Department of Physics
PH3010 Advanced Skills

ROYAL

HOLLOWAY

Introduction to Multiple Regression

1. Introduction

This extension to the Machine Learning project involves application of the scikit-learn
package to the problem of multiple regression. In the initial part of the project we discussed
classification, where two types of objects are assigned a numerical label y, e.g. 0 and 1. In
regression, this discrete label is replaced by a continuous variable.

Consider, for example, data on some target variable y such as the yield of some crop
together with values of a number of features (sometimes called predictors or explanatory
variables) x = (x1,...,x,) such as yearly rainfall, soil pH, amount of fertilizer used, average
temperature, etc. Suppose we have data consisting of feature vectors x; and the corresponding
values of the target variables y; for ¢ = 1,..., N instances or events. The idea of multiple
regression is to use data to predict y given new values for the variables x. This is analogous
to curve fitting (i.e., simple regression), but with the usual scalar variable x replaced by a
multidimensional vector x. The term “multiple” here refers to the dimension of x; if the
target function is a vector, then this is called multivariate regression. Here we will consider
only a scalar target variable y.

Some basic ideas behind multiple regression are presented in Sec. 2, using linear regression
and the multilayer perceptron as examples. Section 3 provides some information on how these
methods are implemented using the scikit-learn package and Sec. 4 gives some exercises
for the project.

2. Basic ideas of multiple regression

A good introduction to multiple regression can be found in Ref. [1]. The main ideas can be
seen as an extension of a least-squares fit of a curve to data points (x;,y;) withi=1,... N
to the fit of a (hyper-)surface to measurements y;, each carried out at a point x = (x1,...,2,)
in an n-dimensional space. For n = 2 this would correspond to fitting a surface, as illustrated
in Fig. 1.

Y

Figure 1: A function f(z1,z2) repre-
sented as a surface fitted to data points
(1,1 T2,i,yi) (from Ref. [1]).

As in the case of curve fitting, we assume a model for the target variable y = f(x;w),
where x is the vector of predictor variables and w is a set of parameters or “weights”. To
determine the optimal values of the weights, one minimizes a loss function L(w) such as

N
L(w) =) lyi — fxizw)[*. (1)
i=1

This is similar to the sum of squared residuals as one might use in a fit measurements y; + o;
versus x;, where o; is the standard deviation of y;. In contrast to this case, however, the
data here only include y; and x;, and so the squared residuals are not multiplied by any other
weighting factor involving the standard deviation. Equation 1 gives what is called a quadratic
loss function. Other loss functions such as the mean absolute error or penalized residual sum
of squares can also be used.

2.1. Linear regression

In linear regression, the function f(x;w) has the form

flx;w) =wy + zn:wixi . (2)

=1

Here f(x;w) is a linear function of the n components of the feature vector x, adjusting the
weights to minimize the loss function is equivalent to fitting a hyperplane to the data as in
Fig. 1. This can be generalised by defining new variables ¢;(x), i = 1,...,m where the ¢; are
called basis functions, and their number m does not have to be the same as the number of
components n of the feature vector x. In such a case the fit function is a linear combination
of the form

e w) =wo+ Y wigi(x) . (3)

=1

Here the fit function is still linear in the parameters w; and this is the defining feature of
what one calls linear regression. The basis functions can be thought of as a redefinition of
the explanatory variables from x = (x1,...,2,) to ¢ = (¢1,...,¢m), and the resulting fit
function is then a hyperplane in p-space rather than x-space.

2.2. Multilayer perceptron regression

In many problems, the y values may lie on some nonlinear surface and for such a case the
function f(x;w) should therefore be nonlinear in x. Here we consider use of the neural
network or multilayer perceptron for this purpose.

A multilayer perceptron (MLP) for regression is similar to one used for classification. The

(k)

network consists of functions or nodes ¢, arranged in layers. The layer £ = 0 consists of

the input variables goz(o) = x;. The layers k = 1 through K — 1 are called hidden layers and
k = K represents the output node. The ith node in layer & depends on the nodes in the

previous layer as

k k k 1)

where i = 1,...,m®) and h is the activation function, e.g., a logistic sigmoid, tanh, or relu
function. For classification, the nodes of the final hidden layer are used again as the argument
the activation function. For regression, one simply leaves off the final activation function.
That is, the final output is given by

n
K K) (K-1
o w) = wi 4+ 3w (5)
j=1
where the ¢§-K_1) are the nodes of the last hidden layer.

