# PH4442 Advanced Particle Physics 2025/26 Lecture Week 6

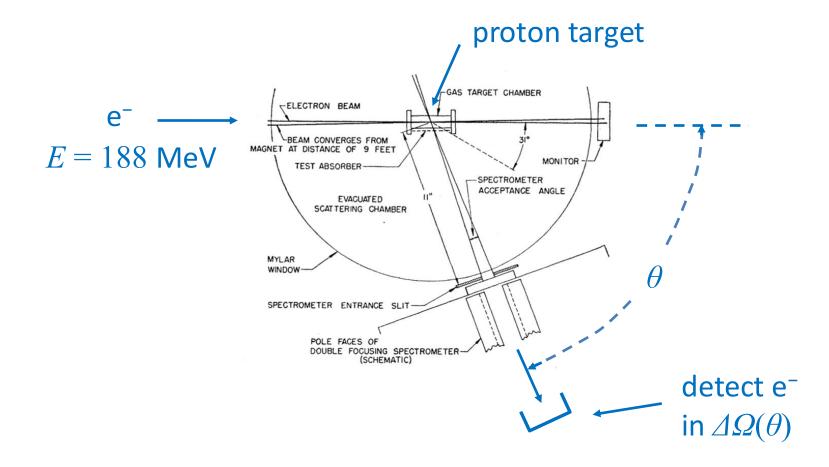


Glen Cowan
Physics Department
Royal Holloway, University of London
g.cowan@rhul.ac.uk
www.pp.rhul.ac.uk/~cowan

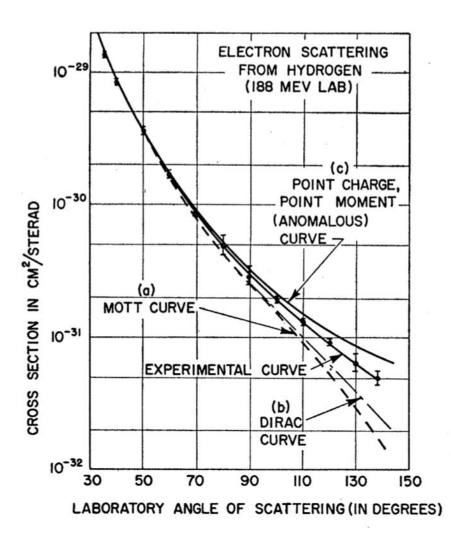
- Comments on problem sheet 3 (ep scattering)
- Comments on problem sheet 2 (W propagator)
- Weak interactions

#### Comments on elastic electron-proton scattering

Investigated in the 1950s at SLAC by McCallister and Hofstadter.



#### Size of the proton



The discrepancy between the "Dirac curve" and the data can be explained by assuming the proton is not a point charge, but rather a charge distribution with rms radius

$$r_{\rm p} = (0.74 \pm 0.24) \times 10^{-15} \,\mathrm{m}$$

This was the first measurement of the proton's size.

#### Comments on problem sheet 2, Q5

5 a) Wave eg. for massive vector boson  $\left[ \left( \partial_{\alpha} \partial^{\alpha} + M^{2} \right) g^{\mu \nu} - \partial^{\mu} \partial^{\nu} \right] W_{\nu}(x) = J^{\mu}(x)$ Corresponding eg. for Green function  $\left[ \left( \partial_{\lambda} \partial^{\lambda} + M^{2} \right) g^{\mu\nu} - \partial^{\mu} \partial^{\nu} \right] D_{\nu\lambda}(x - x') = S^{\mu}_{\lambda} S^{\mu}(x - x')$ (2) Claim: sol'n has form  $W_{\gamma}(x) = \left( d'x' D_{\gamma \lambda}(x-x') J^{\lambda}(x') \right)$ (3)

#### PS2, Q5(a)

Sub (3) into LHS of (1)

$$\left[ \left( \partial_{\alpha} \partial^{\alpha} + M^{2} \right) g^{\mu\nu} - \partial^{\mu} \partial^{\nu} \right] \int d^{4}x' D_{\nu\lambda} (x - x') J^{\lambda}(x')$$

$$\left[ \left( \partial_{\alpha} \partial^{\alpha} + M^{2} \right) g^{\mu\nu} - \partial^{\mu} \partial^{\nu} \right] \int d^{4}x' D_{\nu\lambda} (x - x')$$

