
Department of Physics

PH3010 Advanced Skills

Introduction to Machine Learning

1. Introduction

This project will provide an introduction to Machine Learning (ML) using the Python pro-
gramming package scikit-learn. Some basic ideas behind Machine Learning (ML) are
introduced in Sec. 2 and in Sec. 3 we focus on an important type of ML algorithm called
classification. As primary examples, linear classifiers and neural networks are described. In
Sec. 4 the Python package scikit-learn is presented, which is used for the exercises in
Sec. 5.

2. Basic ideas of Machine Learning

The term Machine Learning (ML) refers to algorithms that “learn from data” and make
predictions based on what has been learned. In the simplest sense, this means that the
algorithm contains adjustable parameters whose values are estimated using data. So formally
we can regard the simple fitting of a curve to data as a type of machine learning. For example
we could fit a curve

f(x;θ) = θ0 + θ1x+ θ2x
2 + θ3x

3 (1)

to the data values as shown in Fig. 1. The values of the parameters are estimated (learned)
from the measured data values (xi, yi), i = 1, . . . , N . The fitted curve can then be used to
predict the function at values of x where no data point was measured.

0 2 4 6 8 10
x

0

2

4

6

8

10

y

Figure 1: A curve f(x;θ) fitted to
measurements y with error bars σ
are carried out at known values of a
control variable x.

Generally, however, the term Machine Learning refers to situations in which the hypoth-
esized model is very general, e.g., not just a polynomial, and it often contains a very large
number of adjustable parameters. Furthermore the quantity we want to predict such as the
function f(x;θ) above often depends not only on a single variable x but rather on a large
number of quantities, and is thus said to be multivariate.

1

For example, one can extend the least-squares fit of a curve to data points (xi, yi) to the
fit of a (hyper-)surface to measurements yi, each carried out at a point x = (x1, . . . , xn) in
an n-dimensional space. For n = 2 this would correspond to fitting a surface, as illustrated
in Fig. 2. This is often called multivariate regression.

Figure 2: A function f(x1, x2) rep-
resented as a surface fitted to data
points (x1,i, x2,i, yi) (from Ref. [1]).

In this project we will focus not on regression but rather another Machine Learning task
called classification, described further in Sec. 3. Machine Learning can be seen as part of
or related to a number of other fields, such as Artificial Intelligence, Pattern Recognition,
Statistical Learning and Multivariate Analysis. It was developed mainly from Computer
Science with important input from Statistics. Collectively these fields are often called Data

Science. A good introduction to these topics can be found in Ref. [1].

3. Classification

In this section we will introduce a type of machine learning algorithm called classification.
This is an example of what is called supervised learning, whereby the parameters of the
algorithm are adjusted using data samples where the true class of the objects in question is
known. The basic ideas are presented in Sec. 3.1, and then two important types of classifier
are described: linear classifiers in Sec. 3.2 and neural networks in Sec. 3.3. Information on
further types of classifiers can be found, e.g., in Ref. [1]. A brief discussion on Boosted
Decision Trees can be found in Ref. [2].

3.1. Basic ideas of multivariate classifiers

Suppose we want to distinguish between objects (or “events” or “instances”) of two different
types. Each object is characterized by a set of n measured quantities or “features”, which
we write as a feature vector x = (x1, . . . , xn). For example the objects could be fish, and the
features are

x1 = length x4 = area of fins
x2 = width x5 = mean spectral reflectance
x3 = weight x6 = . . .

Suppose we scoop up fish in a net that are of two types, and we hire an expert to examine
each fish and to assign a true class label, e.g., y = 0 for sea bass and y = 1 for cod. If we
consider only two of the features, e.g., (x1, x2), then we can display these in a scatter plot as
in Fig. 3.

2

Figure 3: The distribution of
(x1, x2) for instances of two classes,
y = 0 (red triangles) and y = 1
(blue circles) with possible decision
boundaries.

