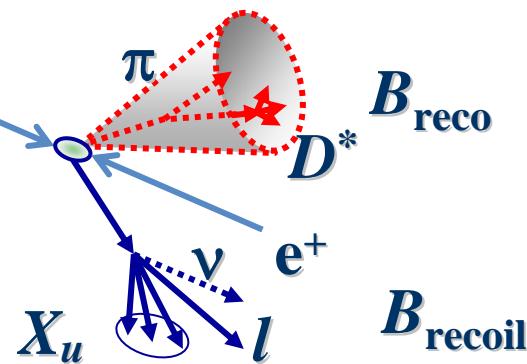
Measure rate in region where $b \rightarrow clv$ is largely forbidden, previously large extrapolation

Calculations by Bosch, Lange, Neubert & Paz translate partial rate directly into $|V_{ub}|$:

Babar: $|V_{ub}| = (4.44 \pm 0.25_{exp}^{+0.42}_{-0.38} SF \pm 0.22_{theory}) \times 10^{-3}$

Belle: $|V_{ub}| = (5.08 \pm 0.47 \pm 0.42^{+0.26}_{-0.23}) \times 10^{-3}$

Inclusive $|V_{ub}|$: Hadronic B tag



Fully reconstructed B recoil analysis:

Advantages:

- clean sample e^-
- kinematics known
- B flavour known

Disadvantage:

- low statistics

Different phase space acceptances
result in different theory errors!

Calculations of
Bosch,Lange,Neubert,Paz
hep-ph/0402094,0504071

Belle:

hep-ex/0505088

$\Delta\Phi$	$ V_{ub} \times 10^3$	stat	syst	$b \rightarrow u$	$b \rightarrow c$	SF	th.
M_X/q^2	4.70	5.0	4.4	3.1	2.7	4.2	+4.8 -5.2
M_X	4.09	4.6	3.5	3.1	1.1	4.5	+3.5 -3.8
P_+	4.19	4.7	4.6	3.2	4.4	5.8	+3.4 -3.5

$M_X < 1.7 \text{ GeV}$, $q^2 > 8 \text{ GeV}$

$M_X < 1.7 \text{ GeV}$

$P_+ = E_X - |\mathbf{p}_X| > 0.66$

Babar:

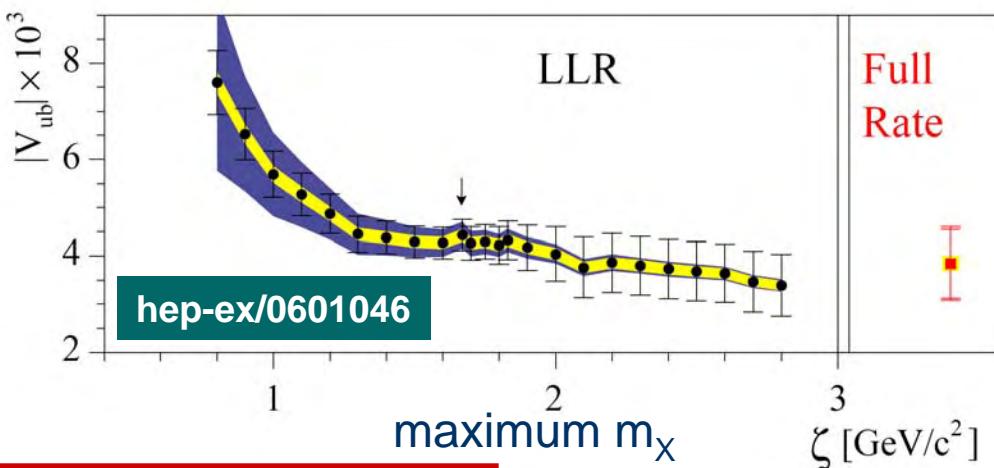
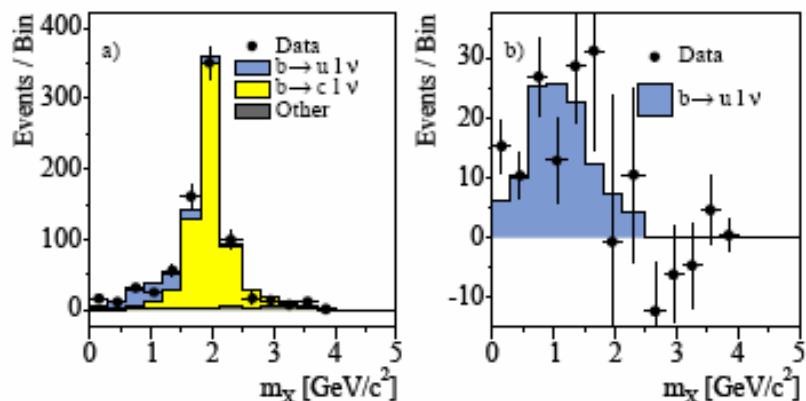
hep-ex/0507017

$$|V_{ub}| = (4.65 \pm 0.24_{\text{stat}} \pm 0.24_{\text{syst}}^{+0.46}_{-0.38\text{SF}} \pm 0.23_{\text{th}}) \times 10^{-3}$$

$M_X < 1.7 \text{ GeV}$,
 $q^2 > 8 \text{ GeV}$

Inclusive $|V_{ub}|$

New!



Relating $b \rightarrow u \ell \nu$ to $b \rightarrow s \gamma$ using weight functions:

largely SF independent!

$$\Gamma(B \rightarrow X_u \ell \nu) = \frac{|V_{ub}|^2}{|V_{ts}|^2} \int W(E_\gamma) \frac{d\Gamma(B \rightarrow X_s \gamma)}{dE_\gamma} dE_\gamma$$

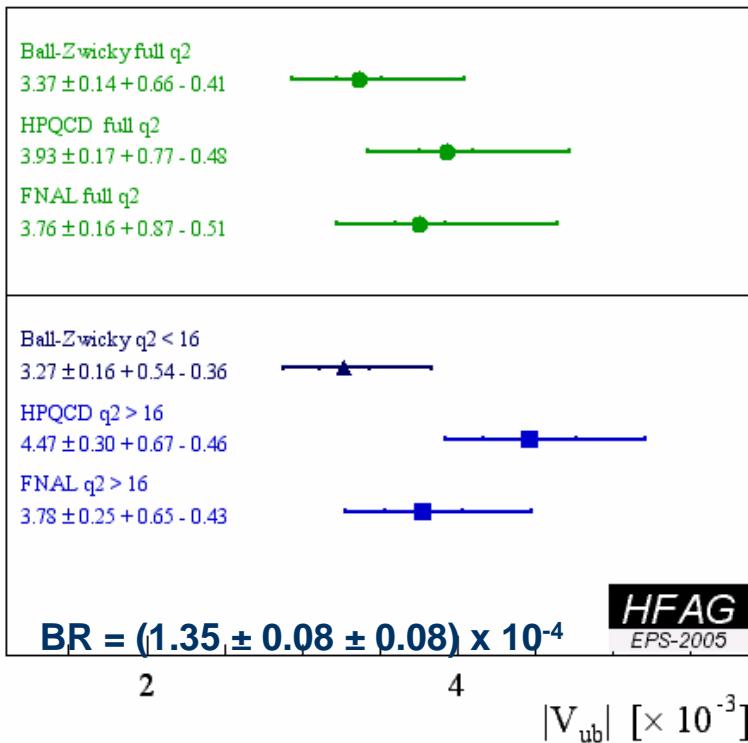
Leibovich, Low, Rothstein
hep-ph/0005124,0105066

Weight function

Standard local
OPE for full rate:
Ural'tsev
hep-ph/9905520
Hoang, Ligeti,
Manohar
hep-ph/9811239

LLR : $M_X < 1.67$ GeV:

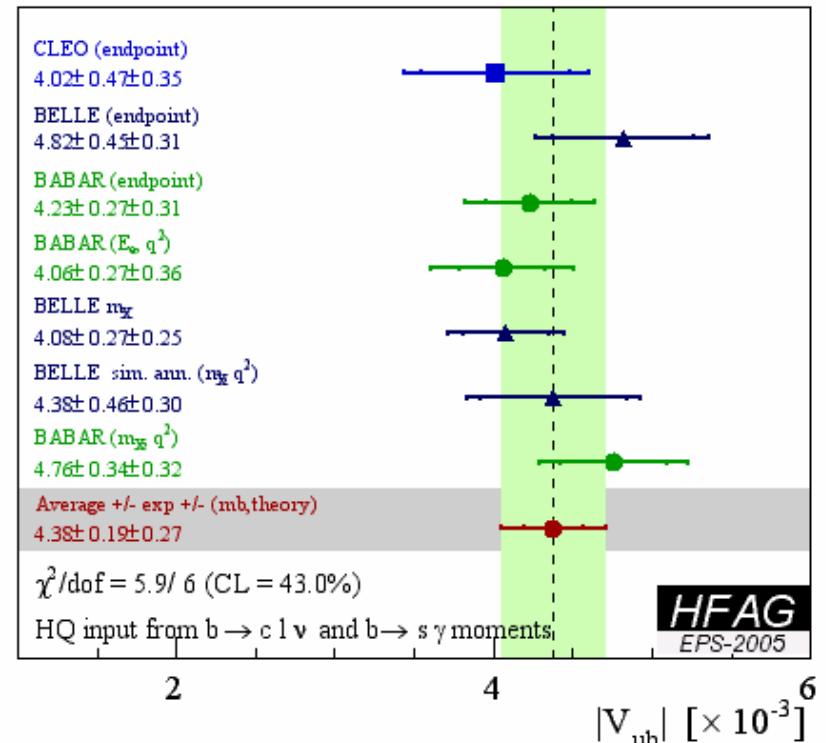
$$|V_{ub}| = (4.43 \pm 0.38_{\text{stat}} \pm 0.25_{\text{syst}} \pm 0.29_{\text{theo}}) 10^{-3}$$


OPE: $M_X < 2.50$ GeV:

$$|V_{ub}| = (3.84 \pm 0.70_{\text{stat}} \pm 0.30_{\text{syst}} \pm 0.10_{\text{theo}}) 10^{-3}$$

reduced theory error
as no extrapolation to
full rate necessary

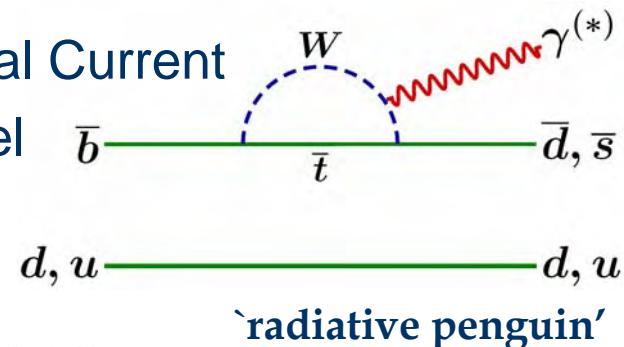
$|V_{ub}|$ Summary


Exclusive $|V_{ub}|$:

4% exp., ~11% theory uncertainty

Errors on $|V_{ub}|$ dominated
 by FF normalization

Inclusive $|V_{ub}|$:



$|V_{ub}| = (4.38 \pm 0.19 \pm 0.27) \times 10^{-3}$
 7.6 % total uncertainty!