$$= \int d^{4}x' J^{\lambda}(x') \left[ \left( \partial_{\alpha} \partial^{\alpha} + M^{2} \right) g^{\mu\nu} - \partial^{\mu} \partial^{\nu} \right] D_{\nu\lambda} (x - x')$$

$$= \int d^{4}x' J^{\lambda}(x') S^{\mu}_{\lambda} S^{\mu}(x - x')$$

$$= \int d^{4}x' J^{\lambda}(x') = RHS \text{ of (1)}$$

#### PS2, Q5(b)

5b) Fourier transform of 
$$D_{y_{\lambda}}(x-x')$$
 is

$$\widetilde{D}_{y_{\lambda}}(g) = \int d^{4}x \ D_{y_{\lambda}}(x-x') e^{ig \cdot (x-x')}$$

$$\Rightarrow D_{y_{\lambda}}(x-x') = \int \frac{d^{4}g}{(2\pi)^{4}} \widetilde{D}_{y_{\lambda}}(g) e^{-ig \cdot (x-x')}$$

$$\text{Use } (Y) \text{ in } (2) \text{ (DE for Green func.)}$$

$$\left((\partial_{\lambda}\partial^{\lambda} + M^{2})g^{AY} - \partial^{\lambda}\partial^{Y}\right) \int \frac{d^{4}g}{(2\pi)^{4}} \widetilde{D}_{y_{\lambda}}(g) e^{-ig \cdot (x-x')}$$

$$\Rightarrow \int \frac{d^{4}g}{(2\pi)^{4}} \left[(-g^{2} + M^{2})g^{AY} + g^{A}g^{Y}\right] \widetilde{D}_{y_{\lambda}}(g) e^{-ig \cdot (x-x')}$$

$$\Rightarrow \int \left((-g^{2} + M^{2})g^{AY} + g^{A}g^{Y}\right) \widetilde{D}_{y_{\lambda}}(g) e^{-ig \cdot (x-x')}$$

$$\Rightarrow \int \left((-g^{2} + M^{2})g^{AY} + g^{A}g^{Y}\right) \widetilde{D}_{y_{\lambda}}(g) = \int_{y_{\lambda}}^{A} \left(\frac{g}{g}\right) = \int_{y_{\lambda}}^{A} \left(\frac{g}{g}\right$$

#### PS2, Q5(c)

5c) Take 
$$\widetilde{D}_{v_{\lambda}}(f) = Ag_{v_{\lambda}} + Bf_{v_{\lambda}}g_{\lambda}$$
,  $A, B$  Lorentz

$$\left[\left(-f^{2}+M^{2}\right)g^{MV}+f^{M}f^{V}\right]\left(Ag_{v_{\lambda}}+Bg_{v_{\lambda}}g_{\lambda}\right) = S^{M}$$

$$C = S^{M}g_{\lambda}$$

and  $g^{MV}f_{v_{\lambda}}f_{\lambda} = S^{M}g_{\lambda}$ 

$$\left(-f^{2}+M^{2}\right)\left(AS^{M}_{\lambda}+Bg^{M}g_{\lambda}\right)+Ag^{M}g_{\lambda}+Bg^{2}g^{M}g_{\lambda} = S^{M}g_{\lambda}$$

From  $M \neq \lambda$ ,  $S^{M}_{\lambda} = 0 \implies B = -\frac{A}{M^{2}}$ 

For  $\lambda = \lambda$ ,  $S^{M}_{\lambda} = 1 \implies A = -\frac{1}{-g^{2}+M^{2}}$ 

$$\widetilde{D}_{v_{\lambda}}(f) = \frac{-g_{v_{\lambda}}+\frac{g_{v_{\lambda}}g_{\lambda}}{M^{2}}}{g^{2}-M^{2}+\alpha g_{\lambda}} = S^{M}g_{\lambda}$$

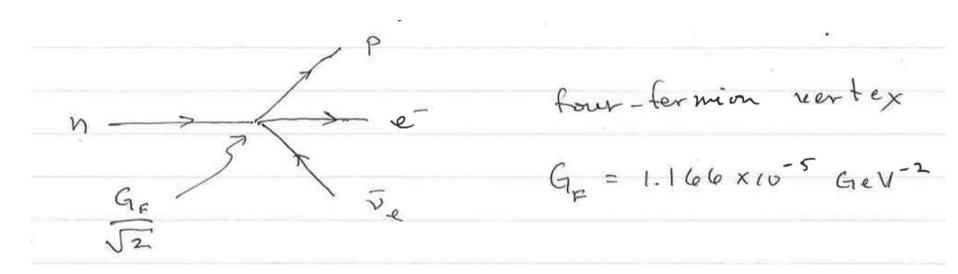
same reasoning at photon propagator photon propagator

# Weak Interactions I: from Fermi's theory to V-A

For a review of main ideas, see PH3520 notes Ch. 9. A brief recap:

Pauli, 1930 proposes neutrino to explain beta decay.