The goal is to determine a decision boundary so that, without the help of the expert, we
can classify new fish by seeing where their measured features lie relative to the boundary.
The same basic idea holds with an n-dimensional feature vector, in which case the decision
boundary is a hypersurface in an n-dimensional space.

The decision boundary is defined in general by an equation of the form

t(x) = tc , (2)

where t(x) is a scalar function called a test statistic or also a decision function and tc is a
constant threshold value. Instances (fish) are classified as being of class 0 or 1 according to
whether t(x) is found greater or less than the chosen threshold. Figure 3 shows some possible
decision boundaries for several values of tc.

What then is the best decision boundary? It turns out that there is a well-defined answer
for the case where we know the joint probability density functions (pdfs) of the two classes
f(x|0) and f(x|1).1 The optimal decision boundary will be a surface of constant

t(x) =
f(x|1)
f(x|0) . (3)

This then is called a Bayes optimal (or Neyman-Pearson) boundary. The problem is that we
do not usually have the probability densities f(x|0) and f(x|1), but rather only samples of
data that correspond to the two classes. For the fish, for example, these were the samples
identified by the fish expert. In other cases we might have Monte Carlo model that can be
used to generate instances of x that follow the two densities. In either case we will refer to
these data samples as training data, i.e., data of the form (xi, yi) with i = 1, . . . , N where xi

is the feature vector of the ith instance and yi is its true class label.

If one does not have access to the true pdfs f(x|0) and f(x|1), then how can the optimal
decision boundary be found? In general one tries to make some assumption for the functional
form of the test statistic t(x) that contains some undetermined parameters. The values of
these parameters are then adjusted using the training data so as to result in the best possible
separation between the two classes of events. In general this will mean that the corresponding

1For a further information on probability densities and their properties, see, e.g, Ref. [3].

3

decision boundaries should be as close as possible to what would be obtained with a Bayes
optimal classifier.

For a given value of the threshold tc one can classify an instance as belonging to class 0
if t < tc and to class 1 if t ≥ tc. From the distributions of the decision function t(x) for the
two classes, f(t|0) and f(t|1), one can then work out the probability for correctly classifying
the instances,

P (correctly classify type 0) = P (t < tc|0) =
∫ tc

−∞

f(t|0) dt , (4)

P (correctly classify type 1) = P (t ≥ tc|1) =
∫

∞

tc

f(t|1) dt . (5)

Furthermore if a real data sample consists of fractions π0 and π1 = 1 − π0 of instances of
type 0 and 1, respectively, then one can find from Bayes’ theorem (see, e.g., Ref. [3]) the
probability for an instance to belong to one of the classes given a value t of the decision
function,

P (0|t) =
f(t|0)π0

f(t|0)π0 + f(t|1)π1
, (6)

P (1|t) =
f(t|1)π1

f(t|0)π0 + f(t|1)π1
. (7)

In a similar way one can find the probability for an instance to be of type 0 or 1 given that
it is found on one or the other side of the decision boundary, i.e.,

P (0|t < tc) =
P (t < tc|0)π0

P (t < tc|0)π0 + P (t < tc|1)π1
, (8)

P (1|t ≥ tc) =
P (t ≥ tc|0)π0

P (t ≥ tc|0)π0 + P (t ≥ tc|1)π1
. (9)

3.2. Linear classifiers

A simple Ansatz for the form of the test statistic is a linear function of the components of the
n-dimensional feature vector x = (x1, . . . xn), also referred to below as the “input variables”.
That is, we define the statistic t(x) as

t(x) =
n
∑

i=1

wixi , (10)

where the weights w = (w1, . . . , wn) are parameters that we adjust to achieve the best
possible decision boundary. To make the problem well defined we must specify what we
mean by “best” decision boundary. One possibility is to maximize the quantity

J(w) =
(E[t|0]− E[t|1])2
V [t|0] + V [t|1] , (11)

