PH4442 Advanced Particle Physics

Problem sheet 1

Due Monday, 20 October 2025

For all exercises take $\hbar=c=1$ and assume the Einstein summation convention over repeated upper and lower Lorentz indices, e.g., $p_{\mu}p^{\mu}=\sum_{\mu=0}^{3}p_{\mu}p^{\mu}$.

Exercise 1 [4 marks] Consider the Lorentz transformation corresponding to a boost along the z axis:

$$\begin{pmatrix} t' \\ x' \\ y' \\ z' \end{pmatrix} = \begin{pmatrix} \gamma & 0 & 0 & -\beta\gamma \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ -\beta\gamma & 0 & 0 & \gamma \end{pmatrix} \begin{pmatrix} t \\ x \\ y \\ z \end{pmatrix}$$

By defining the rapidity $\omega = \cosh^{-1} \gamma$, show that the transformation for $x^{\mu} = (t, x, y, z)$ can be written $x'^{\mu} = \Lambda^{\mu}_{\nu} x^{\nu}$ with

$$\Lambda = \begin{pmatrix} \cosh \omega & 0 & 0 & -\sinh \omega \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ -\sinh \omega & 0 & 0 & \cosh \omega \end{pmatrix}.$$

Exercise 2 [10 marks] Suppose the function $\varphi(x)$ is a Lorentz scalar, i.e., under a Lorentz transformation $x' = \Lambda x$, one has $\varphi'(x') = \varphi(x)$. Show that $(\partial_{\mu}\partial^{\mu})\varphi(x)$ transforms as a Lorentz scalar. (It may be easier to start with $(\partial_{\mu}\partial^{\mu})\varphi(x)$ and show this transforms into $(\partial'_{\mu}\partial'^{\mu})\varphi'(x')$.)

Exercise 3(a) [6 marks]: Consider the solution φ to the Klein-Gordon equation for a free particle,

$$(\partial_{\mu}\partial^{\mu} + m^2)\varphi = 0 ,$$

as well as the complex-conjugate solution φ^* . The four-vector probability current $j^{\mu}=(\rho,\vec{j})$ for the Klein-Gordon equation is

$$j^{\mu} = i \left(\varphi^* \partial^{\mu} \varphi - \varphi \partial^{\mu} \varphi^* \right) .$$

In analogy with the continuity relation for probability found for the Schrödinger equation, show that $\partial_{\mu}j^{\mu} = \partial \rho/\partial t + \nabla \cdot \vec{j} = 0$.

3(b) [2 marks] We can take the free-particle solutions to be $\varphi(x) = Ne^{-ip\cdot x}$ where $x = (t, \vec{x})$ and $p = (E, \vec{p})$ are the usual position and momentum four vectors and N is a normalisation factor. For this solution, find the four-vector probability current j^{μ} as a function of p^{μ} . In what important way is the result problematic? (See the lecture notes from week 1.)

Exercise 4 [10 marks] Recall the 4×4 Dirac matrices are

$$\gamma^0 = \begin{pmatrix} I_2 & 0 \\ 0 & -I_2 \end{pmatrix}, \qquad \gamma^i = \begin{pmatrix} 0 & \sigma_i \\ -\sigma_i & 0 \end{pmatrix}, \quad i = 1, 2, 3,$$

where I_2 represents a 2×2 identity matrix and σ_i are the Pauli matrices. Show that the γ matrices satisfy the anticommutation relation $\{\gamma^{\mu}, \gamma^{\nu}\} = 2g^{\mu\nu}I_4$, g = diag(1, -1, -1, -1) is the metric tensor of special relativity. Use the known properties of the Pauli matrices, e.g., $\{\sigma_i, \sigma_j\} = 2\delta_{ij}I_2$.

Exercise 5 [8 marks] Using the formulas for the Dirac spinors u_1 and u_2 from the lectures, show that $u_1^{\dagger}u_1 = 2E$ and $u_1^{\dagger}u_2 = 0$. These are special cases of

$$u_r^{\dagger}(p)u_s(p) = v_r^{\dagger}(p)v_s(p) = 2E\delta_{rs}$$
.

I.e., show explicitly that the relation holds for (a) u_1 with u_1 and (b) u_1 with u_2 .

Exercise 6: Consider a plane-wave solution to the Dirac equation $\psi(x) = u(p)e^{-ip\cdot x}$. We have seen that the current $j^{\mu} = \overline{\psi}\gamma^{\mu}\psi = \overline{u}\gamma^{\mu}u$ transforms like a four-vector, and therefore we must have

$$\overline{u}\gamma^{\mu}u = Ap^{\mu}$$

for some Lorentz scalar A, since the four-momentum p^{μ} is the only four-vector on which this could possibly depend.

- **6(a)** [4 marks] Using $u^{\dagger}u = 2E$, show that A = 2 and thus $j^{\mu} = 2p^{\mu}$.
- **6(b)** [6 marks] By contracting the equation above with p_{μ} , show that $\overline{u}u = (m/E)u^{\dagger}u = 2m$. (In a similar way one finds $\overline{v}v = -(m/E)v^{\dagger}v = -2m$.)
- G. Cowan