Fermi, 1934, theory of weak interactions that includes neutrino:



# Fermi's theory

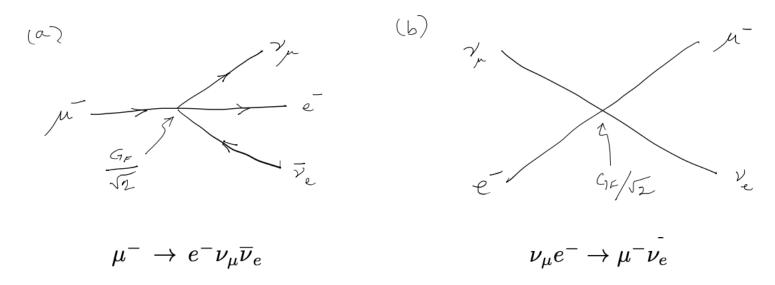
In analogy with QED, interaction amplitude is product of currents:

$$\mathcal{M} = G_{
m F} \, J_{\mu}^{
m had} \, j_{
m lep}^{\mu} = G_{
m F}[\overline{u}_p \gamma_{\mu} u_n][\overline{u}_e \gamma^{\mu} v_{
u}]$$

both currents are charge-changing

Initial guess is that both currents are Lorentz vectors, so product is Lorentz scalar (and hence parity conserving).

Other processes in Fermi's theory:



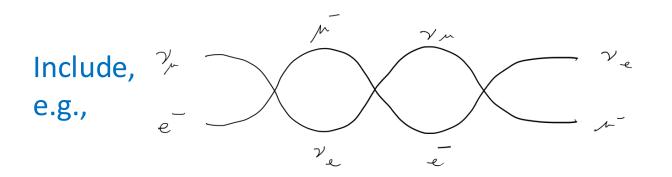
# Violation of unitarity bound in Fermi's theory

$$\mathcal{M}(
u_{\mu}e^{-}
ightarrow\mu^{-}
u_{e})\propto G_{\mathrm{F}}$$
 so  $\sigma(
u_{\mu}e^{-}
ightarrow\mu^{-}
u_{e})\propto G_{\mathrm{F}}^{2}$ 

 $G_{\rm F}$  and  $\sigma$  both units of  $E^{-2}$ , so we need  $\sigma(\nu_{\mu}e^{-} \to \mu^{-}\nu_{e}) \sim G_{\rm F}^{2}E_{\rm cm}^{2}$ 

Grows with  $E_{\rm cm}$ , at  $E_{\rm cm} \sim 300$  it exceeds the "unitarity bound", i.e., the probability of interaction exceeds unity.

Maybe this is because is based only on first-order diagram?



For loops, integrate over all momenta.

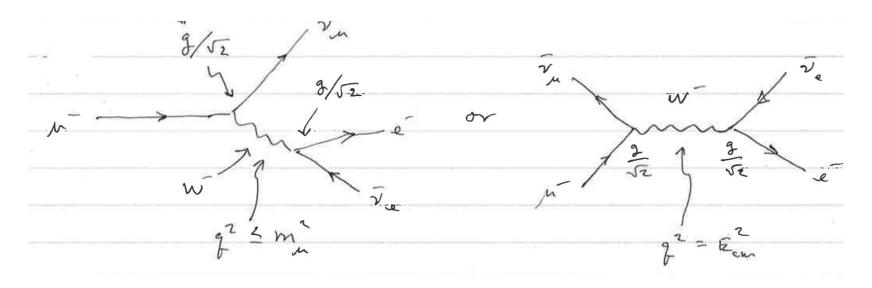
Integrals diverge:

$$M \rightarrow \infty!$$

QED also has infinities in higher-order diagrams but finite predictions obtained with "renormalisation"; doesn't work for Fermi's theory.