4

where E[t|0] and E[t|1] are the expectation values (means) of t and V [t|0] and V [t|1] are the
corresponding variances for instances of class 0 and 1, respectively. By adjusting the weights
to maximize J(w) one obtains a Fisher linear discriminant. The weights are only determined
up to a multiplicative constant and can be shown to be given by (see, e.g., Ref. [3])

w ∝ W−1(E[x|0]− E[x|1]) , (12)

where the matrix W is the sum of the covariances for the two classes, i.e.,

Wij = cov[xi, xj |0] + cov[xi, xj |1] . (13)

Once the weights are fixed, one can treat the function t(x) as a fixed function of the random
variable x. For each new instance x one obtains a value of t, and so the distribution of t can
be displayed as a histogram.

A two-dimensional example is shown in Fig. 4(a), with decision boundaries corresponding
to several values of the constant tc. Figure 4(b) shows the distribution of of the decision
function t for the two classes.

−2 0 2
x1

−3

−2

−1

0

1

2

3

x 2

-8.000

-4.000

0.000

4.000

8.000

−7.5 −5.0 −2.5 0.0 2.5 5.0 7.5
decision function t

0.00

0.05

0.10

0.15

0.20

0.25

0.30

f(t
)

(a) (b)

Figure 4: (a) Distributions of instances (x1, x2) for two classes with decision boundaries corresponding
to a linear Fisher discriminant; (b) distributions of the corresponding decision function t(x) for the
two classes.

From the histograms shown in Fig. 4(b) one can determine the distributions of the statistic t,
f(t|0) and f(t|1), and from the corresponding classification probabilities can be found using
the formulae given in Sec. 3.1.

3.3. Neural networks

One can easily see from the scatter plot shown in Fig. 4(a) that a linear decision boundary
is not the best possible choice. Better classification probabilities would clearly result from a
nonlinear boundary as in Fig. 3. To obtain such a nonlinear boundary, the decision function
t(x) must be a nonlinear function of the input variables x. One way of constructing such a
function is with a neural network.

A simple type of neural network called a single layer perceptron is can be defined as

t(x) = h

(

w0 +
n
∑

i=1

wixi

)

, (14)

5

where h() is called the activation function. That is, the argument of the activation function
is the same as the linear combination of variables used in the linear discriminant, but here
also has an adjustable offset w0. Often one chooses for h a logistic sigmoid function, defined
as

h(u) =
1

1 + e−u
. (15)

A sketch of the logistic sigmoid is shown in Fig. 5.

u

5− 4− 3− 2− 1− 0 1 2 3 4 5

h
(u

)

0

0.2

0.4

0.6

0.8

1

Figure 5: A sigmoid activation
function h(u).

The structure of the test statistic t(x) is often represented with a graph as in Fig. 6(a).
The input variables x = (x1, . . . , xn) are shown as nodes on the left; the function’s output is
on the right. The lines from the output to input nodes represent the connections, quantified
by the corresponding weight parameters w1, . . . , wn.

x1

xn

(a)

 (x)t (x)

x1

xn

(b)

t

Figure 6: Simple examples of neural networks: (a) a single-layer perceptron and (b) a multi-layer
perceptron with a single hidden layer.

The sigmoid function is monotonic and thus has a unique inverse h−1. Therefore for the
single-layer perceptron, the surface described by t(x) = tc is the same as what one finds from

h−1(t(x)) = w0 +
n
∑

i=1

wixi = h−1(tc) . (16)

That is, the linear combination of the input variables is still equal to a constant and there-
fore one finds a linear decision boundary. We can, however, obtain a nonlinear bound-
ary by defining a multi-layer perceptron. To do this, we first define a set of functions
ϕ = (ϕ1(x), . . . , ϕm(x)), according to

6

ϕi(x) = h

w
(1)
i0 +

m
∑

j=1

w
(1)
ij xj

 , (17)

where the w
(1)
ij are the weights that relate ϕi to the input variables. The functions ϕi(x)

are said to constitute a hidden layer and are indicated by the middle column of nodes in
Fig. 6(b). The final decision function is determined by treating the ϕ as if they were now
the input variables, i.e.,

t(x) = h

w
(2)
0 +

m
∑

j=1

w
(2)
j ϕj(x)

 , (18)

where w
(2)
j are the weights that connect the output t(x) to the previous layer of the network,

here the hidden layer. The decision boundaries shown earlier in Fig. 3 are in fact from a
multi-layer perceptron with a single hidden layer.