Main improvement due to better knowledge
 of “shape function” parameters

Radiative B Decays: $b \rightarrow s, d \gamma$

- $b \rightarrow s, d$ transition is a Flavour Changing Neutral Current
 - forbidden in the standard model at tree-level
 - exists only at loop level
- heavy particles dominate in the loop
 - in SM: sensitive to ‘top’ CKM parameters: $V_{tb} V_{tq}^*$
 - sensitive to high virtual mass scale, e.g. from new physics
- We are unable to measure the parton level decay rate for $b \rightarrow s \gamma$, however:

$$\text{HQET} \Rightarrow \Gamma(B \rightarrow X_s \gamma) = \Gamma(b \rightarrow s \gamma) + \Delta^{\text{nonpert}}$$

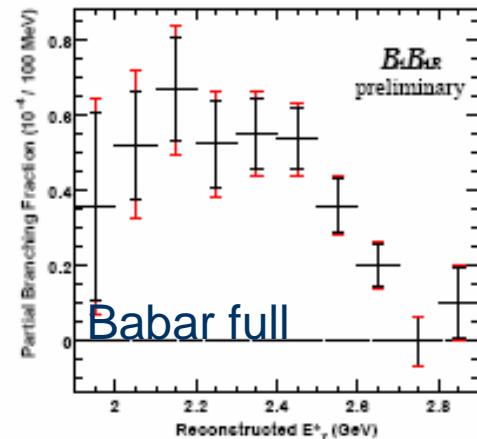
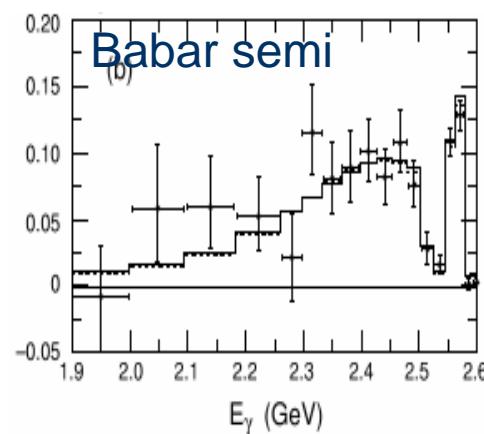
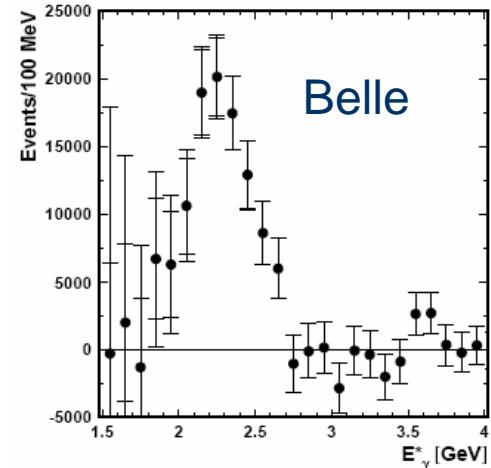
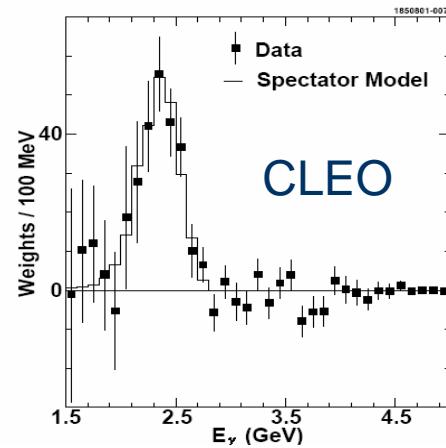
Theoretical Framework: Operator Product Expansion
separate weak scale from B -mass scale

- Theoretical uncertainty $\sim 10\%$, mainly from contribution of higher order diagrams in the expansion.

$b \rightarrow s\gamma$ Spectra and Moments

Measure photon spectrum in $b \rightarrow s\gamma$ decays:

Two main approaches:





- Inclusive:
 - identify photon
- Semi-Inclusive:
 - reconstruct many exclusive final states (up to 38!)

Difficult measurement:

Overwhelming background
from π^0 s for $E_\gamma < 1.8$ GeV

Measurement of photon spectrum and its moments gives information about inner structure of B meson:

- **b quark mass**
- **Fermi momentum**

BR($b \rightarrow s\gamma$) Average

- Experiments measure PBF's above different photon energies
- Need to be extrapolated to $E_\gamma > 1.6$ GeV to compare with theory
- Extrapolation factors based on HQE fit to $b \rightarrow c\bar{v}$ and $b \rightarrow s\gamma$ moments:

Standard Model Prediction *

$$3.57 \pm 0.30 \times 10^{-4}$$

Nucl.Phys.B631:219-238,2002

CLEO PRL 87, 251807 (2001)

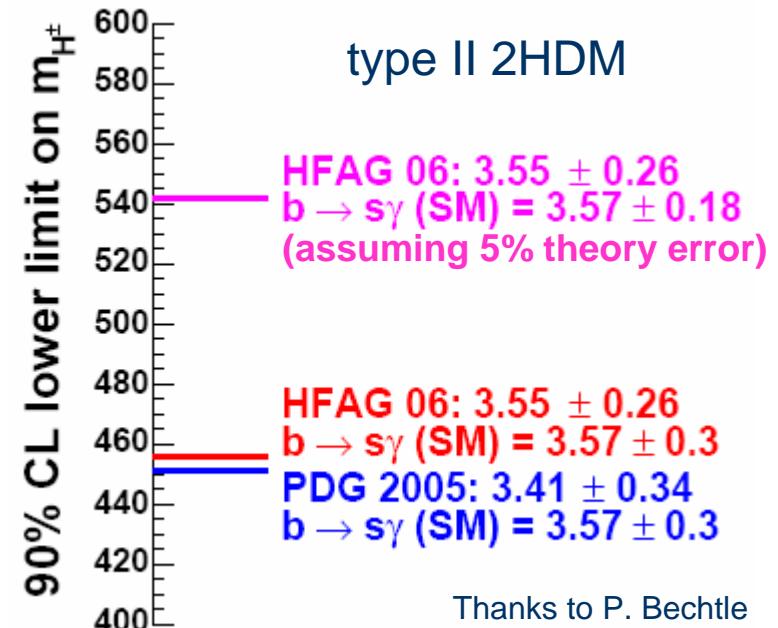
BELLE Phys.Lett. B 511, 151 (2001)

BELLE PRL.93:061803,(2004)

BABAR PRD 72, 052004 (2005)

BABAR hep-ex/0507001

New Average


$$3.55 \pm 0.26 \times 10^{-4}$$

HFAG prelim.

$$BR(b \rightarrow s\gamma)_{E_\gamma > 1.6 \text{ GeV}} \times 10^{-4}$$

* Neubert & Hurth et al have slightly different theo. errors

Thanks to P. Bechtle

Outlook:

Exp. error will decrease with luminosity
 Factor ~10 more data by 2008
 Theo. uncertainty of 5% realistic with
 NNLO calculation

Fit to Moments of Inclusive Decay Distributions

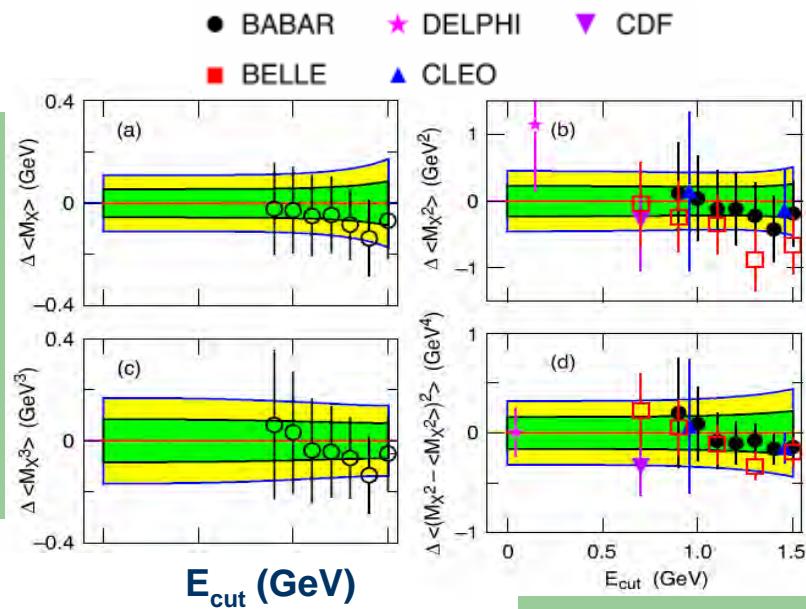
Heavy Quark Expansions connect the inclusive decay width to $|V_{cb}|$:

Γ_{SL} proportional to $|V_{cb}|^2$, but perturbative and non-perturbative corrections to free quark decay needed \rightarrow double expansion in α_s and $1/m_b$

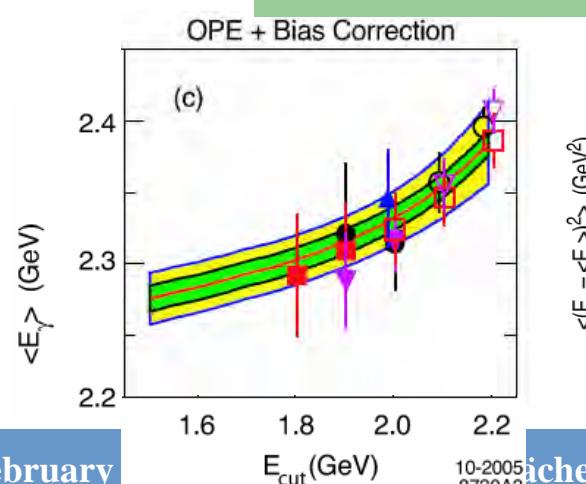
$$\Gamma_{clv} = \frac{G_F m_b^5}{192\pi^3} / V_{cb}^2 (1 + A_{ew}) A_{pert} A_{nonpert} \cong / V_{cb}^2 f_{OPE}(m_b, m_c, a_i)$$

4 parameters at order α_s^2 and $1/m_b^3$

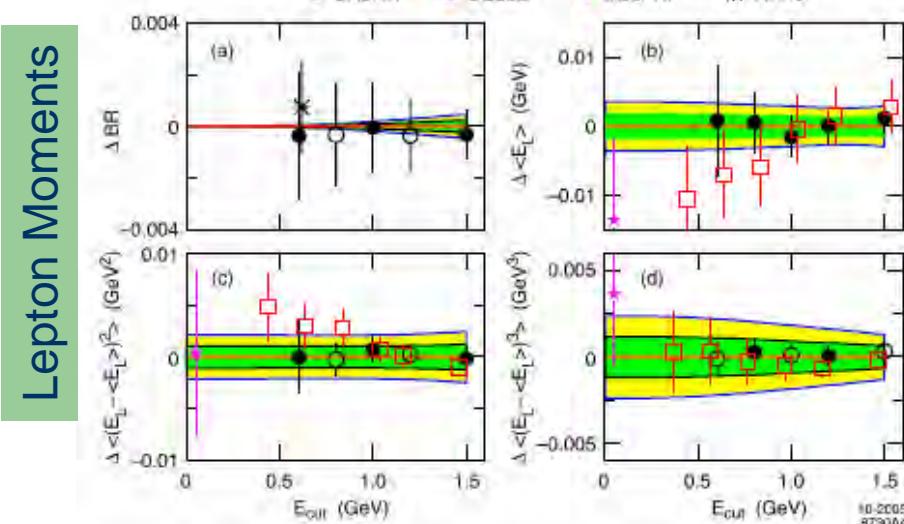
Need to determine non-perturbative parameters!


