
1G. Cowan / RHUL Physics PH3010 / ML project (regression)

Brief intro to multiple regression
Multiple regression* can be seen as an
extension of curve fitting to the case where
the variable x is replaced by a multi-
dimensional x = (x1,...,xn), e.g., fitting a
surface. Here suppose the data are points
(xi, yi), i = 1,...,N (no error bars) and x is
usually a random variable, often called the
explanatory or predictor variable.

http://www-bcf.usc.edu/~gareth/ISL/

Equivalently, we can view it as an extension to classification with
the discrete class label y = 0, 1 replaced by a continuous target y
(and in this context x can also be called the feature vector).

*Note the term ”multivariate” regression refers to a vector
target variable y; here we treat only scalar y.

2G. Cowan / RHUL Physics PH3010 / ML project (regression)

Target (fit) function and loss function
As in the case of curve fitting, we assume some parametric function
of x that represents the mean of the target variable

where w is a vector of adjustable parameters (“weights”).

Suppose we have training data consisting of (xi, yi), i = 1,...,N.

Use these to determine the weights by minimizing a loss function
(analogous to the χ2), e.g.,

3G. Cowan / RHUL Physics PH3010 / ML project (regression)

Linear regression
In linear regression, the fit function
is of the form

i.e. the problem is equivalent to an
unweighted least-squares fit of a
(hyper-)plane:

http://www-bcf.usc.edu/~gareth/ISL/

Can be generalized to a nonlinear surface with higher order terms,

4G. Cowan / RHUL Physics PH3010 / ML project (regression)

Nonlinear regression
Other examples of nonlinear regression include:

MLP (multilayer perceptron) regression

Boosted decision tree regression

Support vector regression

For MLP regression, as with classification, regard the feature vector
as the layer k = 0; i.e., φi(0)= xi.

The ith node of hidden layer k is

where h is the activation function (tanh, relu, sigmoid,...).

5G. Cowan / RHUL Physics PH3010 / ML project (regression)

MLP Regression (cont.)
For the final layer (k=K), in MLP regression (in contrast to
classification), one omits the activation function, i.e.,

where φj(K−1)= are the nodes of the last hidden layer (k = K−1).

For info on other types of multiple regression see, e.g.,

http://www-bcf.usc.edu/~gareth/ISL/

and the scikit-learn documentation.

6G. Cowan / RHUL Physics PH3010 / ML project (regression)

Multiple regression example
Suppose particles with different energies E and angles θ (or
equivalently η = − ln tan(θ/2)) enter a calorimeter and create a
particle showers that gives signals in three layers, s1, s2 and s3,
as well as an estimate of η.

Some of the energy leaks through, with increased leakage for
higher energy and higher angle θ (lower |η|).

The goal is to estimate the target yi = Ei given feature vectors
xi = (η, s1, s2,s3)i for i = 1,...,N training events.

7G. Cowan / RHUL Physics PH3010 / ML project (regression)

Energy estimate from sum of signals

Naively, one could try just summing the signals:

Gives very poor resolution
because the particles have a
distribution of energies and
angles and hence differing
amounts of the energy leak
through undetected.

8G. Cowan / RHUL Physics PH3010 / ML project (regression)

Linear regression
See MVRegressor.py, here using

regr = linear_model.LinearRegression()
regr.fit(X_train, y_train)

Average relative resolution 16.7%.

9G. Cowan / RHUL Physics PH3010 / ML project (regression)

MLP Regression
regr = MLPRegressor(hidden_layer_sizes=(10,20,20,10), activation='relu'
regr.fit(X_train, y_train)

Better resolution (10%), here significant bias at low energies.

10G. Cowan / RHUL Physics PH3010 / ML project (regression)

Refinements for multiple regression

One can try many improvements:

Scaling of predictor and target variables, e.g., standardize to zero
mean and unit variance.

Use cross-validation to assess accuracy (and hence use entire sample
of events for training.

Try different loss functions.

Try different regression algorithms (ridge regression, lasso, decision
tree, support vector regression,...).

Some simple code using scikit-learn and a short write-up (from a
year-3 project) is on the course webpage.

