
PH3010 / Machine Learning 1G. Cowan / RHUL Physics

PH3010 / Advanced Skills
Introduction to Machine Learning

Glen D. Cowan
RHUL Physics

PH3010 / Machine Learning 2G. Cowan / RHUL Physics

Outline
Part 1:

What Machine Learning is and how it can be applied

Classification of two types of “events”

Linear classifiers: Fisher Discriminant

Part 2:

Nonlinear classifiers: Neural Networks

Software for Machine Learning: scikit-learn

Exercises

Part 3 (extension):

Multiple regression

PH3010 / Machine Learning 3G. Cowan / RHUL Physics

What Machine Learning is
The term Machine Learning (ML) refers to algorithms that “learn
from data” and make predictions based on what has been
learned.

In its simplest sense, “learning” means the algorithm contains
adjustable parameters whose values are estimated using data.

Formally, curve fitting can be seen as Machine Learning.

Hypothesized curve:

Values of parameters are “learned”
from the data.

Fitted curve can make predictions
at x values of future measurements.

PH3010 / Machine Learning 4G. Cowan / RHUL Physics

More general Machine Learning
But generally ML refers to situations in which:

the hypothesized model is very general (e.g., not just
a polynomial) and contains many adjustable parameters;

the quantity we want to predict could depend on many
variables, e.g., not just x but a vector x = (x1,...,xn).

ML can be seen as a part of or related to:

Artificial Intelligence

Pattern Recognition

Statistical Learning

Multivariate Analysis

Development from (mainly) Computer Science, (also) Statistics;
sometimes “Data Science” used to refer to all of above.

PH3010 / Machine Learning 5G. Cowan / RHUL Physics

Curve fitting → regression

E.g. in two dimensions,
multiple regression means
fitting a surface f (x1, x2)
to data points (x1,i, x2,i, yi):

https://web.stanford.edu/~hastie/ISLR2/ISLRv2_website.pdf

The generalisation of curve fitting with a multidimensional control
variable x → x = (x1,..., xn) is called multiple regression.

The data consist of sets of points (xi, yi), where now xi is a
multidimensional vector, and usually the yi does not come with
an error bar.

Goal is to predict the expected y value for a new x.

PH3010 / Machine Learning 6G. Cowan / RHUL Physics

Classification
A related type of ML algorithm is called classification: the data
consist of points (xi, yi), where now yi is discrete class label,
(e.g., 0 or 1, red or blue, etc.).

Learning based on events with known yi = supervised learning.

Goal is to create a decision boundary in x-space so as to predict
the class y of a new instance of x.

decision boundary

red = class 0

blue = class 1

PH3010 / Machine Learning 7G. Cowan / RHUL Physics

Example of classification: Industrial Fishing
You scoop up fish which are of two types:

Sea
Bass Cod

You examine the fish with automatic sensors and for each one
you measure a set of features:

x1 = length x4 = area of fins
x2 = width x5 = mean spectral reflectance
x3 = weight x6 = ...

These constitute the “feature vector” x = (x1,..., xn).

In addition you hire a fish expert to identify the “true class label”
y = 0 or 1 (i.e., 0 =sea bass, 1 = cod) for each fish.

PH3010 / Machine Learning 8G. Cowan / RHUL Physics

Distributions of the features

If we consider only two
features x = (x1, x2), we can
display the results in a scatter
plot (red: y = 0, blue: y = 1).

Goal is to determine a decision boundary, so that, without the help
of the fish expert, we can classify new fish by seeing where their
measured features lie relative to the boundary.

Same idea in multi-dimensional feature space, but cannot
represent as 2-D plot. Decision boundary is n-dim. hypersurface.