→ Use moments of inclusive distributions where same parameters appear:

$$\langle X^n \rangle (E_{cut}) = \left. \frac{\int (X - X^0)^n \frac{d\Gamma}{dX} dX}{\int \frac{d\Gamma}{dX} dX} \right|_{E_l > E_{cut}} \cong f_{OPE}'(m_b, m_c, a_i)$$


- Hadronic Mass distribution $\langle M_X^n \rangle \rightarrow \langle M_X \rangle (m_b, m_c, \mu_\pi^2, \mu_G^2, \rho_D^3, \rho_{LS}^3, \alpha_s)$
- Lepton Energy spectrum $\langle E_\ell^n \rangle \rightarrow \langle E_\ell \rangle (m_b, m_c, \mu_\pi^2, \mu_G^2, \rho_D^3, \rho_{LS}^3, \alpha_s)$
- Photon Energy spectrum $\langle E_\gamma^n \rangle \rightarrow \langle E_\gamma \rangle (m_b, \mu_\pi^2, \mu_G^2, \rho_D^3, \rho_{LS}^3, \alpha_s)$.

Inclusive $|V_{cb}|$ - Fit to Moments


Based on calculations in kinetic scheme:

Measurements
highly correlated!

Benson, Bigi, Mannel & Uraltsev, hep-ph/0410080
Gambino & Uraltsev, hep-ph/0401063
Benson, Bigi & Uraltsev, hep-ph/0410080

O. Buchmueller, H.F.
hep-ph/0507253

Inclusive $|V_{cb}|$

New!

Result of fit to all moment measurements:

$|V_{cb}| @ 2\%$
 $m_b < 1\%$
 $m_c @ 5\%$

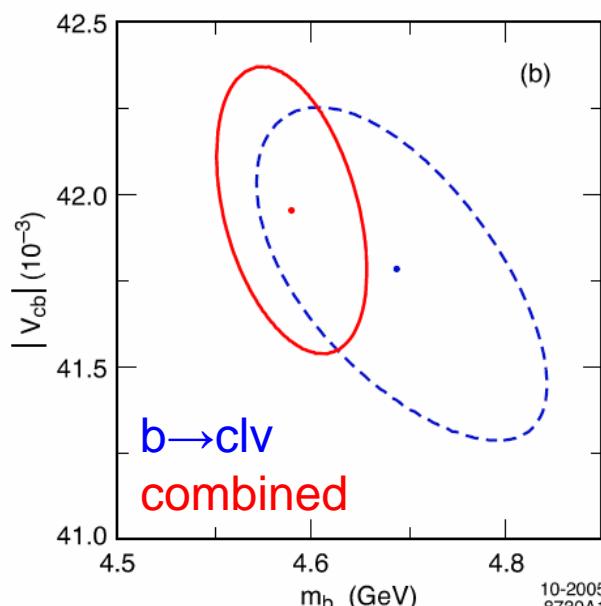
In $\overline{\text{MS}}$ scheme:

$$\overline{m}_b(\overline{m}_b) = 4.20 \pm 0.04 \text{ GeV}$$

$$\overline{m}_c(\overline{m}_c) = 1.24 \pm 0.07 \text{ GeV}$$

$$\overline{m}_c(\mu)/\overline{m}_b(\mu) = 0.235 \pm 0.012$$

courtesy of N.Uraltsev

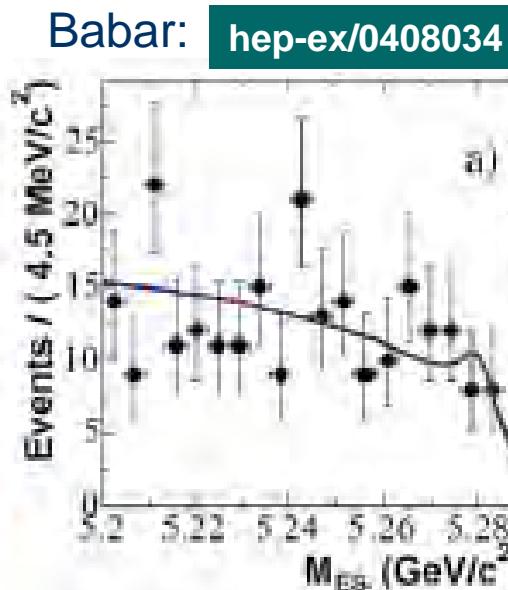
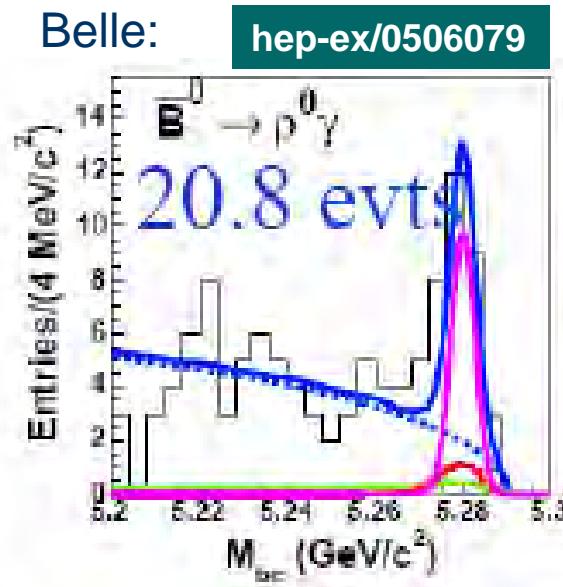

Good agreement with other similar analyses:

Bauer et al. hep-ph/0408002

DELPHI hep-ex/0510024

	exp	HQE	Γ_{SL}
$ V_{cb} $	$(41.96 \pm 0.23) 10^{-3}$	± 0.35	$\pm 0.59) 10^{-3}$
m_b	4.590 ± 0.025	± 0.030	GeV
m_c	1.142 ± 0.037	± 0.045	GeV
μ_π^2	0.401 ± 0.019	± 0.035	GeV ²
μ_G^2	0.297 ± 0.024	± 0.046	GeV ²
ρ_D^3	0.174 ± 0.009	± 0.022	GeV ³
ρ_{LS}^3	-0.183 ± 0.054	± 0.071	GeV ³
BR_{clv}	10.71 ± 0.10	± 0.08	%

hep-ph/0507253

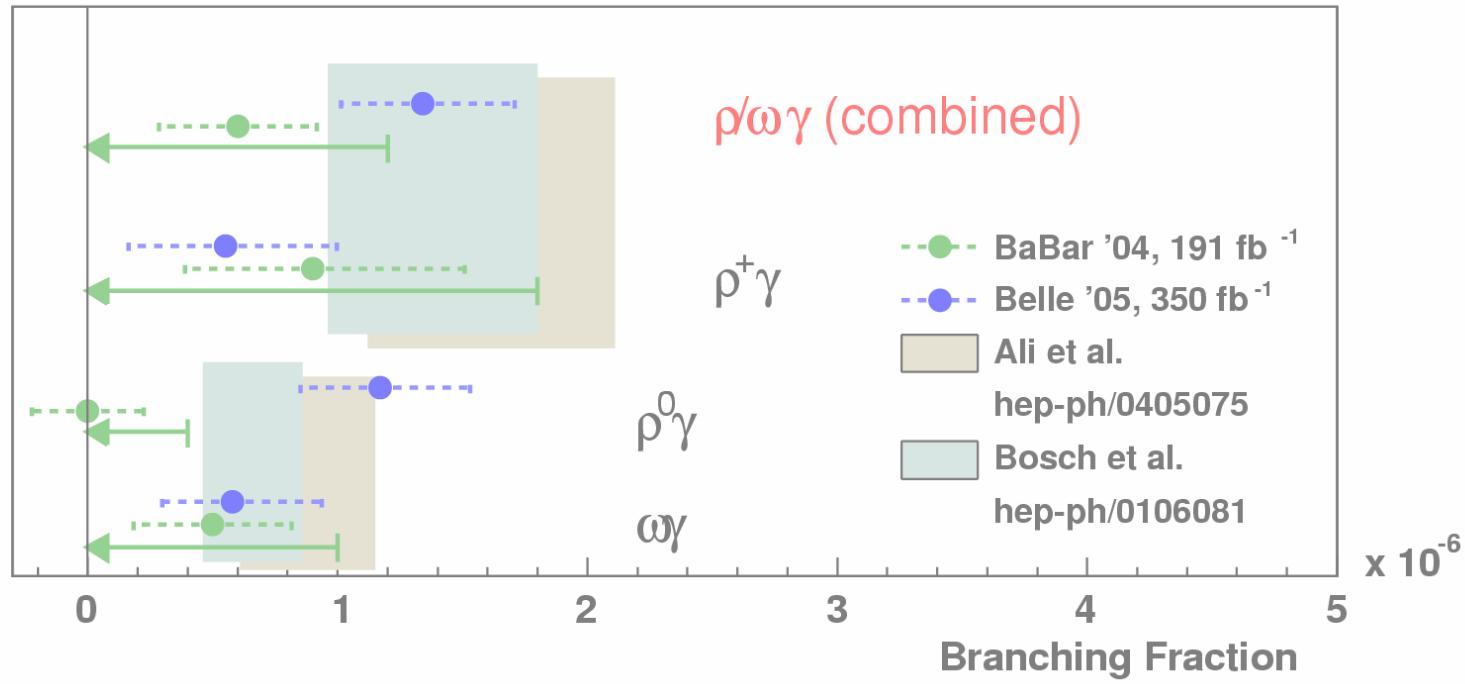


$b \rightarrow d \gamma$

Motivation:

- $b \rightarrow d \gamma$ transition, $\text{BF} \propto |V_{td}|^2 |V_{tb}|^2$
- SM prediction: $0.9 - 1.8 \times 10^{-6}$
- clean SM prediction for ratio of $B \rightarrow \rho/\omega\gamma$ and $B \rightarrow K^*\gamma$:

$$\frac{\mathcal{B}[B \rightarrow (\rho/\omega)\gamma]}{\mathcal{B}(B \rightarrow K^*\gamma)} = \left| \frac{V_{td}}{V_{ts}} \right|^2 \left(\frac{1 - m_\rho^2/M_B^2}{1 - m_{K^*}^2/M_B^2} \right)^3 \zeta^2 [1 + \Delta R]$$

Average branching fractions



Ali and Parkhomenko,
Eur.Phys.JC 23,89 (2002)
Ali et al, PLB 595,323 (2004)

difference in dynamics
(such as W-annihilation)
 $\Delta R \approx 0.1 \pm 0.1$

form factor ratio
 $\zeta^2 \approx 0.85 \pm 0.1$
(largest uncertainty)

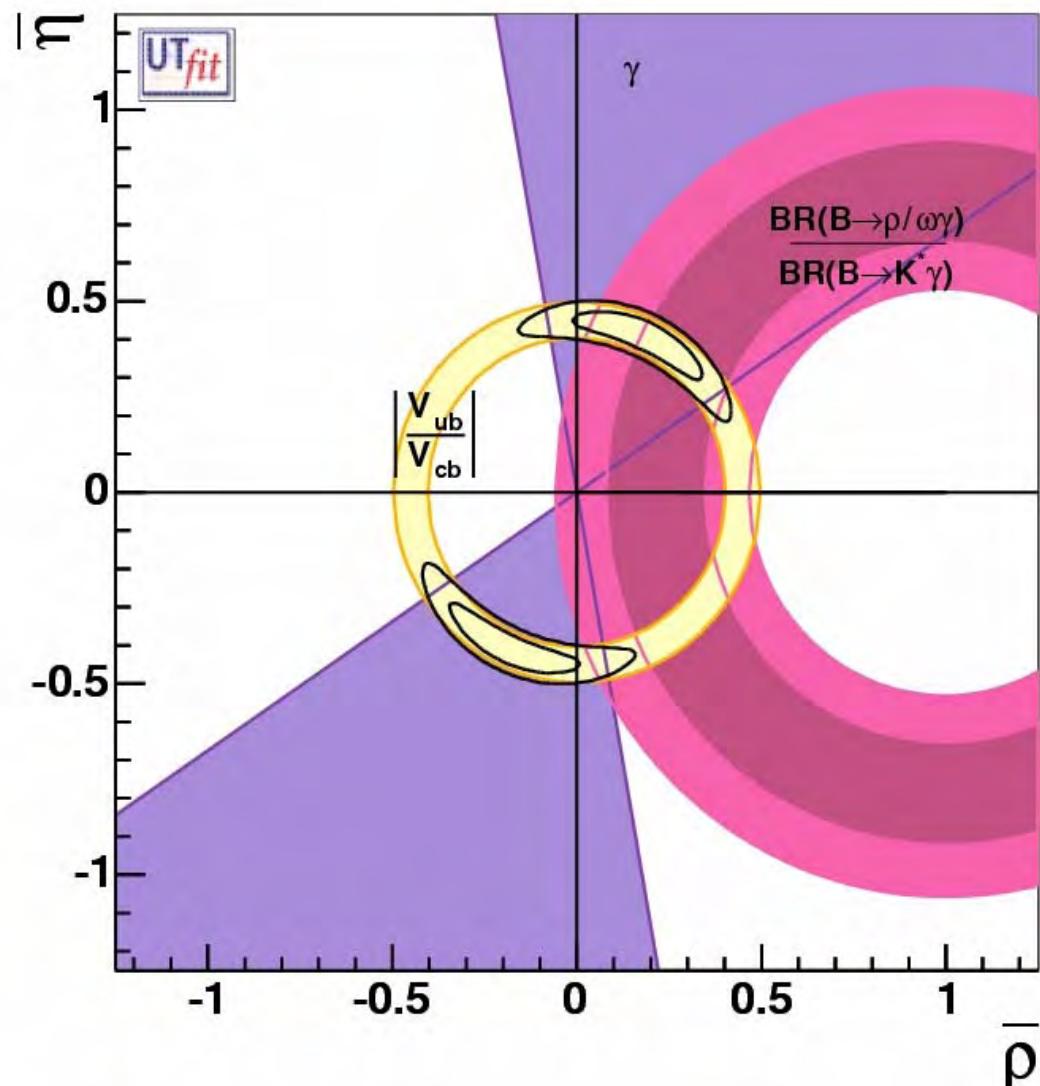
$b \rightarrow d \gamma$

- BaBar and Belle are 2.7σ apart in $B^0 \rightarrow \rho^0\gamma$
- BaBar low compared to theory prediction

$B \rightarrow K^* \gamma$:

Good agreement
between
Babar and Belle!

$$B(B^0 \rightarrow K^{*0}\gamma) = (40.1 \pm 2.0) \times 10^{-6}$$

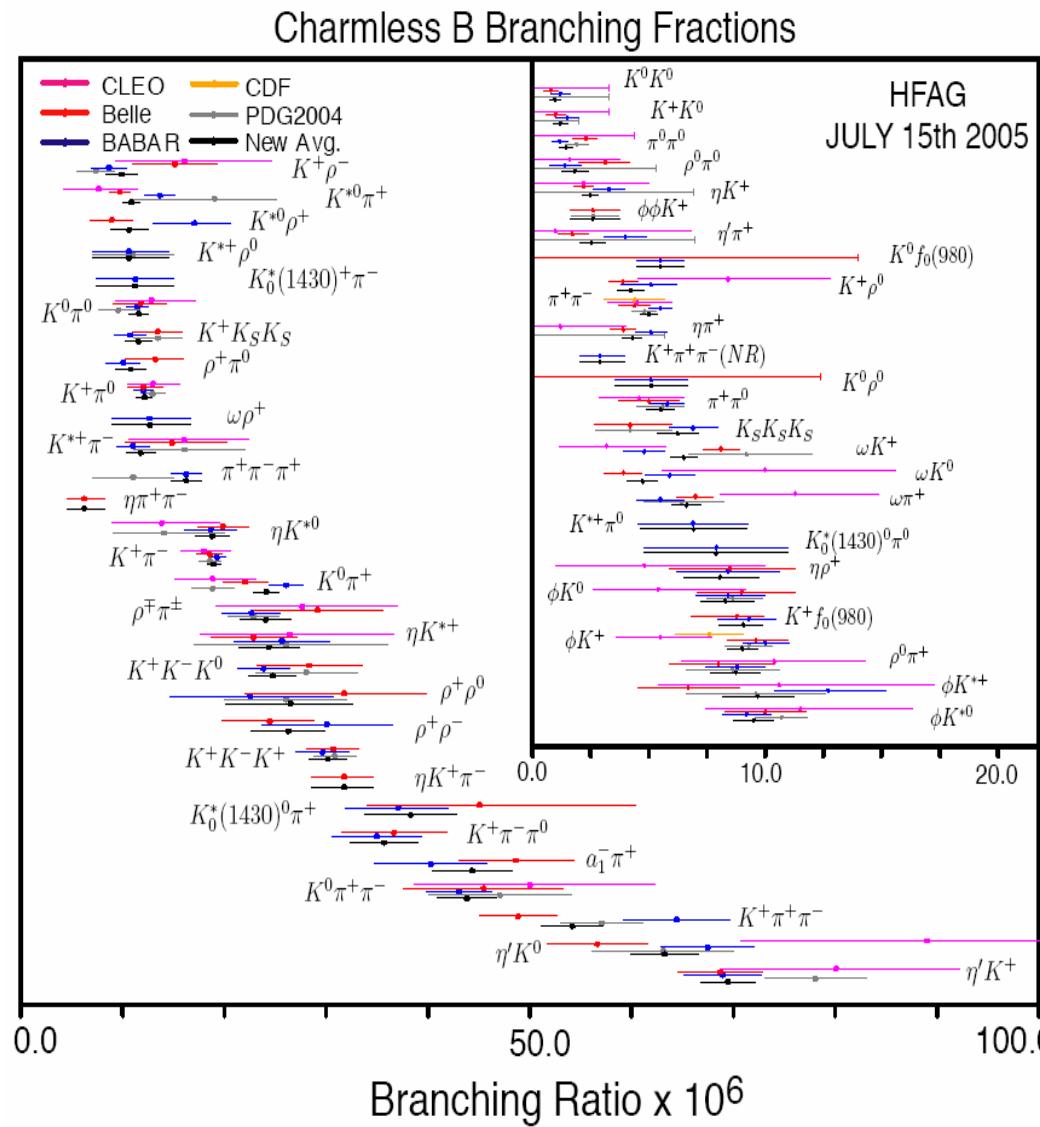

$$B(B^+ \rightarrow K^{*+}\gamma) = (40.3 \pm 2.6) \times 10^{-6}$$

HFAG Summer 2005

UT Constraints from Sides and Tree Processes

Based on:
 $BR(B^0 \rightarrow \rho/\omega\gamma)$
 $= (0.94 +0.25-0.22) 10^{-6}$

$|V_{td}/V_{ts}| = 0.18 \pm 0.03$



Other Rare B Decays

- Charmless Hadronic B Decays
 - I will be selective and only pick 2 examples:
 - ❖ Bounds on ΔS and $\sin 2 \beta$ from $B \rightarrow \eta' K_s$
 - ❖ $B^+ \rightarrow K^+ \pi^- \pi^+$
- $B \rightarrow$ Charm Decays via W-exchange
 - $B \rightarrow D_s D_s$
- $B \rightarrow$ Charm Decays via Annihilation
 - $B \rightarrow D_s \varphi$
 - No decay that occurs through annihilation has been observed
- Decays are suppressed in the Standard Model
 - Standard Model BR of order $10^{-5} - 10^{-7}$
- Potential for New Physics
 - Beyond SM contributions can lead to enhanced BR's

Rare Charmless B Decays

- Too many decays to be discussed in detail...
- Rare Charmless B decays can be used to study
 - Interfering standard model amplitudes
 - Amplitudes of CKM parameters and angles
 - Effects of higher mass particles in loops
- Measurements are used to improve theoretical models