In constructing a neural network the analyst must decide on its architecture, i.e. the
number of hidden layers and the number nodes in each of these layers. This is an active topic
of research and a detailed discussion is beyond the scope of this project. There is a theorem
according to which one can obtain a Bayes optimal decision boundary for a sufficiently large
number of nodes in a single hidden layer (see, e.g., [4]). Nevertheless the number of required
nodes may be very large and this may entail significant computational difficulties. In recent
years there has been significant progress made with deep neural networks, where here “deep”
refers to a large number (e.g., 5 to 10 or more) of hidden layers. These form the basis of
deep learning, and have demonstrated significant advantages over “shallow” networks with a
single hidden layer.

To train the neural network, i.e., to find the optimal values of the weights, one generally
minimizes a loss function of the form

E(w) =
1

2

N
∑

i=1

|t(xi)− yi|2 , (19)

where w represents all of the weights, and one sums for all training events the square of
the difference between the decision function t(xi) and the true class label yi. This way, the
weights will be adjusted such that an event of types 0 or 1 will return a value of t(x) near
zero or one, respectively.

For a complex neural network with many weights, minimizing the loss function can be
computationally very difficult and has its own extensive literature. Important algorithms
including error backpropagation and stochastic gradient descent; further details can be found,
e.g., in Ref. [5].

One of the most important properties of a neural network or indeed any machine learning
algorithm is its ability to correctly classify unseen data, i.e., data that has not been used
as part of the training. As an example of the type of difficulty involved, suppose one were
to design an algorithm with a very large number of adjustable parameters and thus a very
flexible decision boundary, as shown in Fig. 7(a).

Because of its ability to twist and turn, the boundary has succeeded in correctly classifying
all of the events in the training sample. But if one takes the same boundary and applies it to
a statistically independent sample of events (a test sample) as shown in Fig. 7(b), then the

7

1
x

−2 0 2 4

2
x

−2

0

2

4

1
x

−2 0 2 4

2
x

−2

0

2

4

(a) (b)

Figure 7: Scatter plot of events of two types and the decision boundary determined by a particularly
flexible classifier. Plot (a) shows the events used to train the classifier, and (b) shows an independent
sample of test data.

performance is significantly worse. The nonlinear features needed to get every event on the
right side of the boundary in the training sample actually degrade the performance for the
test sample. This is an example of what is called overtraining. To avoid this, one can use
the test sample to evaluate the classifier’s performance and to choose its architecture and in
this way fix the level of flexibility of the decision boundary.

4. Using scikit-learn

In this project several examples of multivariate classifiers will be explored using the Python
package scikit-learn, available from the website scikit-learn.org. It is built on the
Python packages NumPy and SciPy, and as usual plots can be made with MatPlotLib. So at
the start of your code you need to include the appropriate libraries, as shown in the sample
code in Appendix A.

To use a given classifier supported by scikit-learn you need to include its corresponding
package. The usual practice is to import only those that are needed. For example, for a multi-
layer perceptron your code would contain the line

from sklearn.neural_network import MLPClassifier

For a list of the various classifiers in scikit-learn see the documents on scikit-learn.org,
specifically the very useful sample program at

scikit-learn.org/stable/auto_examples/classification/plot_classifier_comparison.html

We will do an example with data corresponding to events of two types: signal (y = 1, blue)
and background (y = 0, red). Each event is characterized by three values, i.e., x = (x1, x2, x3).
The three components are correlated in a nontrivial way; for x1 and x2 this can be seen in
the scatter plots shown earlier such as Fig 3. The marginal distributions of each of the three
components are shown in Fig. 8.

