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Introduction
Review of probability and Monte Carlo
Review of statistics: parameter estimation

Multivariate methods (1)
Event selection as a statistical test
Cut-based, linear discriminant, neural networks

Multivariate methods (11)
More multivariate classifiers: BDT, SVM ,...

Significance tests for discovery and limits
Including systematics using profile likelihood
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Day #3: outline

Nonparametric probability density estimation methods
histograms
kernel density estimation,
K nearest neighbour

Boosted Decision Trees

Support Vector Machines

G. Cowan Statistical Methods in Particle Physics



Review of the problem

Suppose we have events from Monte Carlo of two types, signal
and background (each instance of x is multivariate):

generate  y~ p[ﬂsj - fl .--;fn;

L

generate X~p(X|h) — X, oo Xy

Goal Is to use these training events to adjust the parameters
of a test statistic (“classifier”) y(x), that we can then use on
real data to distinguish between the two types.

Yesterday we saw linear classifiers, neural networks and started
talking about probability density estimation methods, where we
find the classifier from the ratio of estimated pdfs.
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Parametric density estimation

If we have a parametric function for one or both of the densities,

then we can estimate the parameters using the training data withe.g.
the method of maximum likelihood, 1.e., choose the parameter
estimates ¢;.....0,, to be the values that maximize the likelihood function:

:.‘ﬁ..u'
Lo,,....0.)=l1px.,0,..0)

i=1

‘\ Product over all training events

Finally simply take o
(assumes events statstically

P{X)=p(x,0y,....0,) independent. not strictly true if
Function evaluation generally fast. we have multiple candidate
storage requirements low. “events” per collision event).
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Parametric density estimation (2)

The number of parameters in a reasonable model 1s usually much smaller
than the corresponding number of degrees of freedom 1in nonparametric
methods, so a parametric estimate of the pdf will have higher statistical
accuracy for a given amount of traiming data. Trade oft:

few parameters:  model not flexible and may not describe data,
but parameters accurately determined.
many parameters: model flexible enough to describe the true pdf.
but parameter estimates have large statistical errors.
Even il a full parametric model 1s not available, p(x) may (approximaltely)
factorize mto a parametric part for a subset of the variables:

plx,.ox j=plxy,...,x.;00,...,0 Jglx..,....x,]

S0 we can mix parametric and non-parametric methods.
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Histograms

Start by considering one-dimensional case, goal 1s to estimate pdf p(x)
of continuous r.v. x.

Stmplest non-parametric estimate of p(x) 1s a histogram:

A N total entries

|
|
|
*— Ax

n;
plx ]_ N Ay, forxinbini
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Histograms (2)

Small bin width: estimate 1s very ST om ~

spiky, structure not really part of o ﬂ \
0
5 :

underlying distribution.

Medium bin width: best

Large bin width: too smooth and

thus fails to capture e.g. bimodal

character of parent distribution 0 0.5 1
Bishop Section 2.5
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Histograms (3)
Advantages: once histogram computed, the data can be discarded.
Disadvantage: discontinuities at bin edges, scaling with dimensionality.
In general we can do much better than histograms, but they still
show important features common to many methods:
To estimate pdf atx, = {.t]. xﬂ} we should count the number of
events in some local neighbourhood near x (requires definition of
“local”, 1.e.. a distance measure, ¢.g., Euchdian).

The bin width Ax plays the role of a smoothing parameter defiming
the size of the local neighbourhood. It it 1s too large. local structure
1s washed out: too small. and the estimate 1s subject to statistical
fluctuations.
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The curse of dimensionality

The difficulty in determining the density in a high-dimensional histogram
1s an example of the “curse of dimensionahty™ (Bellman, 1961).

:I.'*_q"
Lok /]
———t :
D=1 - 7 1
T
D=2 %3
D=3

The number of cells in a D-dimensional histogram grows exponentially.
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Counting events 1n a local volume

Consider a small volume V centred about x = {.rl, .rﬂj.
This 1s 1n contrast to the histogram where the bin edges were hixed.

Suppose from N total events we find K in V.

Take as estimate for p(x) plx)=
plx) plx N2 %

Two approaches:
Fix V and determine K from the data

Fix K and determmne V from the data

G. Cowan Statistical Methods in Particle Physics
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Kernels

E.e. take V to be hypercube centered at the x where we want p(x).

Define k(u)=1for|u|<1/2 and 0 otherwise,i=1,...D
1.e.. the function 1s nonzero inside a unit hypercube centred
about x and zero outside.

k() 1s an example of a kernel function (here called a Parzen window).
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Kernel density estimators

x where we x of ith
want estimate training event

\ /

"y

N | '-

. : . 1 XX
Estimate p(x) using: (x)= k I Gide of hvnercnhe
Pl £ Pl YT ; |'. bt side of hypercube

where we used V= A" for the volume of the hypercube.

Thus the estimate at x 15 the obtained from the sum of N hypercubes,

one centred about each of the data points x

This 1s an example of a kernel density estimator (KDE or Parzen estimator)
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Gaussian KDE

The Parzen window KDE has discontinuities at the edges of the
hypercubes: we can avoid these with a smoother kernel function
¢.¢.. Gaussian:

N [ = =
. g 1 1 | —HX—A

plx) > 173 SXP|

N i1 (2 h™) ._ 20 .u

That 1s. to estimate p(x).

