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Abstract. In High Energy Physics one often counts events that could come
from signal or background processes, where the total number seen is a few or
less. One must decide if and when to claim evidence for observation of the signal,
and non-observation should be translated into constraints on model parameters.
Some of the methods commonly used in Particle Physics are presented and their
limitations are discussed.

1. Introduction

In High Energy Physics (HEP) one searches for evidence of new phenomena by
looking for particle collisions with particular properties. The particles produced
in each collision are characterized by a set of measured quantities (particle en-
ergies, momenta, etc.) and the reactions being sought (signal) are in general
not fully distinguishable from at least some types of background. In HEP the
statistical approaches to this problem have relied mainly on frequentist meth-
ods. For example, in the absence of a clear discovery one may try to place some
sort of limits on models that predict the signal process, often using a confidence
interval. This seemingly straightforward exercise becomes less so when trying
to combine searches from different experiments, incorporate systematic uncer-
tainties, and interpret confidence intervals whose size may be surprisingly small
(or zero). Both frequentist and Bayesian approaches to the problem will be
discussed.

2. The Standard Model and beyond

High Energy Physics has a very well defined “null hypothesis”: the Standard
Model. This is a quantum field theory of quarks and leptons and their inter-
actions, which proceed through the exchange of vector bosons (photon, W¥,
Z, gluon). To preserve the fundamental gauge symmetry of the theory with
massive particles one expects there to exist at least one as yet experimentally
unseen Higgs boson. Since the discovery of neutrino oscillations, one has ex-
tended the Standard Model to allow nonzero neutrino masses. This version of
the theory contains 25 free parameters, which correspond to particle masses,
coupling strengths and mixing angles. Some of these parameters have been
determined very accurately, e.g., the mass of the Z boson is measured to be
My = 91.1876 £ 0.0021 GeV (Eidelman et al. 2004). Others are very poorly
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known. Indirect information on the Higgs boson mass constrains it to lie in the
range 114 < my < 207 GeV (LEP 2006).

Despite a quarter century of detailed tests, there is currently no important
disagreement between the predictions of the Standard Model and experimen-
tal observation. The places where one can find a several standard-deviation
discrepancy are few and most easily interpreted as reflecting an incomplete un-
derstanding of complicated systematic effects.

3. Particle physics data

In High Energy Physics the basic unit of collected data is an “event”, which
usually refers to the result of an individual particle collision or in other cases
a single particle decay. For example, a single electron-positron collision at high
energy, as carried out at the Large Electron Positron (LEP) Collider at CERN
through the 1990s, could result in the production of several dozen particles:
pions, kaons, etc. The Large Hadron Collider (LHC) is a proton-proton collider
currently under construction in the same underground tunnel and will become
operational in 2007. A single collision there can result in the production of
several hundred particles or more.

The experiments often consist of large (house-size) particle detectors that
surround the collision region and measure the momentum vectors of almost all
of the particles produced in the event. In addition they can usually make some
attempt to identify the type of particle. The detectors are not perfect and
some particles are missed, e.g., those that are emitted at low angles relative to
the incoming and outgoing particle beams. Some particles such as neutrinos
interact so weakly that they are not detected. Often the particle identification
capabilities of detectors is imperfect to the extent where one cannot tell with
greater than a certain probability, say, 50 or 75%, whether a given particle was
a pion or a kaon.

At the ete™ collider LEP, the rate of interesting events was at the 1 Hertz
level or less. Many analyses focused on events where hadrons were produced,
perhaps two dozen per event. There were roughly 1000000 hadronic events
collected by each of four experiments in operation.

At the LHC, the data rate will be vastly higher: the rate of inelastic proton-
proton collisions will approach the 10° per second, with the data volume of a
single event in the megabyte range. By far most of these collisions are, however,
uninteresting from a physics standpoint and we attempt to remove them from
the data stream as soon as possible. Events deemed to be sufficiently interesting
for further study will be recorded at a rate of roughly 200 Hz. In a nominal year
of 107 seconds, 10'6 proton-proton events will occur, two billion of which will be
recorded, giving a data volume of roughly two petabytes per year.