3. Example of multiple regression using scikit-learn

In this section we present an example to illustrate the regression problem outlined above.
First, events are generated according to a Monte Carlo model with values E representing the
energy of a high-energy particle such as a proton. The energies represent the target values
and thus play the role of the variable y. The particle enters a calorimeter (a detector that
measures energy) where it creates a shower of other particles. The goal is to estimate the
incident energy given the signals measured by the calorimeter.

The calorimeter consists of three layers, which give measured signal values s, so and ss,
which are proportional to the energy deposited in each layer. Some fraction of the energy
leaks through and is undetected; this fraction increases with incident energy. The detector
also measures a quantity 7 that is related to the angle of the incident particle relative to the
detector (n = —Intan(0/2) is called the pseudorapidity), as illustrated in Fig. 2.

Figure 2: Schematic illustration of a hadron calorimeter and hadron shower initiated by a particle of
energy F emitted at an angle 6 or equivalently pseudorapidity n = —Intan(f/2). The hadron shower
produces signals s1, so and s3. Some of the shower’s energy may penetrate through the calorimeter
undetected.

The number of shower particles grows roughly with the energy of the incident particle,
and so by measuring the signals s1, so and s3 one can estimate the incident energy. As the
amount of energy leakage depends on the angle of the particle, the variable n also contains
some information that helps to relate the measured signals to the incident energy. Thus for
the present example the target value is the energy (y = E) and the feature vector contains

the measured values x = (7, s1, $2, 83). The goal is to find a function f(x) that can be used
to estimate a particle’s energy.

A naive guess for the energy of the incident particle is simply the sum of the signal values
s1 + s2 + s3. Figure 3 shows scatter plots of this estimate versus the true energy for (a) all
events, (b) events with |n| < 0.5 corresponding to almost normal incidence to the surface of
the calorimeter, (c) 0.5 < || < 1.0 and (d) 1.0 < |n| < 1.5, corresponding to a more oblique
angle of incidence. For normal incidence (smaller |n|), more of the energy leaks through the
calorimeter ' 7 _ " T T e . '

s1+s2+s3:E s1+s2+s3.E {abs(eta)<0.5} ‘ue energy.
%500 E B50F
“oof- - < F

£ 350F
350F E
3 300F
300F b
E 250F
250F E
E 200f
200F E
150F 150f

100F 100}

50 - 50F
7”\ R ERETE FEET FRETE FERTE FETTS FERT P)\\.\I\\\\ PN AT N N A A
100 200 300 400 500 600 700 800 900 100 200 300 400 500 600 700 800

s1+s2+s3:E {abs(eta)>0.5 && abs(eta)<1.0} s1+s2+s3:E {abs(eta)>1.0}
o0 T 500F
20[0] o P F
Sk P

L E
350F
o F

F doof- -
300 R 350
250f 300; sn o
200f 2505—
F 200F 2R

F (4
F s
100
o i3
50:—_;5‘e
TN PR FRTTE FRETE FERTY FERT FETES FEET R E PR PR FETEE FRETE FRT N R
100 200 300 400 500 600 700 800 900 100 200 300 400 500 600 700 800
E E

150F

100

Figure 3: Scatter plots of the estimated versus true energy for different angular regions (see text).

The goal of multiple regression here is to construct an estimator for the energy that is
much better than simply the sum), s;. A program that carries out linear regression for this
problem is given in Appendix A. Here the most important parts of the code are discussed.

First the data are read in from a file called trainingData.txt. This is a text file with
five columns of values: E (in GeV), 1, s1, s2 and s3 (the units of the energy and measured
signals are GeV). The values are read in and assigned to numpy arrays with

events = np.loadtxt('trainingData.txt')

nEvt = events.shape[0]

X = events[:,1:] # columns 1,2,3,4 are eta, s1, s2, s3
y = events[:,0] # target wvalue E is column O

Then just as in classification problems, the data is split into two samples, one used to train
the fit function, that is, to minimize the loss function L(w) and thus determine the weights
w, and another part used to evaluate the performance of the resulting f(x;w).

Finding the weights for regression in scikit-learn is very similar to the corresponding
step with a classifier. First one initializes the regression function (or “regressor”), e.g., by

creating an object of type LinearRegressor here called regr, and then minimizing the loss
function by calling the function fit using the feature vectors and true target values from the
training portion of the data:

regr = linear_model.LinearRegression()
regr.fit(X_train, y_train)

This finds the weights w and thus determines the regression function f(x;w).