Bounds on the tree contribution in $B \rightarrow \eta' K_s$

Difference in $\sin(2\beta)$ from $b \rightarrow c\bar{c}s$ and $b \rightarrow q\bar{q}s$ penguin

$$B \rightarrow \psi K_s \quad \sin 2\beta = 0.69 \pm 0.03$$

$$B \rightarrow \eta' K_s \quad \sin 2\beta_{\text{eff}} = 0.50 \pm 0.09$$

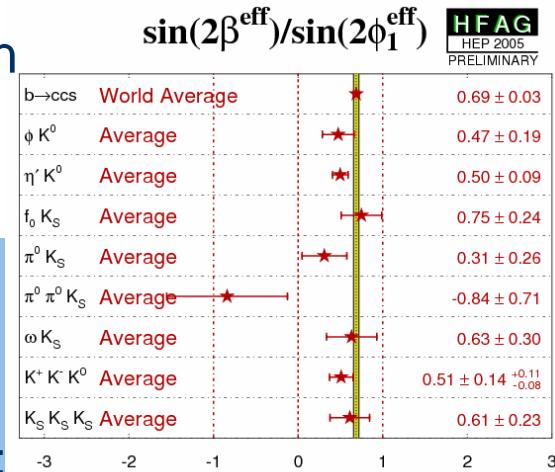
It's possible to set theoretical bounds on this difference:

$$\Delta S_{\text{th}} = S(\eta' K_s) - \sin 2\beta < |\xi_{\eta' K_s}|$$

is a function of BF for Flavour SU(3) related decay modes:

$$|\xi_{\eta' K_s}| < \left| \frac{V_{us}}{V_{ud}} \right| \left[0.59 \sqrt{\frac{\mathcal{B}(\eta' \pi^0)}{\mathcal{B}(\eta' K^0)}} + 0.33 \sqrt{\frac{\mathcal{B}(\eta \pi^0)}{\mathcal{B}(\eta' K^0)}} + 0.14 \sqrt{\frac{\mathcal{B}(\pi^0 \pi^0)}{\mathcal{B}(\eta' K^0)}} \right. \\ \left. + 0.53 \sqrt{\frac{\mathcal{B}(\eta' \eta')}{\mathcal{B}(\eta' K^0)}} + 0.38 \sqrt{\frac{\mathcal{B}(\eta \eta)}{\mathcal{B}(\eta' K^0)}} + 0.96 \sqrt{\frac{\mathcal{B}(\eta \eta')}{\mathcal{B}(\eta' K^0)}} \right]$$

[hep-ph/0303171](http://arxiv.org/abs/hep-ph/0303171)


Will improve with more measurements!

Theory: $\Delta S < 0.05$

Experiment: $\Delta S = 0.19 \pm 0.09$

If $\Delta S \gg 0.1$
 \rightarrow signature for new physics

Other approaches: Buchalla et al., Beneke

HFAG Summer 2005

$\eta' \pi^0$	$< 3.7 \times 10^{-6}$	90% CL
$\eta \pi^0$	$< 2.5 \times 10^{-6}$	90% CL
$\pi^0 \pi^0$	$= 1.45 \pm 0.29 \times 10^{-6}$	
$\eta' \eta'$	$< 10 \times 10^{-6}$	90% CL
$\eta \eta$	$< 2.0 \times 10^{-6}$	90% CL
$\eta \eta'$	$< 4.6 \times 10^{-6}$	90% CL
$\eta' K^0$	$= 63.2 \pm 3.3 \times 10^{-6}$	

Dalitz plot analysis of $B^+ \rightarrow K^+ \pi^- \pi^+$

$B^+ \rightarrow K^+ \pi^- \pi^+$ occurs via intermediate quasi two-body resonances (e.g. $K^* \pi$, ρK) as well as non-resonant

General good agreement!

Belle finds 3.9σ evidence for direct CP violation in $B^+ \rightarrow \rho K^+$ from a phase and magnitude analysis

Babar finds 2.4σ for A_{cp}

(Distinguish A_{cp} from direct CP violation)

First observation of $B \rightarrow f_2 K$

Theoretical models predict BR and CP asymmetries for $B \rightarrow K^* \pi$ and $B \rightarrow \rho K$

Babar :

Mode	$\mathcal{B}(B^+ \rightarrow \text{Mode})(10^{-6})$	$A_{CP} (\%)$
$K^+ \pi^- \pi^+$ Total	$64.1 \pm 2.4 \pm 4.0$	$-1.3 \pm 3.7 \pm 1.1$
$K^{*0}(892)\pi^+$; $K^{*0}(892) \rightarrow K^+ \pi^-$	$8.99 \pm 0.78 \pm 0.48^{+0.28}_{-0.39}$	$6.8 \pm 7.8 \pm 5.7^{+4.0}_{-3.5}$
$(K\pi)_0^{*0}\pi^+$; $(K\pi)_0^{*0} \rightarrow K^+ \pi^-$	$34.0 \pm 1.7 \pm 1.5^{+1.2}_{-1.6}$	$-6.4 \pm 3.2 \pm 2.0^{+1.1}_{-1.7}$
$\rho^0(770)K^+$; $\rho^0(770) \rightarrow \pi^+ \pi^-$	$5.07 \pm 0.75 \pm 0.35^{+0.42}_{-0.68}$	$32 \pm 13 \pm 6^{+8}_{-5}$
$f_0(980)K^+$; $f_0(980) \rightarrow \pi^+ \pi^-$	$9.47 \pm 0.97 \pm 0.46^{+0.42}_{-0.75}$	$8.8 \pm 9.5 \pm 2.6^{+9.3}_{-5.0}$
$\chi_{c0}K^+$; $\chi_{c0} \rightarrow \pi^+ \pi^-$	$0.66 \pm 0.22 \pm 0.07 \pm 0.03$	—
$K^+ \pi^- \pi^+$ nonresonant	$2.85 \pm 0.64 \pm 0.41^{+0.70}_{-0.34}$	—

Belle:

Mode	$\mathcal{B}(B^\pm \rightarrow Rh^\pm \rightarrow K^\pm \pi^\pm \pi^\mp) \times 10^6$	$A_{CP} (\%)$
$K^\pm \pi^\pm \pi^\mp$ Charmless	$48.8 \pm 1.1 \pm 3.6$	$+4.9 \pm 2.6 \pm 2.0$
$K^*(892)[K^\pm \pi^\mp]\pi^\pm$	$6.45 \pm 0.43 \pm 0.48^{+0.25}_{-0.35}$	$-14.9 \pm 6.4 \pm 2.0^{+0.8}_{-0.8}$
$K_0^*(1430)[K^\pm \pi^\mp]\pi^\pm$	$32.0 \pm 1.0 \pm 2.4^{+1.1}_{-1.9}$	$+7.6 \pm 3.8 \pm 2.0^{+2.0}_{-0.9}$
$\rho(770)^0[\pi^+ \pi^-]K^\pm$	$3.89 \pm 0.47 \pm 0.29^{+0.32}_{-0.29}$	$+30 \pm 11 \pm 2.0^{+11}_{-4}$
$f_0(980)[\pi^+ \pi^-]K^\pm$	$8.78 \pm 0.82 \pm 0.65^{+0.66}_{-1.64}$	$-7.7 \pm 6.5 \pm 2.0^{+4.1}_{-1.6}$
$f_2(1270)[\pi^+ \pi^-]K^\pm$	$0.75 \pm 0.17 \pm 0.06^{+0.11}_{-0.18}$	$-59 \pm 22 \pm 2.0^{+3}_{-3}$
Non-resonant	—	—
$\chi_{c0}[\pi^+ \pi^-]K^\pm$	$0.56 \pm 0.06 \pm 0.04^{+0.12}_{-0.04}$	$-6.5 \pm 20 \pm 2.0^{+2.9}_{-1.4}$

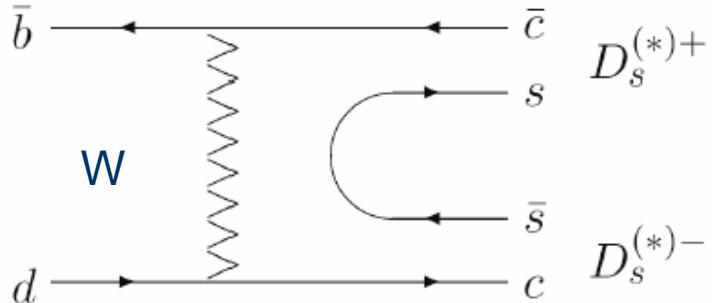
First evidence of direct CP violation in a charged B decay

hep-ex/050507004

hep-ex/0512066

$$B^0 \rightarrow D_s^{(*)+} D_s^{(*)-}$$

Decay proceeds via W-exchange
highly suppressed in SM


Difficult to calculate using factorisation
approach as energy release only ~ 1 GeV

Theoretical predictions:

- perturbative QCD (pQCD) [hep-ph/0308243](#)
- estimates of non-factorisable contributions (CL-GC) [hep-ph/0501031](#)
 - chiral loops and tree level amplitudes generated by soft gluon emission forming a gluon condensate

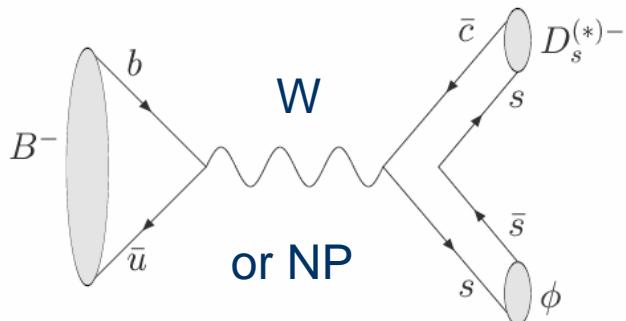
B Decays	Branching Fraction ($\times 10^{-5}$)	
	pQCD [2]	CL-GC [3]
$B^0 \rightarrow D_s^- D_s^+$	7.8 ± 2.0	25.0
$B^0 \rightarrow D_s^{*-} D_s^+$	6.0 ± 1.6	33.0
$B^0 \rightarrow D_s^{*-} D_s^{*+}$	8.5 ± 2.0	54.0

disfavoured

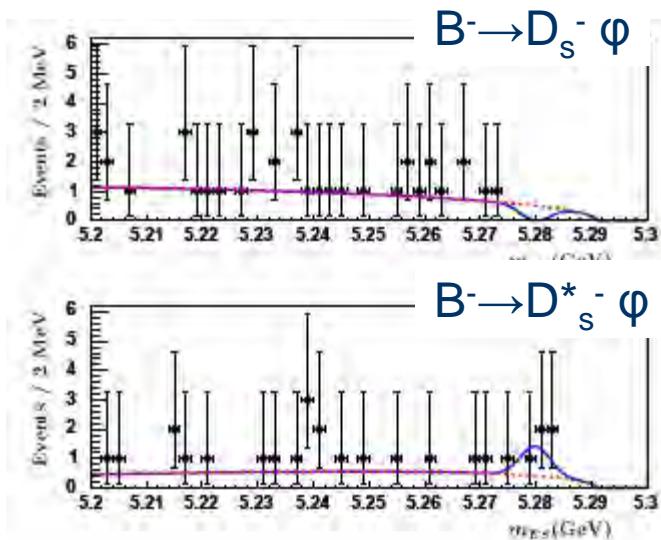
Babar ([hep-ex/0510051](#)) @ 90% C.L.