Given these very high data rates, it is perhaps not clear why any sort of
small-n problem should arise. Many of phenomena one hopes to see, however,
are expected to be very rare, if they exist at all, and will be hidden among a
huge number of events from known Standard Model processes.
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4. Statistical problems in HEP

The nature of the data analysis problem in HEP thus consists of counting the
number of events of different types, i.e., different numbers of particles, configura-
tion of momentum vectors, etc. Everything is fundamentally based on counting,
and this usually boils down to finding the numbers of entries in the bins of a one
or two-dimensional histogram. These numbers can often be modelled as either
Poisson or multinomial random variables.

One of the most important goals in an HEP analysis is to look for new
phenomena which go beyond the Standard Model, including evidence for su-
persymmetry, additional gauge bosons or extra space-time dimensions. A great
deal of attention has been paid to supersymmetry (SUSY), as this class of model
solves a number of theoretical issues as well as supplying a natural candidate
for Dark Matter: the weakly interacting neutralino.

A large part of the experimentalists’ activities consists of testing these new
models and constraining their parameters. One may feel uneasy that we may
therefore only find new processes if a theorist has been clever enough to propose
the corresponding theory ahead of time. In fact the phenomenology of the models
proposed is sufficiently broad that it should encompass a very wide variety of
candidate theories. One can imagine that something like SUSY may at first be
seen at the LHC, which then subsequently turns out not to be supersymmetry at
all but has a very different explanation. The HEP community would be happy
to work through this sort of confusion. The immediate focus is on seeing a
disagreement with the Standard Model.

5. Claiming discovery of a new effect

Often in Particle Physics a new effect will manifest itself as the observation
of events with properties that depart in some clear way from those expected
by the Standard Model. For example, if Nature is supersymmetric then we
may see events with missing energy, i.e., the total observable energy of the final
state particles is found to be less than the initial centre-of-mass energy, since
some energy might be carried away by weakly interacting neutralinos. Of course
there are Standard Model processes that also result in missing energy, e.g., from
neutrinos, and one must also deal with the limited resolution with which the
final state energy can be measured.

So the general situation is that we may have events that look like some-
thing new, but which cannot in general be distinguished from Standard Model
(background) processes. If the number of such events observed far exceeds the
background expectation, then clearly a new process has been discovered. In
making the transition from unknown to well established, however, the new pro-
cess will at some point manifest itself at some marginally significant level. The
question is then how to quantify this significance and when to decide that it
merits a claim for a new discovery.

Frequently one has a specific idea of what a new signal may look like, and
candidate events are selected by requiring that their properties satisfy certain
criteria or cuts. For example, a candidate particle decay 7= — e™ (essentially
forbidden in the Standard Model but allowed in some supersymmetric models)
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would have particles identified as an electron and photon whose invariant mass is
equal, within some measurement tolerance, to the known mass of the tau lepton.
The number of events n selected will follow a Poisson distribution with mean
b+ s, where b is the expected number due to Standard Model or ‘background’
processes and s is the number expected from ‘signal’ or the new process:

P(n;s,b) = %e(”b) . (1)

The expected number of background events, b, is often estimated by using Monte
Carlo models. These are of course approximations and the systematic uncer-
tainty in b needs to be taken into consideration when making inferences about
the parameter of interest, s. For the moment let as assume that b has been
determined with negligible uncertainty.

In this situation the usual approach is to calculate the p-value of the null
hypothesis, i.e., the probability, under the assumption of background processes
only, of obtaining data as signal-like as, or more signal-like than, the data actu-
ally observed. Since the number of events n satisfying the selection criteria for
signal events should be large in the presence of the new process, we have for the
p-value,