The sample program simpleClassifier.py in Appendix A shows how to read in the
data from two files, one for each event type, signal.txt and background.txt. The signal

8

−2.5 0.0 2.5
x1

0.0

0.2

0.4

0.6
f 1
(x

1)

−2 0 2 4
x2

0.0

0.2

0.4

0.6

f 2
(x

2)

0.0 0.5 1.0
x3

0

1

2

3

4

f 3
(x

3)

(a) (b) (c)

Figure 8: Marginal distributions of the three components of the feature vector x = (x1, x2, x3) for
events of the two classes: signal (y = 1, blue) and background (y = 0, red).

events are assigned a target value of 1 and the background events a value 0. The arrays
of values for signal and background events are then concatenated into a single long array,
which is then split by random assignment of events into two disjoint sets, one for training
the classifier and the other for evaluating its performance.

The code as given in simpleClassifier.py contains the line

X = X[:,0:2] # at first, only use x1 and x2

The purpose of this line is to use only the first two components, x1 and x2, of the three-
dimensional feature vector so that one can make a scatter plot of the two values and visualise
more easily the resulting decision boundary. After having made the two-dimensional plots
one would comment out this line so as to use all of the components of the feature vector.

The architecture and other parameters of the multilayer perceptron are defined by the
line

clf = MLPClassifier(hidden_layer_sizes=(5,), activation='tanh',

max_iter=2000, random_state=0)

There are several choices for the activation function, including tanh, logistic (i.e., a sigmoid
function) and relu (rectified linear unit). To define the number of hidden layers of given sizes
one uses the hidden_layer_sizes argument. For example,

hidden_layer_sizes=(10,10,10)

gives three hidden layers each having ten nodes. Note that for a single hidden layer, Python
requires an extra comma, e.g., hidden_layer_sizes=(5,) for a single hidden layer with five
nodes. The classifier is trained, i.e., the values of the weights of the neural network are fitted
using the training data by the line

clf.fit(X_train, y_train)

One can then evaluate the prediction accuracy of the classifier using

y_pred = clf.predict(X_test)

print 'classification accuracy = ', metrics.accuracy_score(y_test, y_pred)

This uses the predict_proba function with a default threshold of 0.5. Alternative one can
use an arbitrary threshold, e.g., tc = 0.3, with

9

y_pred = (clf.predict_proba(X_test)[:,1] >= 0.3).astype(bool)

or with classifiers where a decision function has been defined one can replace in the line above
predict_proba by decision_function. Or one can simply loop over the events and evaluate
the classifier’s decision function at an arbitrary point. For example, using the two-dimensional
example one could evaluate t(x1, x2) at the point x = 0.37 and x2 = 2.46 using

xpt = np.array([0.37, 2.46]).reshape((1,-1)) # make numpy array

t = clf.predict_proba(xpt)[0, 1]

Note for most classifiers available in scikit-learn one can use the decision_function to
get t(x). Exceptionally, for the multilayer perceptron this function has not been implemented,
but one has instead the closely related function predict_proba, which gives the probability
for an event to be of type 0 or 1 according to Eqs. (6) and (7).

5. Project exercises

Exercise 1 (warm up):

1(a) Run the program simpleClassifier.py and describe the output. It is set up to use at first
only the first two components, x1 and x2, so that the results can be displayed as a scatter
plot.

1(b) Change the program to use all three input variables by removing the line X = X[:,0:2].
You will also have to side-step the code that makes the scatter plot.

1(c) Change numbers of hidden layers and nodes; try to find the maximum possible classifi-
cation accuracy. Note if the number of requested layers/nodes gets too large, it will not be
possible to train (find the minimum of the loss function).