# Violation of unitarity bound → IVB

The problems can be solved if the weak interaction is mediated by exchange of an intermediate vector (spin-1) boson (now the W):



Low ("weak") interaction rate from W-boson's large mass. For a massive boson, wave function obeys the Proca equation:

$$[(\partial_{\nu}\partial^{\nu}) + M_W^2]W^{\mu} - \partial^{\mu}(\partial_{\nu}W^{\nu}) = J^{\mu}$$

#### IVB propagator and unitarity bound

The W propagator is found to be:

$$rac{-ig^{\mu
u}}{q^2+iarepsilon} 
ightarrow rac{-i\left(g^{\mu
u}-rac{q^\mu q^
u}{M_W^2}
ight)}{q^2-M_W^2+iarepsilon}$$

If 
$$q^2 << M_W^2$$
, then  $\dfrac{-i\left(g^{\mu\nu}-rac{q^\mu q^
u}{M_W^2}
ight)}{q^2-M_W^2+iarepsilon} 
ightarrow \dfrac{ig^{\mu
u}}{M_W^2}$ 

and so the amplitudes  ${}^{\sim}G_{\rm F}$  now go as  $g^2/M_{\rm W}^2$ 

In 
$$\overline{\nu}_{\mu}\mu^{-} \rightarrow \overline{\nu}_{e}e^{-}$$
  $q^{2}$  is  $E_{\rm cm}^{2}$ . For  $E_{\rm cm} \gg M_{\rm W}$  we now have

$$\mathcal{M} \sim g^2 \; rac{g^{\mu 
u} - rac{q^\mu q^
u}{M_W^2}}{q^2 - M_W^2} \; 
ightarrow rac{g^2}{E_{
m cm}^2}$$
 Not obvious but can neglect  $q^\mu q^
u/M_W^2$ 

So now  $\sigma \sim g^4/E_{\rm cm}^2$  and violation of unitarity bound avoided. IVB also allows one to construct a renormalisable theory.

#### Non-conservation of parity

1956 Lee and Yang propose that parity could be violated in weak interactions, e.g., in beta decay:

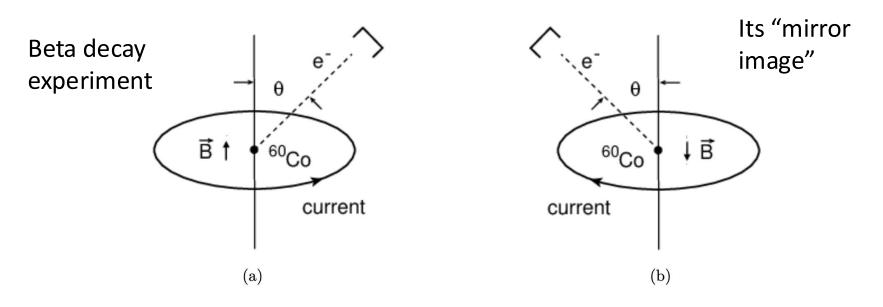


Figure 9.4: (a) An experiment in which nuclear spins are aligned parallel to a magnetic field created by a current loop, and the number of beta electrons is measured at the angle  $\theta$ . (b) The mirror image experiment.

In the experiment of C.S. Wu et al., Phys. Rev. 105 (1957) 1413, it was shown that  $N(\theta) \neq N(\pi - \theta)$ , therefore parity is not conserved.

#### Spinors for $p = \hat{z}p_z$

$$u_1(p) = \sqrt{E+m} \left( egin{array}{c} 1 \ 0 \ rac{p_z}{E+m} \ 0 \end{array} 
ight) \;, \qquad u_2(p) = \sqrt{E+m} \left( egin{array}{c} 0 \ 1 \ 0 \ rac{-p_z}{E+m} \end{array} 
ight) \;,$$

$$u_2(p) = \sqrt{E+m} \left( egin{array}{c} 0 \\ 1 \\ 0 \\ rac{-p_z}{E+m} \end{array} 
ight)$$

$$v_1(p) = \sqrt{E+m} \left(egin{array}{c} 0 \ rac{-p_z}{E+m} \ 0 \ 1 \end{array}
ight)$$

$$v_1(p) = \sqrt{E+m} \begin{pmatrix} 0 \\ \frac{-p_z}{E+m} \\ 0 \\ 1 \end{pmatrix} , \qquad v_2(p) = \sqrt{E+m} \begin{pmatrix} \frac{p_z}{E+m} \\ 0 \\ 1 \\ 0 \end{pmatrix} .$$