00 Nobs—1 b b
p= Z P(n;0,b) =1 — Z He_ . (2)
N=MNgohs n=0 .

To claim a new discovery, High Energy Physics folklore dictates a p-value cor-
responding to a 50 fluctuation of a Gaussian variable, i.e., p ~ 2.85 x 1077.
Of course the p-value at which one actually believes the null hypothesis to be
disproved is subjective and the problem seems to be crying out for a Bayesian
approach; more later on why this is problematic as well. But a sort of Bayesian
thinking enters even with p-values, since each user combines this result with his
or her own prior beliefs. If the alternative to the null hypothesis seems in some
sense reasonable or natural, then one might be comfortable announcing a dis-
covery with p = 0.05 or less. Indeed the recent announcement of the oscillations
of BY mesons, widely expected to be found, rejected the null hypothesis with
p = 0.038 (Abazov et al. 2006). Other effects would be more surprising and
require correspondingly stronger evidence.

There are a number of well-known dangers with the p-value approach. For
example, the new type of event will not, in general, look exactly like the thing we
were looking for. Perhaps we see an excess in the search for events with missing
energy that gives a p-value of 1073. We then observe that if we modified the
selection criteria somewhat, e.g., we require not 30 GeV of missing energy but
rather 20 GeV, then the p-value drops to 10~%, and if we require that there be
at least one muon in the event, then it drops to 1075, and so forth. A problem
arises of course if we make these changes to the selection criteria after seeing
the data. One can always define a set of cuts that enclose the observed events
in such a way as to make them appear highly significant. The best one can do
here is to freeze the selection criteria and take more data, but this is expensive
and not always an option.

In addition to counting events one often measures one or more quantities
that characterize the events, e.g., invariant masses or energies of various particles
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or jets of particles. The single number of observed events n is then replaced by
a set of numbers 7 = (n1,...ny) of entries seen in a histogram. Defining the
p-value of the null hypothesis requires one to define the region of the data space
with equal or lesser compatibility with the data actually observed.

If the expected histogram is roughly flat but one observes a large peak in
a couple of neighbouring bins, then there is a temptation to focus on these bins
only and to ask for the probability to find, under the assumption of background
only, as many events as were actually seen there or more. The problem could
be, of course, that we may not have known a priori where the new peak would
appear, indeed whether the new effect would be a peak, or an anomalous slope,
or whatever. Again the only meaningful solution from the frequentist standpoint
would be to fix the critical region and take more data.

Up to now we have assumed that the expected background b was known,
but there can be various sorts of uncertainty in its value. It may be calculated
from Monte Carlo model with a limited amount of simulated data, the modelling
of the detector’s response is imperfect, and even the Standard Model prediction,
often computed using perturbation theory at a fixed order, is only approximate.
Effectively the s = 0 hypothesis is no longer simple but characterized by a
potentially large family of nuisance parameters. One approach is to report the
corresponding range of p-values for different values of the nuisance parameters.
Often to be conservative one will report the largest plausible p-value, i.e., the
weakest evidence for a new discovery. In other cases one may wish to regard b
as a random quantity, i.e., it effectively plays the role of an estimate b of the
true (and unknown) expectation value for the number of background events.
In principle one can remain within the frequentist framework where now the
outcome of the experiment contains the number of events n and the value b.
We will return to this approach when we discuss setting limits on the signal
parameters.

Finally, why don’t particle physicists simply compute the posterior prob-
ability of the null hypothesis in the Bayesian framework? Here the problem
lies primarily in assigning a meaningful prior probability to any of the hypothe-
ses involved. Most physicists are relatively certain that the Standard Model is
‘wrong’ in that it is probably not Nature’s final theory of particle interactions.
Having said that, no one knows how to enumerate the alternatives in a mean-
ingful way and to assign to them probabilities. If the final result of an analysis
was announced to be that the probability of the Standard Model is X and the
probability of such-and-such a supersymmetric theory was Y, then the average
reader of this result would simply not know whether to be convinced or not.
The reader’s prior beliefs, to the extent that they were ever thought through
at all, almost certainly disagree with those of the paper’s authors. When one
takes into account that HEP papers are written collectively by hundreds or even
thousands (!) of authors, such an approach becomes highly problematic.