$$\begin{aligned} \mathcal{B}(B^0 \rightarrow D_s^- D_s^+) &< 1.0 \times 10^{-4}, \\ \mathcal{B}(B^0 \rightarrow D_s^{*-} D_s^+) &< 1.3 \times 10^{-4}, \\ \mathcal{B}(B^0 \rightarrow D_s^{*-} D_s^{*+}) &< 2.4 \times 10^{-4}. \end{aligned}$$

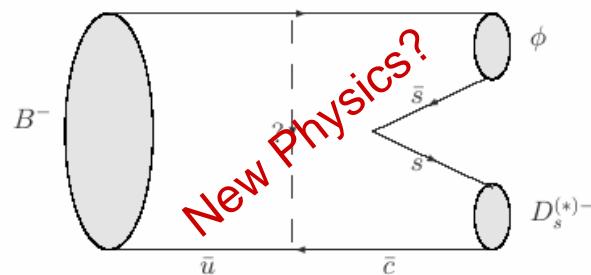
Belle ([hep-ex/0508040](#)) @ 90% C.L.


$$\mathcal{B}(B^0 \rightarrow D_s^- D_s^+) < 2.0 \times 10^{-4}$$

No signal observed and no evidence of significant W-exchange component in $B^0 \rightarrow D^+ D^-$, but:


Sensitivity to test SM prediction

$B \rightarrow D_s \phi$


Standard Model:

Highly suppressed in SM:
perturbative QCD: 3×10^{-7}
QCD improved factorisation 7×10^{-7}

New Physics: FCNC

Sensitivity to New Physics:
type II 2Higgs Doublet Model: 8×10^{-6}
MSSM with R-parity violation: 3×10^{-4}

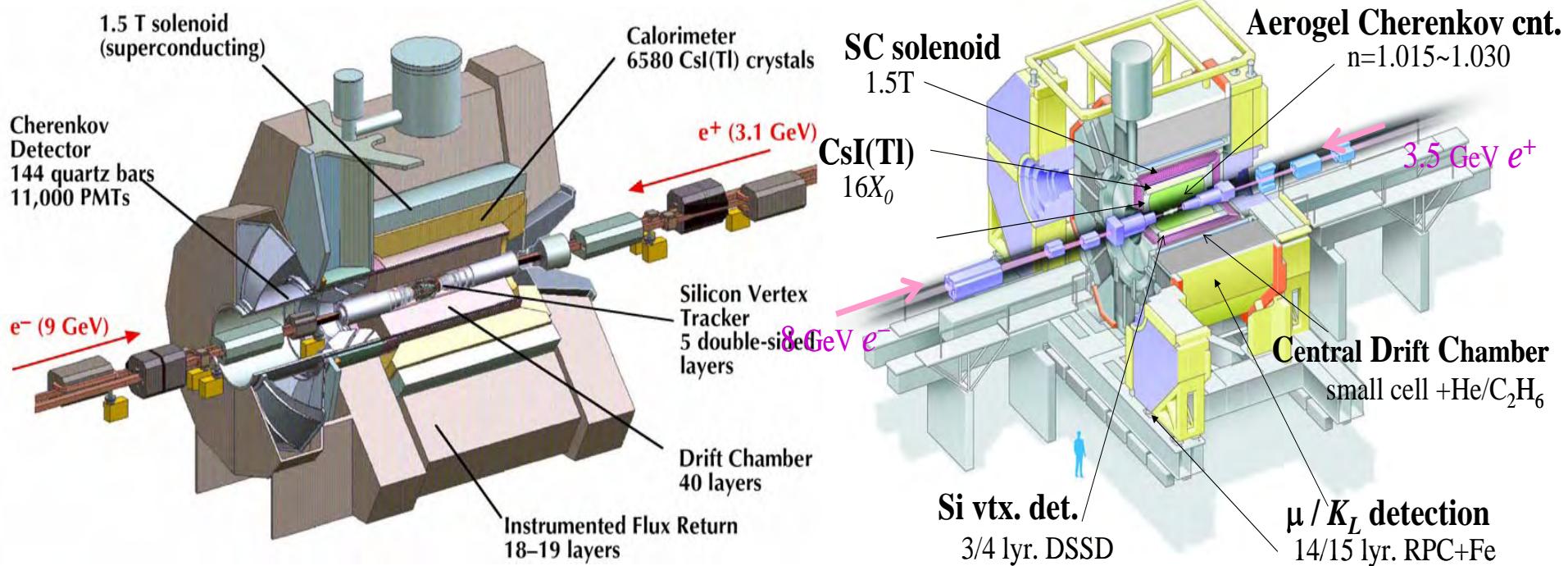
Babar limit @ 90% C.L.
 $\text{BR}(B^- \rightarrow D_s^- \phi) < 1.9 \times 10^{-6}$
 $\text{BR}(B^- \rightarrow D_s^{*-} \phi) < 1.2 \times 10^{-5}$

Previous CLEO limit @ 90% C.L.

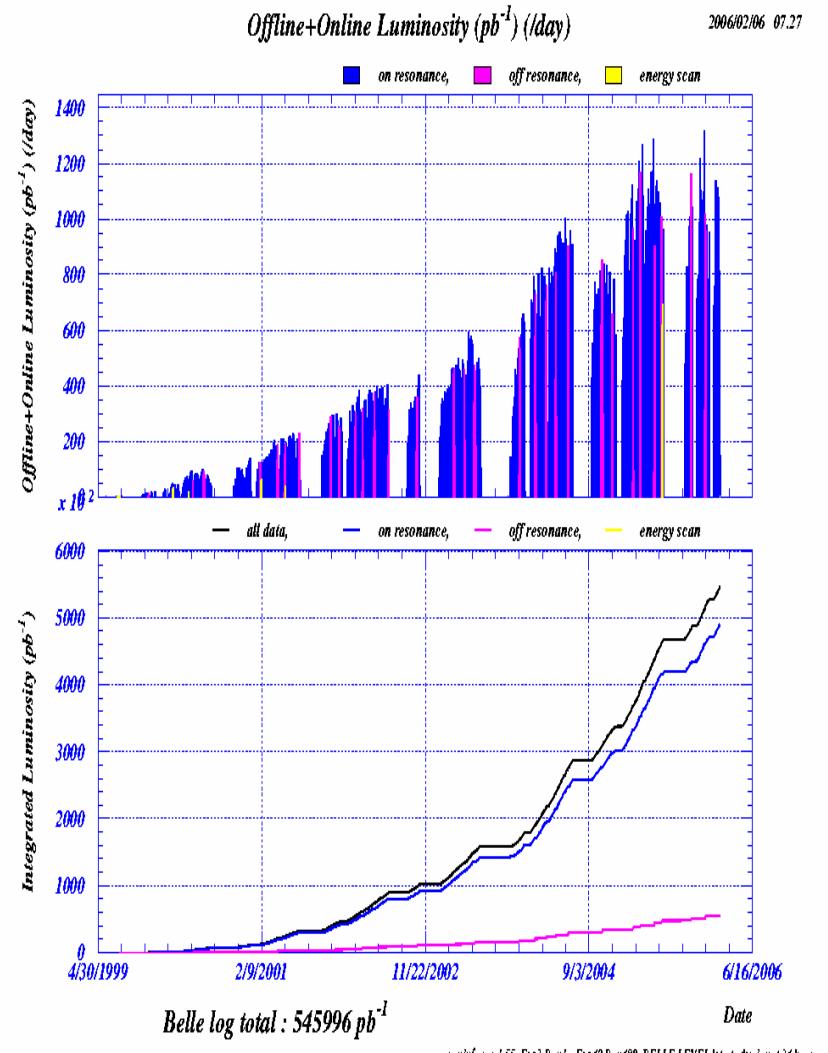
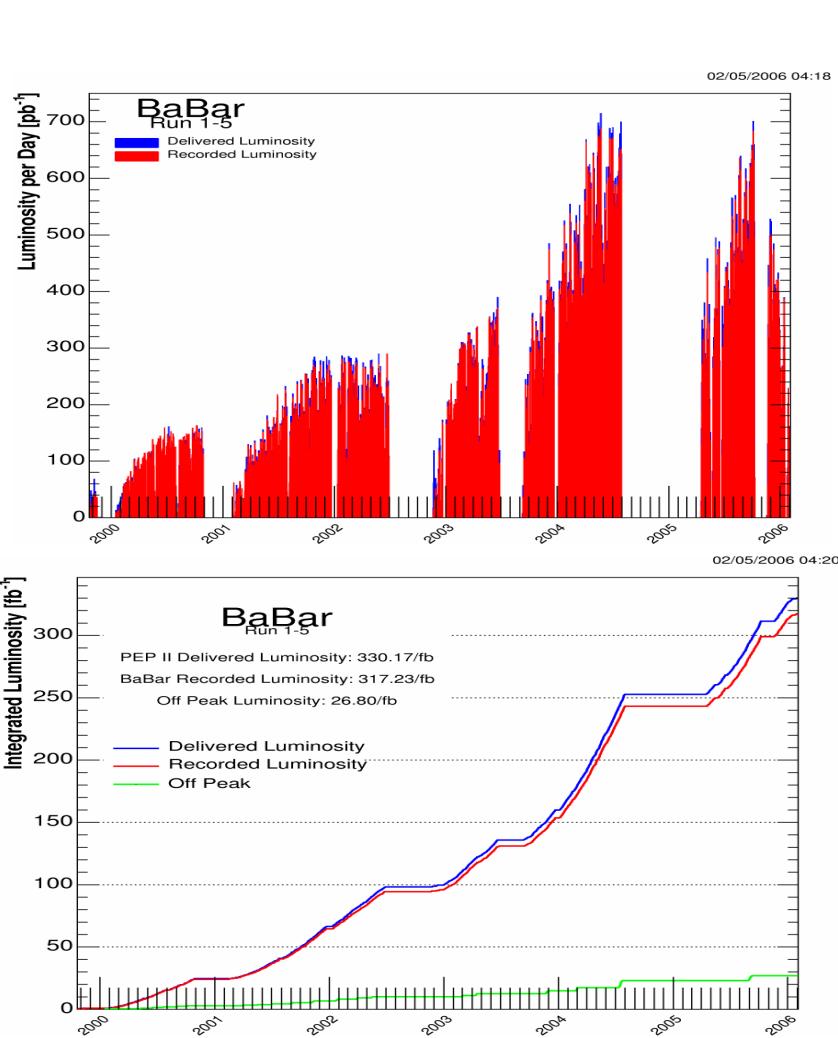
$\text{BR}(B^- \rightarrow D_s^- \phi) < 3 \times 10^{-4}$
 $\text{BR}(B^- \rightarrow D_s^{*-} \phi) < 4 \times 10^{-4}$

Phys.Lett.B319:
365,1993

hep-ex/0512028


Measurement still one order of magnitude away from SM prediction but limits on NP possible.