PH3010 / Machine Learning 9G. Cowan / RHUL Physics

Example use of Machine Learning:
Particle Physics at the LHC

Counter-rotating proton beams
in 27 km circumference ring

pp centre-of-mass energy 14 TeV

Detectors at 4 pp collision points:
ATLAS
CMS
LHCb (b physics)
ALICE (heavy ion physics)

general purpose

PH3010 / Machine Learning 10G. Cowan / RHUL Physics

The ATLAS Detector at the LHC

3000 physicists
37 countries
167 universities/labs

25 m diameter
46 m length
7000 tonnes
~108 electronic channels

PH3010 / Machine Learning 11G. Cowan / RHUL Physics

A simulated proton-proton collision
from supersymmetry (“signal”)

high pT
muons

high pT jets
of hadrons

missing transverse energy

p p

PH3010 / Machine Learning 12G. Cowan / RHUL Physics

A simulated proton-proton collision from
production of top quarks (“background”)

This event has features
similar to what we hope
to see in supersymmetric
events, and thus constitutes
a “background” that can
mimic the “signal”.

PH3010 / Machine Learning 13G. Cowan / RHUL Physics

Classification of proton-proton collisions
Proton-proton collisions can be considered to come in two classes:

signal (the kind of event we’re looking for, y = 1)
background (the kind that mimics signal, y = 0)

For each collision (event), we measure a collection of features:
x1 = energy of muon x4 = missing transverse energy
x2 = angle between jets x5 = invariant mass of muon pair
x3 = total jet energy x6 = ...

The real events don’t come with true class labels, but computer-
simulated events do. So we can have a set of simulated events
that consist of a feature vector x and true class label y (0 for
background, 1 for signal):

(x, y)1, (x, y)2, ..., (x, y)N
The simulated events are called “training data”.

PH3010 / Machine Learning 14G. Cowan / RHUL Physics

What is the best decision boundary?

“cuts” linear nonlinear

PH3010 / Machine Learning 15G. Cowan / RHUL Physics

What is the best decision function?

A surface in an n-dimensional
space can be described by

scalar
function constant

Different values of the constant
tc result in a family of surfaces.

Problem is reduced to finding
the best decision function t (x).

PH3010 / Machine Learning 16G. Cowan / RHUL Physics

Linear decision boundary
A simple Ansatz is to try a
decision function of the form

where the coefficients w1,..., wn are constants (or “weights”) we
need to determine using the training data.

A given choice of the weights
fixes the function t (x).

Look at the training events
from the two classes, for
each evaluate t (x) and enter
into a histogram.

Goal is to maximize the
“separation” between the
two distributions.

signalback-
ground

PH3010 / Machine Learning 17G. Cowan / RHUL Physics

Fisher discriminant
Using a particular definition of what constitutes “best separation”
due to R. Fisher one obtains a Fisher discriminant:

PH3010 / Machine Learning 18G. Cowan / RHUL Physics

Outline
Part 1:

What Machine Learning is and how it can be applied

Classification of two types of “events”

Linear classifiers: Fisher Discriminant

Part 2:

Nonlinear classifiers: Neural Networks

Software for Machine Learning: scikit-learn

Exercises

Part 3 (extension):

Multiple regression

PH3010 / Machine Learning 19G. Cowan / RHUL Physics

Nonlinear decision boundaries
From the scatter plot below it’s clear that some nonlinear boundary
would be better than a linear one:

And to have a nonlinear
boundary, the decision
function t (x) must be
nonlinear in x.

PH3010 / Machine Learning 20G. Cowan / RHUL Physics

Neural Networks
A simple nonlinear decision function can be constructed as

where h is called the “activation function”. For this one
can use, e.g., a logistic sigmoid function,

u

PH3010 / Machine Learning 21G. Cowan / RHUL Physics

Single Layer Perceptron

In this form, the decision
function is called a
Single Layer Perceptron –
the simplest example of a
Neural Network.

But the surface described by t (x) = tc is the same as by

So here we still have a linear decision boundary.

input layer

output node

PH3010 / Machine Learning 22G. Cowan / RHUL Physics

Multilayer Perceptron
The Single Layer Perceptron can be generalized by defining
first a set of functions φi(x), with i = 1,..., m:

The φi(x) are then treated as if they were the input variables, in
a perceptron, i.e., the decision function (output node) is

PH3010 / Machine Learning 23G. Cowan / RHUL Physics

Multilayer Perceptron (2)

input
layer

output node

hidden layer with m nodes
φ1(x),..., φm(x)

Each line in the graph represents one of the weights wij(k),
which must be adjusted using the training data.