6. Setting limits
If a new phenomenon is sought but not found, one usually wants to at least

constrain the parameters of the model in question. In the first instance this
often means placing an upper limit on the the expected number of signal events,
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s, which is related to the cross section o by s = oLe, where L is the integrated
luminosity and ¢ is the efficiency (probability for an event to be observed). The
cross section o will be predicted by the model as a function of its fundamental
parameters, and often one translates the limit on the cross section into limits on
these parameters. In other cases the measured quantity may follow other distri-
butions, e.g., multinomial or Gaussian, but the general goal is still to quantify in
some way the level of agreement between the observed data and the predictions
represented by different regions of parameter space of the candidate models.

6.1. Setting limits with frequentist confidence intervals

The most widely used tool for setting limits in HEP is the standard frequentist
confidence interval. A confidence interval for a parameter can be obtained by a
test of the hypotheses corresponding to each possible parameter value. To carry
out a test, one defines a critical region in the data space which is disfavoured
by the hypothesis, such that there is a prespecified probability vy (the size or
significance level of the test) for the data to be observed in the critical region. If
the data are discrete such that one cannot achieve this condition exactly, then
the probability to be in the critical region should be as close as possible to but
not greater than . The significance level v is often chosen to be a small value
such as 0.1 or 0.05. There is a clearly a degree of arbitrariness in the definition
of the critical region and the choice will depend on which alternative hypotheses
we are most interesting in rejecting.

To obtain a confidence region one inverts this procedure. The confidence
region at confidence level 1 — y is the set of parameter values which would not
be rejected by a test of size v. Construction of a confidence interval through
inversion of a test is equivalent to the construction of a confidence belt, which
is a graphical depiction of the test’s acceptance region as a function of the
parameter. By construction the confidence region will contain the true value of
the parameter with a probability greater than or equal to 1 — ~.

6.2. Poisson data with signal and background

An important class of measurements consists of counting a certain number of
events n, where n can be modeled as a Poisson variable with expectation value
E[n] = s+ b. Here s represents the contributions from the new (signal) pro-
cess and b is the expected number from background processes. The goal is to
constrain s.

Now if we want to set an upper limit on s, we can invert a test of the
hypothesis that its true value is greater than or equal to s. The critical region
for this hypothesis consists of low values of n. So for each value of s we define a
critical region by the lowest n such that their total probability does not exceed
a given value 3, where 1 — (3 is the desired confidence level of the upper limit.
That is, we require

B =P(m <mn;s,b) = 2": Me_(s"'b) . (3)
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The solution to (3) is the upper limit s,,. Similarly for a lower limit at confidence
level 1 — o, the parameter values we want to exclude are low, and therefore the
critical region should consist of the highest values of n. So we require

n—1
_ , _ (s+0)™ _(s1p)
a—P(mzn,s,b)—l—mzz:OTe . (4)

The solution to (4) is the lower limit sj,. The sums of Poisson probabilities can
be carried out easily by exploiting their relation to the y? distribution. One
finds

1 __
Slp = §szl(a;2n)—ba (5)

s = FR 1= B2+ 1) —b, (

where Fx_21 (a;nq) is the inverse of the cumulative distribution function (quantile)

for the x? distribution for nq degrees of freedom.

There are a number of subtle difficulties with confidence limits obtained
from this procedure. If, for example, the number of events observed n is small
compared to the expected background b, then equation (6) can yield a negative
number. In this case the confidence interval contains no physical values of the
parameter; it is the empty set.

If one obtains an empty interval, from the statistician’s standpoint, noth-
ing has ‘gone wrong’ — the interval will by construction only contain the true
parameter’s value with a probability 1 —«. Clearly if the interval is empty then
we have encountered a case where we don’t cover the true value. Now to report
such a result is unsatisfying to say the least, and it does not summarize the out-
come of the experiment in a meaningful way. The root of the problem lies in the
physicist’s desire to see the confidence interval as a region of parameter space
where there is a high probability for the true value to lie, but of course in the
purely frequentist approach one does not associate a probability with parameter
values, only with data.