1(e) For the best architecture that you find, use the test sample to produce histogram of the
network output (see sample code).

Exercise 2: In this exercise you will experiment with different types of classifiers.

2(a) Using the scikit-learn documentation and the program plot_classifier_comparison

mentioned above, implement a linear classifier (class LinearDiscriminantAnalysis) using
all three input variables.

2(b) Make a histogram of the classifier output; compare its performance to your best neural
network.

2(c) By consulting the documentation and sample program, implement and investigate the
performance of: (i) a K-Nearest Neighbour Classifier (KNeighborsClassifier), (ii) a Support
Vector Machine (SVC), (iii) a Boosted Decision Tree (AdaBoostClassifier). Provide a brief
description of these classifiers in your report.

2(d) For at least one of the classifiers implemented, plot the classification error rate as a
function of its complexity (i.e., flexibility of the decision boundary). For example, for the
K-Nearest Neighbour algorithm, vary K; for the Support Vector Machine, use the radial
basis function (Gaussian) kernel, and plot the error rate as a function of the cost parameter
C for several values γ; for a Boosted Decision Tree vary the number of boosting iterations.
See the scikit-learn documentation for a full explanation of the parameters.

Exercise 3: Using the samples of training events above, suppose that event type 0 is regarded
as “background”, i.e., events of some known type, and type 1 results from a hypothetical new

10

process, “signal”, whose existence in Nature has not yet been established. In an experiment
a certain total number of events is produced, which we will model as a random variable
following a Poisson distribution.

We can count the events and measure for each the feature vector x, but we do not know
whether a given event is signal or background. Nevertheless we can use the training samples
corresponding to the two known data types to construct a test statistic t(x) that will be,
say, low for background events and high for signal events. We can then count the number
of events n found with t(x) in the signal-like region, t(x) ≥ tc for some threshold or “cut”
value tc. If this number of events is found to be too large than what can be explained by the
background-only hypothesis, then we can claim discovery of the signal.

Suppose that the expected total number of background events is btot = 100 and the
expected number for the hypothetical signal process is stot = 10. The expected numbers of
events having t(x) ≥ tc are given by

b = btotP (t ≥ tc|0) , (20)

s = stotP (t ≥ tc|1) . (21)

To find the probabilities of t ≥ tc for the given event types one can loop over the events of the
two types, evaluate t(x) for each event, and count the number on each side of the threshold.

3(a) Train classifiers using the samples of training data. Make a plot of s and b as a function
of tc for the linear classifier and at least one of the others.

3(b) In the search for the signal process, we can count the number of events found with
t ≥ tc and use this to test the hypothesis that all of the events are of the background type.
The number of events found n will follow a Poisson distribution with mean s + b, i.e., the
probability of n given a certain threshold tc is

P (n|t ≥ tc) =
(s+ b)n

n!
e−(s+b) . (22)

To establish the existence of the signal process we can test and try to reject the hypothesis
that s = 0 (the “background-only hypothesis”). If, for example, we select all of the events
regardless of t (i.e., tcut → −∞)), then s + b = 0 + 100 = 100. If we were to see, say,
103 events, then this would be consistent with having s = 0, since the value of n fluctuates
as a Poisson distributed quantity with mean b = 100 and thus with a standard deviation
σn =

√
b = 10. On the other hand, if we saw n = 150, then we would be more confident that

some additional process (such as the signal) is contributing to the background.

An estimate of s based on data can be found using ŝ = n− b (here the hat denotes that
this quantity is an estimator for the parameter s). That is, if we find n = 120 then the
estimated signal strength is ŝ = n − b = 20. We can quantify the statistical significance of
the observed signal by comparing ŝ to the standard deviation of the number of background
events, which is a Poisson distributed variable with mean b and therefore standard deviation√
b. A measure of significance can therefore be defined as

Z =
ŝ√
b
=

n− b√
b

. (23)

One can understand this formula as a measure of the signal’s size compared to the standard
deviation of the number of background events, and is thus often quoted as a number of

11

“sigmas”. If, say, Z = 5, then the observed signal rate is five times greater than the expected
level of fluctuation in the background, and thus the background-only hypothesis is strongly
disfavoured.