PH3010 / Machine Learning 24G. Cowan / RHUL Physics

Training a Neural Network
To train the network (i.e., determine the best values for the
weights), define a loss function, e.g.,

where w represents the set of all weights, the sum is over the
set of training events, and yi is the (numeric) true class label
of each event (0 or 1).

The optimal values of the weights are found by minimizing
E(w) with respect to the weights (non-trivial algorithms:
backpropagation, stochastic gradient descent,...).

The desired result for an event with feature vector x is:
if the event is of type 0, want t (x) ~ 0,
if the event is of type 1, want t (x) ~ 1.

PH3010 / Machine Learning 25G. Cowan / RHUL Physics

Distribution of neural net output

signalback-
ground

Degree of separation between classes now much better than
with linear decision function:

PH3010 / Machine Learning 26G. Cowan / RHUL Physics

Deep Neural Networks
The multilayer perceptron can be generalized to have an arbitrary
number of hidden layers, with an arbitrary number of nodes in
each (= “network architecture”).

A “deep” network has several (or many) hidden layers:

H.I. Kim and K.Y. Han, Water 2020, 12(3), 899

“Deep Learning” is a
very recent and active
field of research.

PH3010 / Machine Learning 27G. Cowan / RHUL Physics

Overtraining
Including more parameters in a classifier makes its decision boundary
increasingly flexible, e.g., more nodes/layers for a neural network.

A “flexible” classifier may conform too closely to the training points;
the same boundary will not perform well on an independent test
data sample (→ “overtraining”).

training sample independent test sample

PH3010 / Machine Learning 28G. Cowan / RHUL Physics

Monitoring overtraining
If we monitor the fraction of misclassified events (or similar, e.g.,
loss function E(w)) for test and training samples, it will usually
decrease for both as the boundary is made more flexible:

error
rate

complexity/flexibility (e.g., number
of nodes/layers in MLP)

test sample

training sample

optimum at minimum of
error rate for test sample

increase in error rate
indicates overtraining

PH3010 / Machine Learning 29G. Cowan / RHUL Physics

Other types of classifiers
We have seen only two types of classifiers:

Linear (Fisher discriminant)
Neural Network

There are many others:
Support Vector Machine
Boosted Decision Tree
K-Nearest Neighbour
...

The field is rapidly developing with advances, e.g., that allow one
to use feature vectors of very high dimension, such as the pixels
of an image.

→ face/handwriting recognition, driverless cars...

PH3010 / Machine Learning 30G. Cowan / RHUL Physics

Machine Learning for handwriting recognition
https://www.wolfram.com/mathematica/new-in-10/highly-automated-machine-learning/

Initial feature vector = set of pixel values of an image

PH3010 / Machine Learning 31G. Cowan / RHUL Physics

Scene parsing/labeling with
Convolutional Neural Nets

Y. LeCun

See Deep Learning and the Future of AI, seminar at CERN by
Yann LeCun: https://indico.cern.ch/event/510372/

PH3010 / Machine Learning 32G. Cowan / RHUL Physics

Software for Machine Learning
We will practice ML with the Python package scikit-learn

scikit-learn.org ← software, docs, example code

scikit-learn built on NumPy, SciPy and matplotlib, so you need
import scipy as sp
import numpy as np
import matplotlib
import matplotlib.pyplot as plt

and then you import the needed classifier(s), e.g.,
from sklearn.neural_network import MLPClassifier

For a list of the various classifiers in scikit-learn see the docs
on scikit-learn.org, also a very useful sample program:

http://scikit-learn.org/stable/auto_examples/classification/plot_classifier_comparison.html

PH3010 / Machine Learning 33G. Cowan / RHUL Physics

Example: the data
We will do an example with data corresponding to events
of two types: signal (y = 1, blue) and background (y = 0, red).

Each event is characterised by 3
quantities: x = (x1, x2, x3).

Components are correlated.

Suppose we have 1000 events
each of signal and background.