Because of these difficulties with small or zero size intervals that can result
from a downward fluctuation in the number of background events, one should
also quote the sensitivity, which can be defined as the expectation value of
the upper limit under the assumption of background only. Alternatively the
median value can be used, which has the advantage of being invariant under a
reparameterization of the problem. To determine the sensitivity one could, for
example, simulate the experiment many times and look at the distribution of
resulting limits.

Several problems with the standard upper limits, including the issue with
empty intervals mentioned above, can be mitigated using a procedure rediscov-
ered for HEP by Feldman & Cousins (1998). To construct the interval they base
the corresponding test on the likelihood ratio

I(s) = —— 2 (7)
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Here in § is the Maximum Likelihood (ML) estimator for s, which in this case is

(8)

(Note that § = n — b gives an unbiassed estimator but for n < b goes outside the
allowed parameter space.) The critical region of the test consists of those values
of n with the lowest value of the likelihood ratio. The upper limits obtained
from the standard (one-sided), Feldman-Cousins and Bayesian procedures (see
below) are shown in Fig. 1.
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Figure 1.  Left: Upper limits as a function of the observed number of events
n assuming an expected background of b = 5.0. Right: The mean upper limit
as a function of s for b = 5.0.

Now unless n comes out small compared to b, the upper limits from inver-
sion of the likelihood-ratio test (Feldman-Cousins) are higher than those from
the procedure for the one-sided upper limit, so naively one could think that
the likelihood ratio is not providing limits that are as stringent. But with the
Feldman-Cousins limits the critical region of the test generally contains both low
and high values of n. Depending on the data observed, the resulting interval
may be one- or two-sided. Feldman and Cousins therefore call these intervals
‘unified’, in the sense that there is a smooth transition between one- and two-
sided. For n much greater than b, the Feldman-Cousin interval is two-sided, and
the probability 1 — « for the interval to miss the true value is shared above and
below the two limits.

Feldman and Cousins have pointed out that if one decides whether to quote
an upper limit or a two-sided interval only after seeing the outcome of the
experiment, then the coverage probability of the interval is no longer guaranteed
to be be greater than or equal to the nominal confidence level 1 — . This ‘Hip-
flopping’ problem is effectively cured, however, by the unified interval.

Although the Feldman-Cousins intervals are never strictly empty, if b < n
they can be arbitrarily small, easily smaller than the sensitivity as defined above.
So regardless of the type of interval reported one is always encouraged to report
the expected (mean or median) limit under the absence of signal.
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The desirability of unified intervals versus upper limits may depend on the
type of question one wants to answer. The purpose of the limit is presumably to
give guidance on what regions of parameter space are disfavoured by the data,
for example so that one can proceed to plan further experiments to continue the
search for the phenomenon. Now if a unified limit results in, say, 0.1 < s < 5.0
at 90% confidence level, then one does not really have significant evidence for a
discovery. The p-value of s = 0 may still be several percent.

The important result here is that s > 5.0 is now disfavoured, and one should
move on and design a new experiment to be sensitive to s values significantly
less than 5.0. With a one-sided upper limit one would have a more stringent
limit, but would remain open to the criticism of ‘flip-flopping’. One could always
counter that regardless of the outcome of the experiment, even in the case of an
obviously significant discovery, one will always quote an upper limit. Further-
more, to actually claim a discovery one wants an interval that excludes the null
hypothesis at a much higher confidence level, e.g., 99.99%, not just 90%. If one
decides the confidence level only after looking at the data, one winds up with
another sort of flip-flopping. This type of discussion is still ongoing in the HEP
community.

6.3. Combining results

Often in particle physics one has a number of measurements, all of which pro-
vide information on the same parameter. A simple example of this could be
independent Poisson measurements looking for events of the same type but in
two different experiments. Suppose one measurement counts nq events and the
other ns. The expectation values are s; = ¢;L;o (i = 1,2), i.e., the efficiencies
and luminosities of the two measurements may in general differ but they are
related to the same cross section 0. The goal is to place a limit on o.