In the planning phase of the experiment it is useful to have a measure of how statistically
significant an apparent signal may be if in fact the nominal signal model is true. To quantify
this we can give the expected value of Z under assumption that the mean of n is s+ b for a
hypothesized value of s. That is, the expected significance is

〈Z〉 = 〈n〉 − b√
b

=
s+ b− b√

b
=

s√
b
. (24)

The formula (24) for the expected significance is in fact an approximation that breaks down
for small b. A better approximation that takes into effect the Poisson nature of the data is

〈Z〉 =
√

2

(

(s+ b) ln

(

1 +
s

b

)

− s

)

. (25)

The motivation behind Eq. (25) is given in Ref. [6] and goes beyond the scope of this project.
Nevertheless you can use the formula and compare the results you get between Eqs. (24) and
(25).

To design an experiment to search for the presence of signal, one must determine an
optimal value for tc. To do this, make a plot of 〈Z〉 using the formulae above (Eq. (25) is
preferred). Find the value of tc for which this is maximum and the corresponding 〈Z〉.

In addition to the cut value tc, all aspects of the analysis, e.g., the choice of classifier, its
hyperparameters, input variables, etc., can be found by optimizing something that measures
the expected “quality” of the result, which in this case can be taken as the expected discovery
significance 〈Z〉. Try therefore to repeat the optimization procedure above by varying the
classifier and/or its hyperparameters, with the goal of finding the highest possible expected
discovery significance.

References

[1] Gareth James, Daniela Witten, Trevor Hastie and Robert Tibshirani, An

Introduction to Statistical Learning with Applications in R, Springer, 2013;
http://www-bcf.usc.edu/~gareth/ISL/

[2] G. Cowan, Topics in statistical data analysis for high energy physics, Lectures given
at the 2009 European School of High-Energy Physics, Bautzen, Germany, 14-27 June
2009, CERN Yellow Report CERN-2010-002, pp.197-218; arXiv:1012.3589 (2010).

[3] G. Cowan, Statistical Data Analysis, Oxford University Press, 1998.

[4] M. Leshno, V. Lin, A. Pinkus and S. Schocken, Multilayer Feedforward Networks With a

Nonpolynomial Activation Function Can Approximate Any Function, Neural Networks
6 (1993) 861-867.

[5] Michael A. Nielsen, Neural Networks and Deep Learning, Determination Press, 2015;
neuralnetworksanddeeplearning.com

[6] G. Cowan, K. Cranmer, E. Gross and O. Vitells, Asymptotic formulae for likelihood-

based tests of new physics, Eur. Phys. J. C 71 (2011) 1554.

12

A. Python code

Program simpleClassifier.py for multivariate classification.

1 # simpleClassifier.py

2 # G. Cowan / RHUL Physics / October 2017

3 # Simple program to illustrate classification with scikit-learn

4

5 import scipy as sp

6 import numpy as np

7 import matplotlib

8 import matplotlib.pyplot as plt

9 import matplotlib.ticker as ticker

10

11 from sklearn.neural_network import MLPClassifier

12 from sklearn.model_selection import train_test_split

13 from sklearn import metrics

14

15 # read the data in from files,

16 # assign target values 1 for signal, 0 for background

17 sigData = np.loadtxt('signal.txt')

18 nSig = sigData.shape[0]

19 sigTargets = np.ones(nSig)

20

21 bkgData = np.loadtxt('background.txt')

22 nBkg = bkgData.shape[0]

23 bkgTargets = np.zeros(nBkg)