Conclusions



- Precision measurements of SM parameters from Semileptonic Decays:
 - $|V_{cb}|$ at 2% level
 - $|V_{ub}|$ at 8% probing consistency with $\sin(2\beta)$ and hence SM
 - m_b (<1%) and m_c (5%)
- Radiative B decays
 - $BR(B \rightarrow X_s \gamma)$ @ 7% - important constraint on many NP models
 - $b \rightarrow d \gamma$ constraining $V_{td}V_{tb}^*$ – complementary to B_s mixing
- Wide variety of charmless hadronic B decays
 - evidence for direct CPV in $B^+ \rightarrow \rho^0 K^+$
- First results from B decays via W-exchange & annihilation
 - sensitivity starting to test SM
- Many more results to come

Backup Slides

BaBar & Belle Detectors

BFactory Performances

Fit to Moments of Inclusive Decay Distributions

The Operator Product Expansion separates perturbative from non-perturbative scales in a systematic way:

$$\Gamma_{SL}(B \rightarrow X_c l \bar{v}) = \frac{G_F^2 m_b^5}{192\pi^3} |V_{cb}|^2 (1 + A_{ew}) A_{pert}(r, \mu)$$

kinetic expec. value

$$\times \left[z_0(r) \left(1 - \frac{\mu_\pi^2 - \mu_G^2 + \frac{\rho_D^3 + \rho_{LS}^3}{m_b}}{2m_b^2} \right) - 2(1-r)^4 \frac{\mu_G^2 + \frac{\rho_D^3 + \rho_{LS}^3}{m_b}}{m_b^2} + d(r) \frac{\rho_D^3}{m_b^3} + O(1/m_b^4) \right]$$

chromomagnetic expec. value

Darwin term

spin-orbit

Benson, Bigi, Mannel & Uraltsev, hep-ph/0410080
 Gambino & Uraltsev, Eur.Phys.J. C34, 181 (2004)

Moments of hadronic mass, lepton energy and photon energy in $b \rightarrow sg$ distribution depend on same heavy quark parameters:

$$\begin{aligned} \langle M_X^n \rangle &\rightarrow \langle M_X \rangle (m_b, m_c, \mu_\pi^2, \mu_G^2, \rho_D^3, \rho_{LS}^3, \alpha_s) \\ \langle E_\ell^n \rangle &\rightarrow \langle E_\ell^n \rangle (m_b, m_c, \mu_\pi^2, \mu_G^2, \rho_D^3, \rho_{LS}^3, \alpha_s) \\ \langle E_\gamma^n \rangle &\rightarrow \langle E_\gamma^n \rangle (m_b, \mu_\pi^2, \mu_G^2, \rho_D^3, \rho_{LS}^3, \alpha_s) . \end{aligned}$$

mb and μ_π^2 are used to parameterise both $B \rightarrow Xs \gamma$ and $B \rightarrow Xu l \bar{v}$ spectra

Many moment measurements (~50) allow to fit for all parameters up to $1/m_b^3$

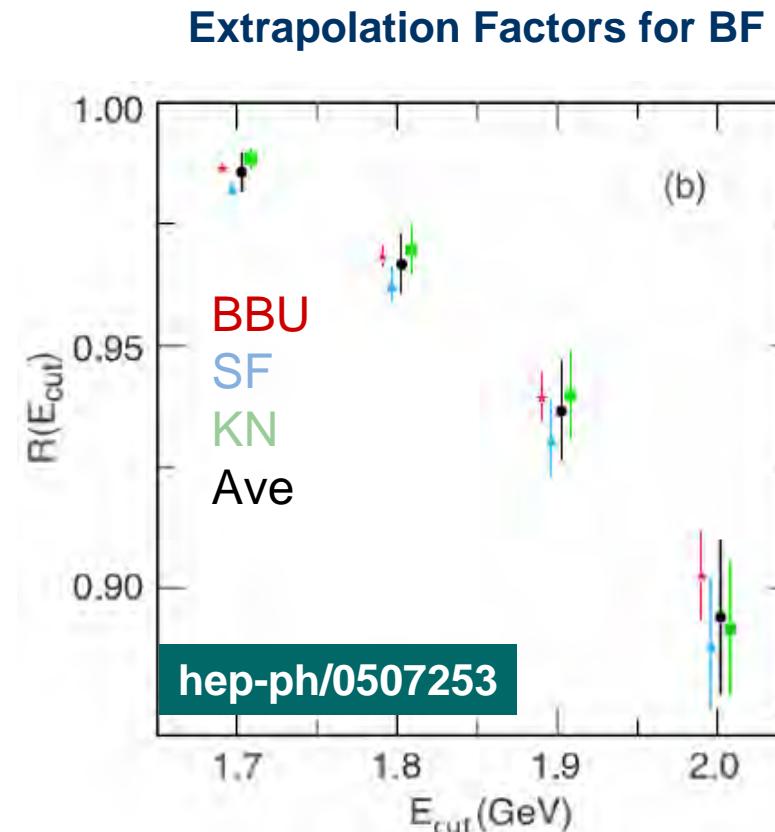
$b \rightarrow s\gamma$ Branching Fraction

- Partial branching fractions are measured above different photon energies
- Need to be extrapolated to $E_\gamma > 1.6$ GeV to compare with theory
- Extrapolation factors based on HQE fit to clv and bsg moments

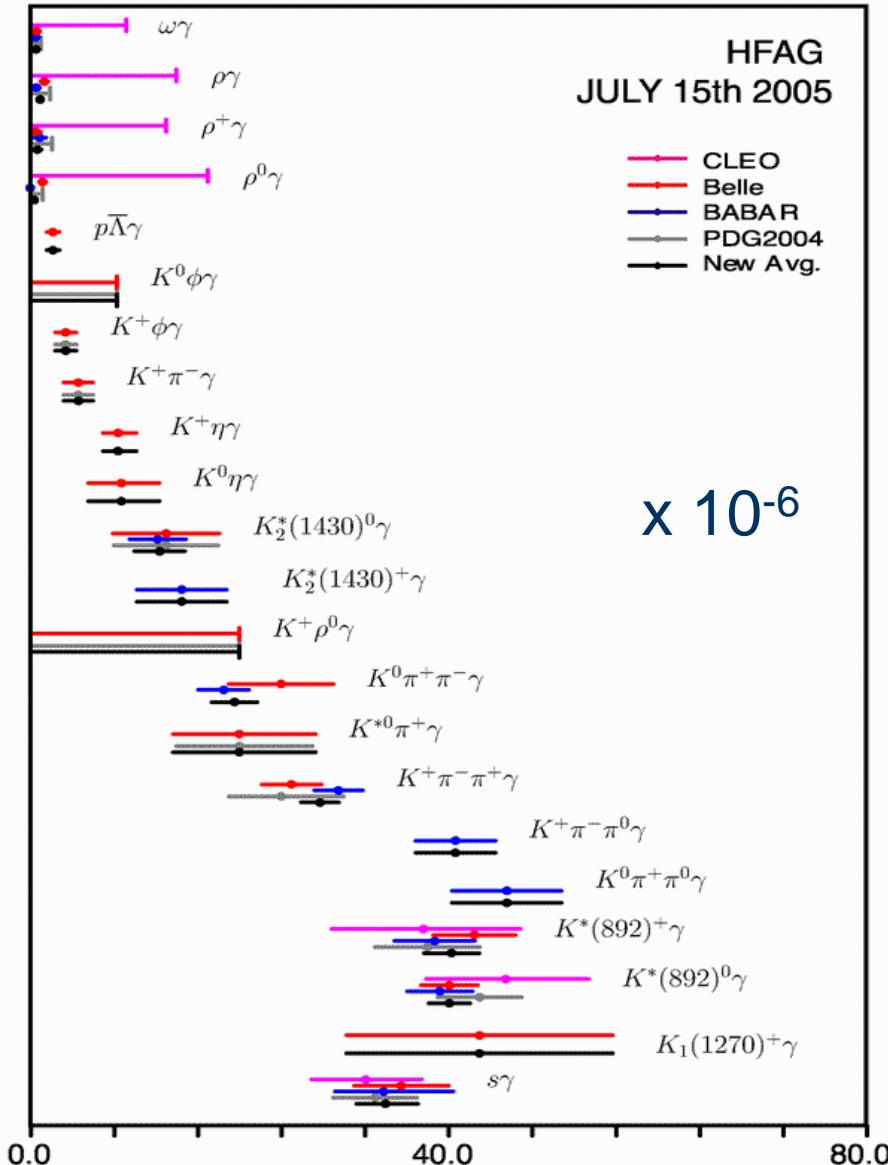
Mode	Reported \mathcal{B}	E_{\min}	\mathcal{B} at E_{\min}
CLEO Inc. [3]	$321 \pm 43 \pm 27^{+18}_{-10}$	2.0	$306 \pm 41 \pm 26$
Belle Semi.[4]	$336 \pm 53 \pm 42^{+50}_{-54}$	2.24	—
Belle Inc.[5]	$355 \pm 32^{+30+11}_{-31-7}$	1.8	$351 \pm 32 \pm 29$
BABAR Semi.[6]	$335 \pm 19^{+56+4}_{-41-9}$	1.9	$327 \pm 18^{+55+4}_{-43-9}$
BABAR Inc.[7]	—	1.9	$367 \pm 29 \pm 34 \pm 29$

New HFAG Average:

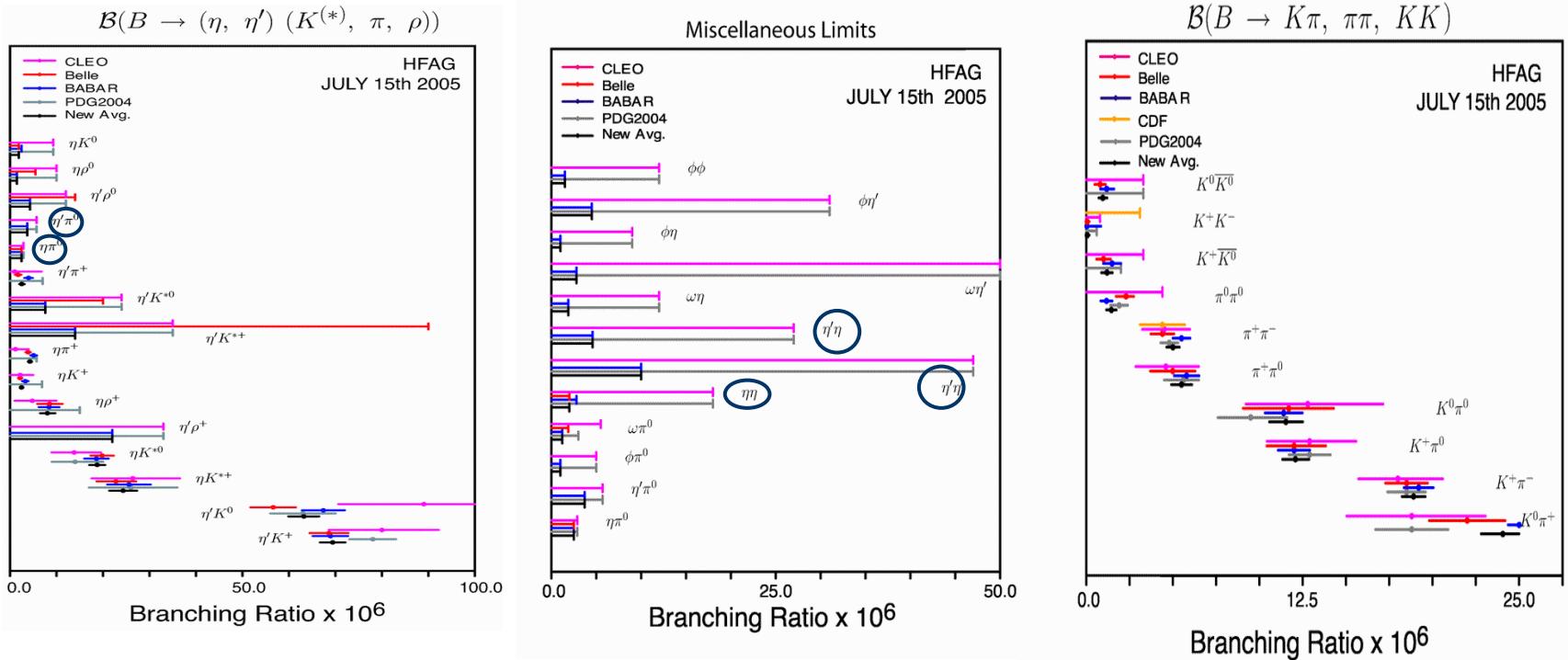
$$\text{BR}(B \rightarrow X_s \gamma) = (3.55 \pm 0.24 \pm 0.10 \pm 0.03) \times 10^{-4}$$


7% uncertainty

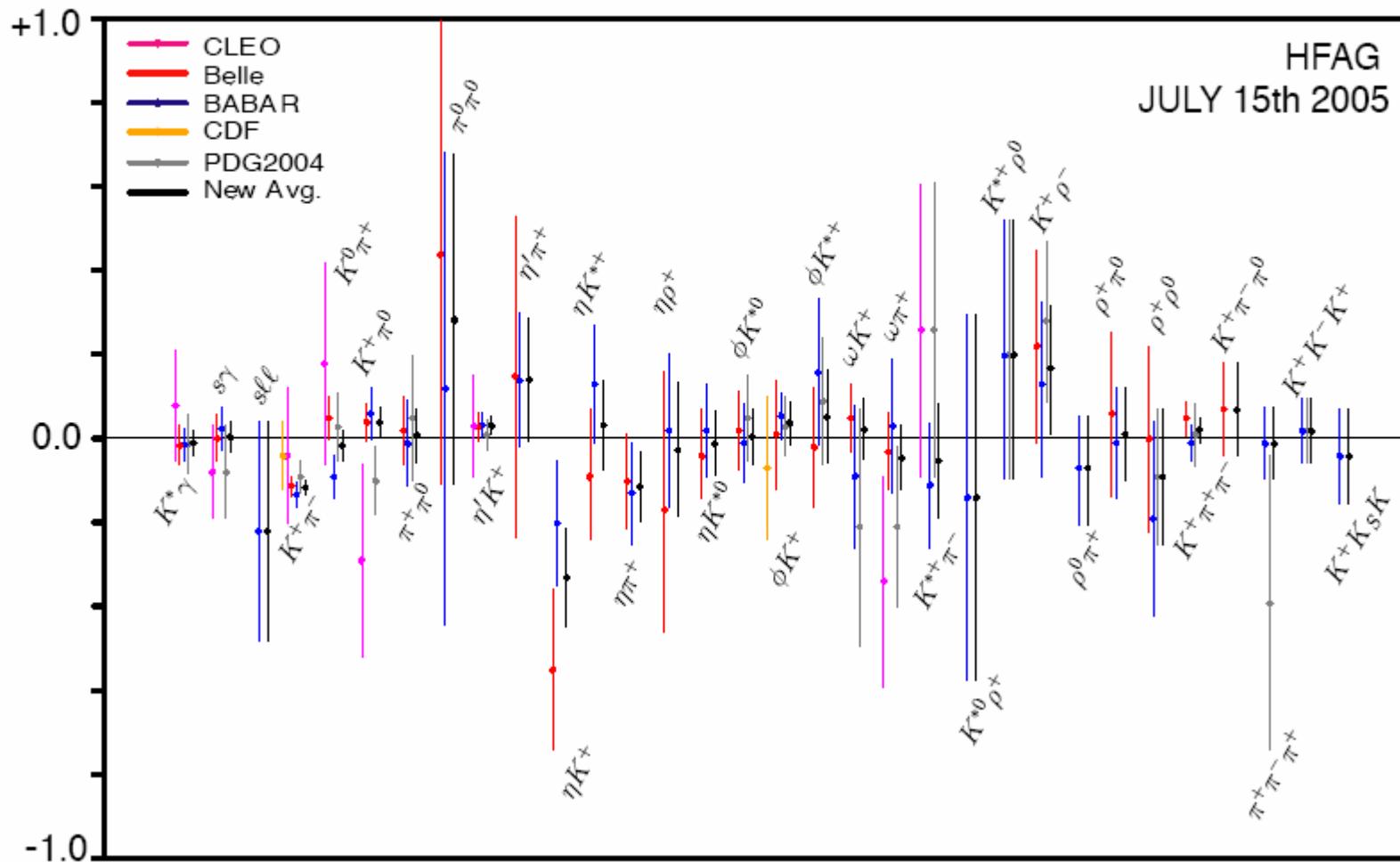
SM prediction:


$3.57 \pm 0.3 \times 10^{-4}$ Buras et al. (hep-ph/0203135)

$3.44 \pm 0.4 \times 10^{-4}$ Neubert (hep-ph/0408179)


$3.61 \pm 0.42 \times 10^{-4}$ Hurth et al. (hep-ph/0312260)

Radiative B Decays



Rare charmless hadronic B decays

A_{cp} in Rare Charmless B Decays

CP Asymmetry in Charmless B Decays

Dalitz plot analysis of $B^+ \rightarrow K^+ \pi^+ \pi^-$

Babar (hep-ex/0507004):

Mode	$\mathcal{B}(B^+ \rightarrow \text{Mode})(10^{-6})$	90% CL UL (10^{-6})	A_{CP} (%)
$K^+ \pi^- \pi^+$ Total	$64.1 \pm 2.4 \pm 4.0$	—	$-1.3 \pm 3.7 \pm 1.1$
$K^{*0}(892)\pi^+; K^{*0}(892) \rightarrow K^+ \pi^-$	$8.99 \pm 0.78 \pm 0.48^{+0.28}_{-0.39}$	—	$6.8 \pm 7.8 \pm 5.7^{+4.0}_{-3.5}$
$(K\pi)_0^{*0}\pi^+; (K\pi)_0^{*0} \rightarrow K^+ \pi^-$	$34.0 \pm 1.7 \pm 1.5^{+1.2}_{-1.6}$	—	$-6.4 \pm 3.2 \pm 2.0^{+1.1}_{-1.7}$
$\rho^0(770)K^+; \rho^0(770) \rightarrow \pi^+ \pi^-$	$5.07 \pm 0.75 \pm 0.35^{+0.42}_{-0.48}$	—	$32 \pm 13 \pm 6^{+8}_{-5}$
$f_0(980)K^+; f_0(980) \rightarrow \pi^+ \pi^-$	$9.47 \pm 0.97 \pm 0.46^{+0.42}_{-0.75}$	—	$8.8 \pm 9.5 \pm 2.6^{+9.3}_{-5.0}$
$\chi_{c0}K^+; \chi_{c0} \rightarrow \pi^+ \pi^-$	$0.66 \pm 0.22 \pm 0.07 \pm 0.03$	< 1.1	—
$K^+ \pi^- \pi^+$ nonresonant	$2.85 \pm 0.64 \pm 0.41^{+0.70}_{-0.34}$	< 6.5	—

Belle (hep-ex/0512066):

Mode	$\mathcal{B}(B^\pm \rightarrow Rh^\pm \rightarrow K^\pm \pi^\pm \pi^\mp) \times 10^6$	$\mathcal{B}(B^\pm \rightarrow Rh^\pm) \times 10^6$	A_{CP} (%)
$K^\pm \pi^\pm \pi^\mp$ Charmless	$48.8 \pm 1.1 \pm 3.6$	—	$+4.9 \pm 2.6 \pm 2.0$
$K^*(892)[K^\pm \pi^\mp] \pi^\pm$	$6.45 \pm 0.43 \pm 0.48^{+0.25}_{-0.35}$	$9.67 \pm 0.64 \pm 0.72^{+0.37}_{-0.52}$	$-14.9 \pm 6.4 \pm 2.0^{+0.8}_{-0.8}$
$K_0^*(1430)[K^\pm \pi^\mp] \pi^\pm$	$32.0 \pm 1.0 \pm 2.4^{+1.1}_{-1.9}$	$51.6 \pm 1.7 \pm 6.8^{+1.8}_{-3.1}$	$+7.6 \pm 3.8 \pm 2.0^{+2.0}_{-0.9}$
$\rho(770)^0[\pi^+ \pi^-] K^\pm$	$3.89 \pm 0.47 \pm 0.29^{+0.32}_{-0.29}$	$3.89 \pm 0.47 \pm 0.29^{+0.32}_{-0.29}$	$+30 \pm 11 \pm 2.0^{+11}_{-4}$
$f_0(980)[\pi^+ \pi^-] K^\pm$	$8.78 \pm 0.82 \pm 0.65^{+0.88}_{-1.64}$	—	$-7.7 \pm 6.5 \pm 2.0^{+4.1}_{-1.6}$
$f_2(1270)[\pi^+ \pi^-] K^\pm$	$0.75 \pm 0.17 \pm 0.06^{+0.11}_{-0.18}$	$1.33 \pm 0.30 \pm 0.11^{+0.20}_{-0.32}$	$-59 \pm 22 \pm 2.0^{+3}_{-3}$
Non-resonant	—	$16.9 \pm 1.3 \pm 1.3^{+1.1}_{-0.9}$	—
$\chi_{c0}[\pi^+ \pi^-] K^\pm$	$0.56 \pm 0.06 \pm 0.04^{+0.12}_{-0.04}$	$112 \pm 12 \pm 18^{+24}_{-8}$	$-6.5 \pm 20 \pm 2.0^{+2.9}_{-1.4}$

Belle parameterises $A_{cp} = -(2b \cos\varphi)/(1+b^2)$

$b \neq 0$ is condition for DCPV!
(even if $A_{cp} = 0$)

First evidence of direct CP violation in a charged B decay