The example of two measurements is a special case of multivariate data
Z = (x1,...,2,) whose joint distribution depends on a set of parameters 6 =
(01,...,0). Here there can be nontrivial correlations between the variables as
they may not represent simply the outcomes of independent experiments, but
rather sets of kinematic variables within the same event. As previously we can
construct the likelihood ratio,

1(6) = ) (9)

where f is the ML estimator. And as before we can define a test of the point in
parameter space 0 with a critical region consisting of that part of Z-space with
the lowest values of the likelihood ratio. The confidence region at confidence
level 1 — v is defined by the set of points in parameter space that would not be
rejected in a test of significance level .

Now in practice, this type of approach can be difficult because it is not
always simple to determine the full joint distribution of the data for all points
in parameter space. This procedure has been successfully applied, however, to
combine the results of the the four LEP experiments’ searches for the Higgs
boson (see e.g. the contribution by Cranmer in Lyons & Karagoz Unel (2005)).
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6.4. Bayesian solutions

Instead of using frequentist confidence intervals, one can try to constrain the pa-
rameter in the Bayesian framework by assigning to it a prior probability density
7(s) and combining this with the likelihood L(n|s) to find the posterior density
from Bayes theorem,

p(s|n) o< L(n|s)w(s) . (10)

Here the likelihood function L(n|s) is simply the Poisson probability (1). The
difficulty with this approach is in assigning a meaningful prior 7(s). In the
absence of detailed prior information, a common choice is

(s) = {(1) . o (11)

This prior probably does not reflect anyone’s true prior belief about s but can be
regarded as a basis for comparison. Reference priors have been widely discussed
in the literature, including among particle physicists (see e.g. the contribution
by Demortier in Lyons & Karagoz Unel (2005)). Bayesian credible intervals can
be found by integrating the posterior pdf to contain any desired probability. For
example, for an upper limit s, at with a probability content of 1 — one solves

l—y= /Osupp(s|n) ds . (12)

For the uniform prior (11), one at least has a convenient point of contact
with the frequentist confidence interval, namely, if the background is zero, then
the upper Bayesian upper limit from (12) coincides with the frequentist upper
limit from (6). In cases with b = 0 the author can evade having to commit to
either approach.

A problem with using a uniform reference prior for s is that one might just
as easily formulated the problem using a different parameter. For example, the
expected number of Higgs boson events can be predicted as a function of the
particle’s mass, my, and if we had taken a uniform prior in my rather than s
then we would obtain a different result. A uniform prior in s translates into a
non-uniform prior for a nonlinear function of s. If the prior really reflects our
subjective degree of belief about where its value lies, then this problem does not
arise. The transformed prior for the new parameter then correctly reflects our
degree of belief. But if we simply take a certain function form (e.g., uniform) as
a reference prior, then the end result will depend on our choice of parameter.

A strong selling point of the Bayesian approach, however, is the ease with
which different measurements can be combined. In the general case with mul-
tivariate data & and possibly as well a multidimensional parameter space 5, we
simply find the joint posterior pdf from Bayes theorem,

p(0]) oc L(Z|0)m(6) , (13)
where L(Z|6) is the likelihood function and 7 (6) is the joint prior. If we are only
interested in a subset of the parameters, we simply integrate over those that are
unwanted. This integral may indeed be nontrivial to carry out and could require,
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for example, Markov Chain Monte Carlo techniques. But for many problems,
especially combining independent Poisson measurements related to the same
cross section, the Bayesian framework provides a relatively simple solution.

A further advantage of the Bayesian approach is of course that we can treat
systematic uncertainties, which are not easily thought of as a variation of an
observation upon repetition of the experiment. We examine this point further
in the next section.

7. Including systematic uncertainties

The full model that one tests generally contains not only the fundamental pa-
rameters of its underlying theory but various nuisance parameters. An example
from the Poisson problem above is the parameter b, the expected number of
events from background processes. Up to now we have treated it as a known
constant but in practice it will have some uncertainty. The question is how to
incorporate this uncertainty into the limits on s. We will use the parameter b
as an example but the extension to other nuisance parameters, e.g., selection
efficiencies or detector calibration constants, is straightforward.