24

25 # concatenate arrays into data X and targets y

26 X = np.concatenate((sigData,bkgData),0)

27 X = X[:,0:2] # at first, only use x1 and x2

28 y = np.concatenate((sigTargets, bkgTargets))

29 X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.5, random_state=1)

30

31 # create classifier object and train

32 clf = MLPClassifier(hidden_layer_sizes=(5,), activation='tanh',

33 max_iter=2000, random_state=0)

34 clf.fit(X_train, y_train)

35

36 # evaluate its accuracy using the test data

37 y_pred = clf.predict(X_test)

38 print ('classification accuracy = ', metrics.accuracy_score(y_test, y_pred))

39

40 # make a scatter plot

41 fig, ax = plt.subplots(1,1)

42 plt.gcf().subplots_adjust(bottom=0.15)

43 plt.gcf().subplots_adjust(left=0.15)

44 ax.set_xlim((-2.5,3.5))

45 ax.set_ylim((-2,4))

46 x0,x1 = ax.get_xlim()

47 y0,y1 = ax.get_ylim()

48 ax.set_aspect(abs(x1-x0)/abs(y1-y0)) # make square plot

49 xtick_spacing = 0.5

50 ytick_spacing = 2.0

51 ax.yaxis.set_major_locator(ticker.MultipleLocator(xtick_spacing))

52 ax.yaxis.set_major_locator(ticker.MultipleLocator(ytick_spacing))

53 plt.scatter(sigData[:,0], sigData[:,1], s=3, color='dodgerblue', marker='o')

54 plt.scatter(bkgData[:,0], bkgData[:,1], s=3, color='red', marker='o')

55

56 # add decision boundary to scatter plot

57 x_min, x_max = X[:, 0].min() - .5, X[:, 0].max() + .5

58 y_min, y_max = X[:, 1].min() - .5, X[:, 1].max() + .5

59 h = .01 # step size in the mesh

60 xx, yy = np.meshgrid(np.arange(x_min, x_max, h), np.arange(y_min, y_max, h))

61 # depending on classifier call predict_proba or decision_function

62 Z = clf.predict_proba(np.c_[xx.ravel(), yy.ravel()])[:, 1]

63 if hasattr(clf, "decision_function"):

64 Z = clf.decision_function(np.c_[xx.ravel(), yy.ravel()])

65 else:

66 Z = clf.predict_proba(np.c_[xx.ravel(), yy.ravel()])[:, 1]

13

67 Z = Z.reshape(xx.shape)

68 plt.contour(xx, yy, Z, 1, colors='k')

69 plt.xlabel(r'x_{1}', labelpad=0)

70 plt.ylabel(r'x_{2}', labelpad=15)

71 plt.savefig("scatterplot.pdf", format='pdf')

72

73 # make histogram of decision function

74 plt.figure() # new window

75 matplotlib.rcParams.update({'font.size':14}) # set all font sizes

76 # depending on classifier call predict_proba or decision_function

77 if hasattr(clf, "decision_function"):

78 tTest = clf.decision_function(X_test)

79 else:

80 tTest = clf.predict_proba(X_test)[:,1]

81 tBkg = tTest[y_test==0]

82 tSig = tTest[y_test==1]

83 nBins = 50

84 tMin = np.floor(np.min(tTest))

85 tMax = np.ceil(np.max(tTest))

86 bins = np.linspace(tMin, tMax, nBins+1)

87 plt.xlabel('decision function t', labelpad=3)

88 plt.ylabel('$f(t)$', labelpad=3)

89 n, bins, patches = plt.hist(tSig, bins=bins, density=True, histtype='step', fill=False, color='dodgerblue')

90 n, bins, patches = plt.hist(tBkg, bins=bins, density=True, histtype='step', fill=False, color='red', alpha=0.5)

91 plt.savefig("decision_function_hist.pdf", format='pdf')

92

93 plt.show()

G. Cowan
RHUL Physics

Version 1.2 / November 2019

14