PH3010 / Machine Learning 34G. Cowan / RHUL Physics

Reading in the data
scikit-learn wants the data in the form of numpy arrays:

read the data in from files,
assign target values 1 for signal, 0 for background
sigData = np.loadtxt('signal.txt')
nSig = sigData.shape[0]
sigTargets = np.ones(nSig)
bkgData = np.loadtxt('background.txt')
nBkg = bkgData.shape[0]
bkgTargets = np.zeros(nBkg)

concatenate arrays into data X and targets y
split into two parts: use one for training, the other for testing
X = np.concatenate((sigData,bkgData),0)[:,0:2] # for now, only use x1, x2
y = np.concatenate((sigTargets, bkgTargets))

split data into training and testing samples
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.5,

random_state=1)

PH3010 / Machine Learning 35G. Cowan / RHUL Physics

Create, train, evaluate the classifier
Create an instance of the MLP (multilayer perceptron) class
and “train”, i.e., adjust the values of the weights to minimise
the loss function.

Here we request 3 hidden layers with 10 nodes each:
create classifier object and train
clf = MLPClassifier(hidden_layer_sizes=(10,10,10), activation='tanh',

max_iter=2000, random_state=6)
clf.fit(X_train, y_train)

evaluate its accuracy (= 1 – error rate) using the test data
y_pred = clf.predict(X_test)
print(metrics.accuracy_score(y_test, y_pred))

Use test data to see what fraction of events are correctly classified
(default takes threshold of 0.5 for decision function)

PH3010 / Machine Learning 36G. Cowan / RHUL Physics

Evaluating the decision function

xt = np.array([0.37, 2.46]).reshape((1,-1)) # input is numpy array
t = clf.predict_proba(xt)[0, 1]

So now for an arbitrary point (x1, x2) in the feature space,
we can evaluate the decision:

Or we may have an array of points in x-space, so we can
get an array of probabilities:

t = clf.predict_proba(X_test)[:, 1] # returns prob to be of type y=1

Can get this separately for the signal and background events
and make histograms (see sample code).

Note for most other classifiers, the decision function is called
decision_function – use this instead of predict_proba.

PH3010 / Machine Learning 37G. Cowan / RHUL Physics

Exercises
Run the program simpleClassifier.py and describe the output.
It is set up to use at first only the first two components, x1 and x2,
so that the results can be displayed as a scatter plot.

Change program to use all three input variables by removing
the line X = X[:,0:2] and you will have to side-step the code that
makes the scatter plot.

Change numbers of hidden layers and nodes – try to find the
maximum possible classification accuracy.

For 1 hidden layer e.g., with 10 nodes: hidden_layer_sizes=(10,) .

Note if the number of requested layers/nodes gets too large, it will
not be possible to train (find the minimum of the loss function).

For the best architecture that you find, use the test sample to
produce a histogram of the network output (see sample code).

PH3010 / Machine Learning 38G. Cowan / RHUL Physics

Exercises (continued)
By looking at the scikit-learn documentation and the sample
program plot_classifier_comparison mentioned above, implement
a linear classifier (class LinearDiscriminantAnalysis) using all three
input variables.

Make a histogram of the classifier output; compare its
performance to your best neural network.

By consulting the documentation and sample program, implement
at least one of:

K-Nearest Neighbor Classifier (KNeighborsClassifier).
Support Vector Machine (SVC)
Boosted Decision Tree (AdaBoostClassifier)

Write up the ML exercises as a single section of your project
report.

PH3010 / Machine Learning 39G. Cowan / RHUL Physics

Resources on Machine Learning
Mini-intro to ML included in PH4515 Statistical Data Analysis

Course in our CS Dept., CS3920/CS4920 (also KCL Maths).

Online courses, e.g., K. Markham, Introduction to machine
learning with scikit-learn (also on youtube):

www.dataschool.io/machine-learning-with-scikit-learn/

Many online courses, tutorials – worth a look but often very
qualitative and/or approach from computer science angle.

More python software (very rapid development):
pandas, seaborn, tensorflow, keras, theano,..