The function can then be used on the test data and a measure of how well the predicted
values agree with the true targets computed. There are many possible ways of comparing the
two. Here this is done with the so-called R? value (also called the coefficient of determination,
see, e.g., Ref. [2]), defined such that higher R? corresponds to better predictive power with a
maximum value of 1. This is found using the regressor’s score function with

y_pred = regr.predict(X_test)
R2 = regr.score(X_test, y_test)

4. Project exercises

Exercise 1: Run the program simpleRegressor.py and describe the output. Make a scatter-
plot of the relative residual

E-E
=TE ©)

versus the true energy E, where £ = f (x; w) is the estimated (“reconstructed”) energy. Find
the mean and standard deviation of r. Instead of the R? coefficient defined earlier, we can
use as the measure of quality

()=t (=30, 7)

where o, is the standard deviation and (r) is the mean of r. The relative energy resolution
is characterized by o, and (r) is a measure of the calibration bias. Both depend in general
on the energy F.

Exercise 2: Modify the program to include an MLP regressor. Adjust the number of hidden
layers and nodes to minimize the MSE.

Exercise 3: Investigate preprocessing of the inputs with scikit-learn’s preprocessing
package. Try, for example, transforming the input values so that they all have a mean of zero
and standard deviation of one.

Exercise 4: Investigate using cross-validation to determine the optimal architecture.
Exercise 5: Try implementing any of the other regression algorithms available in scikit-learn.

Exercise 6: Try using different loss functions available in scikit-learn.

References

[1] Gareth James, Daniela Witten, Trevor Hastie and Robert Tibshirani, An Intro-
duction to Statistical Learning with Applications in R (or Python), Springer, 2013;
https://www.statlearning.com/

[2] Wikipedia entry for Coefficient of determination,
en.wikipedia.org/wiki/Coefficient_of_determination.

==
= O © 00 N0 ke W N

R R R R R R R R W W W W W W W W W W NN NN NN N NN R e e e e e e
© 0N OO WN RO ®© OO E WN RO ®© WO O WNHEO®© WO W N

A.

Pro

s

Python code

gram simpleRegressor.py for multiple regression.

impleRegressor.py

G. Cowan / RHUL Physics / November 2021
Simple program to illustrate regression with scikit-learn

impo
impo
impo
impo
impo

rt scipy as sp

rt numpy as np

rt matplotlib

rt matplotlib.pyplot as plt

rt matplotlib.ticker as ticker

from sklearn import linear_model
from sklearn.model_selection import train_test_split
from sklearn import metrics

read the data in from file
events = np.loadtxt('trainingData.txt')

nEvt
X =

y
X_tr

= events.shape[0]

events[:,1:] # columns 1,2,3,4 are eta, s1, s2, s3

events[:,0] # target value E is column O

ain, X_test, y_train, y_test = train_test_split(X, y, test_size=0.5, random_state=1)

create regressor object, train and test

regr
regr
y-pr
R2 =

= linear_model.LinearRegression()
.fit(X_train, y_train)

ed = regr.predict(X_test)
regr.score(X_test, y_test)

print(f"Test R2 score: {R2:.3f}")

make a plot

matp
fig,
plt.
plt.
ax.s
ax.s

lotlib.rcParams.update({'font.size':12}) # set all font sizes

ax = plt.subplots(l,1)
gcf () .subplots_adjust (bottom=0.15)
gcf () .subplots_adjust(left=0.15)
et_x1im((0.,1000.))
et_ylim((0.,1000.))

x0,x1 = ax.get_x1im()
y0,yl = ax.get_ylim()

ax.s
xtic
ytic

et_aspect (abs(x1-x0)/abs(y1-y0)) # make square plot
k_spacing = 200
k_spacing = 200

ax.yaxis.set_major_locator(ticker.MultipleLocator(xtick_spacing))
ax.yaxis.set_major_locator(ticker.MultipleLocator(ytick_spacing))

plt.xlabel('true energy (GeV)', labelpad=3)
plt.ylabel('reconstructed energy (GeV)', labelpad=3)
plt.scatter(y_test, y_pred, s=3, color='dodgerblue', marker='o')
plt.figtext(0.3, 0.81, f'Linear Regressor')

plt.figtext(0.3, 0.73, f£'$R"2$ = {R2:.3f}")

plt.show()

plt.savefig("LinearRegressor.pdf", format='pdf')

G. Cowan

RHUL Physics
Version 1.1, December 2021