In the Bayesian approach any uncertainty in the nuisance parameters is
written down in the prior pdf. In our Poisson case we would have a prior 7 (s, b).
This will often factorize as m(s,b) = 7s(s)mp(b), and m,(b) could be the posterior
from a subsidiary measurement of b. Bayes’ theorem gives the joint pdf for s
and b,

p(s,bln) o< L(nl|s,b)m(s,b) . (14)

To find the marginal pdf for s, we simply integrate over b,

p(sln) = /p(s, bln) db . (15)

With frequentist confidence intervals the problem is more difficult. One
must extend the confidence intervals to a potentially large multiparameter con-
fidence region that now includes all of the nuisance parameters as well. In the
large sample limit the problem can be solved using the profile likelihood. This is
given by

Ly(s) = L(n|s,b) . (16)

Here b is found from the maximum L(s,b) for each value of s. One then defines
a test for the parameter value s using the ratio of profile likelihoods,

Ip(s) = . (17)

The critical region of the test is defined by the values of n that give the lowest
values of [,(s), and the test is inverted to obtain a confidence interval for s.
This procedure boils down to finding approximate confidence intervals from the
tangent (hyper-)planes in parameter space to contours of constant log-likelihood.
For the small-n problem the profile-likelihood recipe can be taken to provide an
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approximate confidence interval. These ideas are discussed further in the papers
by Punzi, Cranmer, Rolke, Reid and Feldman in Lyons & Karagoz Unel (2005).

One of the methods for incorporating systematic uncertainties into limits
most frequently used in HEP was proposed by Cousins and Highland (Cousins
& Highland 1992). Again for purposes of example let us assume the nuisance
parameter in question is the expected number of background events b. Let us
assume that the uncertainty in b can be described by a prior density w(b). If,
for example, we only had an estimate b, then 7(b) might be a Gaussian centred

about b with an appropriate standard deviation ;. One then computes the
probability law for n as

P(n; s) = /P(n; s,b) w(b)db . (18)

In a strictly frequentist framework this would be the probability for n if b were
not constant but rather sampled from 7(b) upon repetition of the experiment.
One can then use this P(n; s) in equations (3) and (4) and solve numerically for
the limits. A calculator has been provided by Barlow (Barlow 2002).

This approach can be extended easily to limits based on a likelihood-ratio
test. Suppose we can characterize the uncertainty in b with a prior pdf =(b).
We define the ‘integrated likelihood’ (also called ‘modified profile likelihood’, in
any case not a real likelihood) as

L/ (n]s) = /L(n|s, b) 7 (b) db (19)
Now we can use this to construct the corresponding ratio,

oy L)
"= Dl

(20)

where here § is the estimator obtained from the maximum of L'(n|s). The critical
region for the test of s then consists of those values of n with the lowest value of
I'(s), in close analogy with the Feldman-Cousins procedure using equation (7).
We then invert this test to obtain the confidence interval. This must be done
numerically; calculators have been provided by Conrad and Tegenfeldt (Lyons

& Karagoz Unel 2005; Conrad et al. 2003).

8. Summary

The seemingly simple problem of placing limits on a parameter has been dis-
cussed at length by the Particle Physics community and there is still no clear
winning method. Among the things that particle physicists agree on is the im-
portance of including in the result either the likelihood function or an appropri-
ate summary of it. In this way the combined likelihood from two independent
measurements can easily be obtained, and furthermore the likelihood can be
combined with any prior for use in a Bayesian analysis.

Frequentist confidence intervals have played a major role in HEP for many
years and for purposes of setting limits it appears this situation will continue
for some time. Bayesian methods using reference priors have also found some
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popularity, but here the attitude has generally been to use the result as a recipe
to set the limit and then to study its frequentist properties. Subjective Bayesian
methods have started to attract some attention, especially for the problem of
systematic uncertainties. The hope is of course that in coming years, especially
at the Large Hadron Collider, there will real new phenomena to discover and
people will be less concerned with setting limits.
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