Gareth James, Daniela Witten, Trevor Hastie and Robert Tibshirani,
An Introduction to Statistical Learning with Applications in R

www-bcf.usc.edu/~gareth/ISL/
https://youtu.be/5N9V07EIfIg

PH3010 / Machine Learning 40G. Cowan / RHUL Physics

Outline
Part 1:

What Machine Learning is and how it can be applied

Classification of two types of “events”

Linear classifiers: Fisher Discriminant

Part 2:

Nonlinear classifiers: Neural Networks

Software for Machine Learning: scikit-learn

Exercises

Part 3 (extension):

Multiple regression

41G. Cowan / RHUL Physics PH3010 / Machine Learning

Brief intro to multiple regression
Multiple regression* can be seen as an
extension of curve fitting to the case where
the variable x is replaced by a multi-
dimensional x = (x1,...,xn), e.g., fitting a
surface. Here suppose the data are points
(xi, yi), i = 1,...,N (no error bars) and x is
usually a random variable, often called the
explanatory or predictor variable.

http://www-bcf.usc.edu/~gareth/ISL/

Equivalently, we can view it as an extension to classification with
the discrete class label y = 0, 1 replaced by a continuous target y
(and in this context x can also be called the feature vector).

*Note the term ”multivariate” regression refers to a vector
target variable y; here we treat only scalar y.

42G. Cowan / RHUL Physics PH3010 / Machine Learning

Target (fit) function and loss function
As in the case of curve fitting, we assume some parametric function
of x that represents the mean of the target variable

where w is a vector of adjustable parameters (“weights”).

Suppose we have training data consisting of (xi, yi), i = 1,...,N.

Use these to determine the weights by minimizing a loss function
(analogous to the χ2), e.g.,

43G. Cowan / RHUL Physics PH3010 / Machine Learning

Linear regression
In linear regression, the fit function
is of the form

i.e. the problem is equivalent to an
unweighted least-squares fit of a
(hyper-)plane:

http://www-bcf.usc.edu/~gareth/ISL/

Can be generalized to a nonlinear surface with higher order terms,

44G. Cowan / RHUL Physics PH3010 / Machine Learning

Nonlinear regression
Other examples of nonlinear regression include:

MLP (multilayer perceptron) regression

Boosted decision tree regression

Support vector regression

For MLP regression, as with classification, regard the feature vector
as the layer k = 0; i.e., φi(0) = xi.

The ith node of hidden layer k is

where h is the activation function (tanh, relu, sigmoid,...).

45G. Cowan / RHUL Physics PH3010 / Machine Learning

MLP Regression (cont.)
For the final layer (k=K), in MLP regression (in contrast to
classification), one omits the activation function, i.e.,

where φj(K−1) = are the nodes of the last hidden layer (k = K−1).

For info on other types of multiple regression see, e.g.,

http://www-bcf.usc.edu/~gareth/ISL/

and the scikit-learn documentation.

46G. Cowan / RHUL Physics PH3010 / Machine Learning

Multiple regression example
Suppose particles with different energies E and angles θ (or
equivalently η = − ln tan(θ/2)) enter a calorimeter and create a
particle showers that gives signals in three layers, s1, s2 and s3,
as well as an estimate of η.

Some of the energy leaks through, with increased leakage for
higher energy and more oblique angles (higher η).

The goal is to estimate the target yi = Ei given feature vectors
xi = (η, s1, s2,s3)i for i = 1,...,N training events.

47G. Cowan / RHUL Physics PH3010 / Machine Learning

Energy estimate from sum of signals

Naively, one could try just summing the signals:

Gives very poor resolution
because the particles have a
distribution of energies and
angles and hence differing
amounts of the energy leak
through undetected.

48G. Cowan / RHUL Physics PH3010 / Machine Learning

Linear regression
See MVRegressor.py, here using

regr = linear_model.LinearRegression()
regr.fit(X_train, y_train)

Average relative resolution 16.7%.

49G. Cowan / RHUL Physics PH3010 / Machine Learning

MLP Regression
regr = MLPRegressor(hidden_layer_sizes=(10,20,20,10), activation='relu'
regr.fit(X_train, y_train)

Better resolution (10%), here significant bias at low energies.

50G. Cowan / RHUL Physics PH3010 / Machine Learning

Refinements for multiple regression

One can try many improvements:

Scaling of predictor and target variables, e.g., standardize to zero
mean and unit variance.

Use cross-validation to assess accuracy (and hence use entire sample
of events for training.

Try different loss functions.

Try different regression algorithms (ridge regression, lasso, decision
tree, support vector regression,...).

Some simple code using scikit-learn and a short write-up (from a
year-3 project) is on the course webpage.