# Right— and Left-handed projection operators

$$P_R = rac{1}{2}(1+\gamma^5) = rac{1}{2}egin{pmatrix} 1 & 0 & 1 & 0 \ 0 & 1 & 0 & 1 \ 1 & 0 & 1 & 0 \ 0 & 1 & 0 & 1 \end{pmatrix}$$

$$P_L = rac{1}{2}(1-\gamma^5) = rac{1}{2} egin{pmatrix} 1 & 0 & -1 & 0 \ 0 & 1 & 0 & -1 \ -1 & 0 & 1 & 0 \ 0 & -1 & 0 & 1 \end{pmatrix} \,.$$

#### Helicity suppression

Consider spin up particle, momentum along z (positive helicity)  $u_1$ :

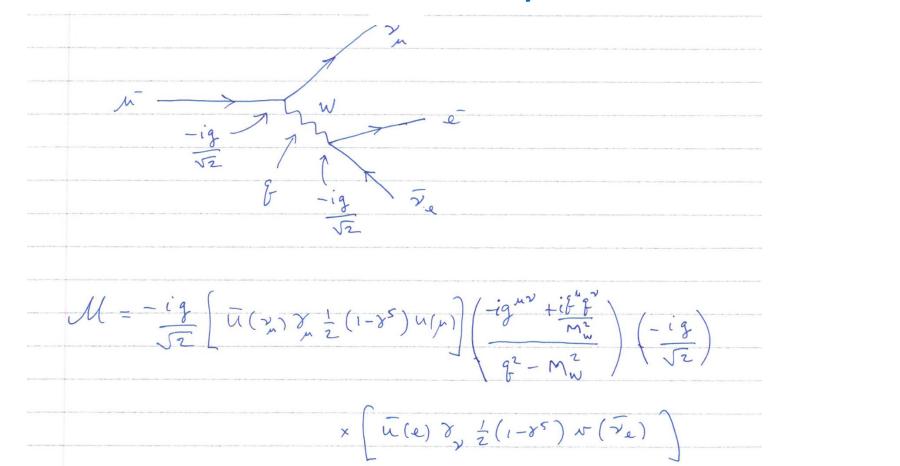
$$P_R u_1 = \frac{1}{2} \sqrt{E+m} \left(1 + \frac{p_z}{E+m}\right) \begin{pmatrix} 1\\0\\1\\0 \end{pmatrix},$$

$$P_L u_1 = \frac{1}{2}\sqrt{E+m}\left(1-\frac{p_z}{E+m}\right)\begin{pmatrix} 1\\0\\-1\\0\end{pmatrix}.$$

So left-chiral component of positive-helicity particle goes to zero in relativistic limit.

Similarly,  $P_{\rm L} v_2 \rightarrow 0$  in relativistic limit.

# Muon decay



$$=\frac{G_{E}}{\sqrt{2}}J_{1}(N)J^{m}(e) \qquad \left(g^{2}(M_{W}^{2})\right) = \frac{g^{2}}{8M_{W}^{2}} = \frac{G_{E}}{\sqrt{2}}$$

#### Muon decay rate

Unputarized 
$$\mu$$

I long cale. because of 3-body

final state

$$\frac{d\Gamma}{dx dx} = \frac{G_F^2 m_h}{192 \pi^4} \times^2 \left[ 3(1-x) + \frac{2}{3} \rho(4x-3) + 6 \frac{y}{2} \frac{m_e}{m_h} \frac{1-x}{x} \right]$$

$$x = \frac{\Gamma_e}{E_{e,mex}} = \frac{2 E_e}{m_h}$$
For  $V - A$  theory,  $\rho = \frac{3}{4}$ ,  $\gamma = 0$ 

$$\Gamma = \int \frac{d\Gamma}{dx dx} dx dx = \frac{G_F}{m_h} \frac{m_h}{192 \pi^3} = \frac{\Gamma(\mu \to e \nu \bar{\nu})}{\nu} \approx \Gamma_{tot}$$

$$\Gamma = \frac{1}{\Gamma} = 2.2 \mu s \approx m_{tot} = \frac{1}{192 \pi^3} = \frac{1}{192 \pi$$

# Energy spectrum of electrons from muon decay

M. Bardon, P. Norton, J. Peoples, A.M. Sachs, and J. Lee-Franzini, *Measurement of the Momentum Spectrum of Positrons from Muon Decay*, Phys. Rev. Lett. 14, 449 (1965)



Excellent agreement with V-A theory of weak interactions (Michel parameter  $\rho = 0.75$ ).