Place a Gaussian of standard deviation i centred about each
traiming data point;

At a given x. add up the contribution from all the Gaussians and
divide by N.
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The Gaussian KDE shows the same

[Tk — 0.005 ' H H F ?
basic issues as did the histogram: 5 -

G. Cowan

Gaussian KDE, choice of &

0 0.5 |
5 '
h=0.0T

P N

e ]
[ 0.5 |

Bishop Section 2.3

Statistical Methods in Particle Physics

15



KDE — general

We can choose any kernel function A(ar) as long as it satisties
klu)=0,

| klu)du=1

Advantage of KDE: essentially no training!

To get p(x) simply compute the required sum of terms.

Disadvantages: A single function evaluation of p(x) requires

carrying out the sum over all events, and the entire data set must be stored.
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Expectation value of p(X)

To see role of kernel. compute expectation value of p(xX)

"x—:t,
k==

N

1
52, E

i=1

E|lplx

=D Ik|xf lp[1 Jdx

Expectation value of the estimator p(x) 1s the convolution of

the true density p(x) with the kernel function.

For h — 0 the kernel becomes a delta function, and E| p(x)]|
approaches the true density (zero bias). But for finite N the
variance ¥ | p(x)| becomes infinite.
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Choice of /1 using mean squared error

Suppose we knew the true p(x) (or had a reference standard). We
can compute the Mean Squared Error (MSE) of our estimator:

MSE| p(x)|=E[(p(x)—p(x))]

- . i \ i3 A w2
=(E[p(x)—p(x)|[+E|(p(x)—p(x))
bias squared variance

We could e.g. choose & so that it minimizes the integral of the MSE
over x (or maybe in some region of interest):

| MSE|pix)|d x
173

- . . . II. I —1/5
I both the kernel and p(x) are a Gaussian, this gives f?—|§|| oN "
I ]
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Adaptive KDE

In the simplest form of KDE the smoothing parameter /i 1s a constant,

In regions high density (lots of events) we want small & so as to not
wash out structure.

In regions of low density, small & would lead to statistical fluctuations
in the estimate (structure not present in parent distribution).

S0 we may want to allow the size of the local neighbourhood over
which we average to vary depending on the local density.

In sample point adaptive KDE the bandwidth becomes a function of p(x):
hg

'Ijrl'i I T
Viplx))
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KDE boundary 1ssues

Some components of x may have finite limits. But if we use e.g. a
Gaussian kernel. then some of the probability “spills out™ of the

allowed range.
The probability inside the range 1s theretore underestimated.

One solution 15 to renormalize the kernel so that 1ts integral inside

the allowed range 1s equal to unity.

Another option 15 to “mirror” the distribution about the boundary.
The events from outside spilling in compensate those spilling out.
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K-nearest neighbour method

Instead of fixing V. consider a fixed number of events K

and find the appropriate V such that it just contains K events.
K

NV

5
. L] H-- -1
K plays role of smoothing parameter. LJM
0

Large K means lower statistical error

0 0.5 1

. . - . 5 .

in the estimate of the density. ;:/AQW" e

¢.o.. K=1(K) gives 10% accuracy. 0 //_\«
0 (.5

The density estimate is then simply plx)=

|

But large K means vou need a bigger S K =m0

volume, estimate is less local. ’ ™

0 (1.5 |
Bishop Section 2.3

Estimate of p(x) 1s not a true pdf — integral over entire space diverges.
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K-nearest neighbour method
Example from TMV A manual — here the algorithm 1s used directly
as a classihier. The event type 1s assigned based on majority
vote within the volume.

1_5- T T L 1 L i 1.5- ! |....I.- :_L '_ '..1" i 15_ LESEL l= 1 II‘L:E:_:.‘l.rI-'I g i =
| . | i e '_I-;E':-.,,_:EE.."._:H | L 3 ..--':"'r"“':-_""-""'_'-l-." .
T N - TRy T -/ A L ’ 1
T, o1 i - LI :.:_' L gt 4 “ e
e ) o .'t'.:? . ok T : - J
- o "-;:'“_;-_.._-k i g g H g i
0.5 ! e P BB ek 5 0.6[ 5
i = J . = N
L "'-.__ '__,.- 7 : i
-..:'. :.'..I-.-..-.I ] I T B I T
iy 0.5 1 1.5 0.5 1 1.5 oy 0.5 1 1.5
:':r_n :';.'l :":I

Figure 17: Example tor the k-nearest neighbowr algorithm in a three-dimensional space (i.e.. for three
discriminating input variables), The three plots are projections upon the two-dimensional coordinate planes.
The full {open) circles are the signal (background)] events, The K-MNIN algorithim searches for 200 nearesi
points in the nearest neighborfiood (circle) of the guery event, shown as a star. The nearest neighborhood
counts 13 signal and 7 background polnts so that query event may be classified as a signal candidate.
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K-NN algorithms rely on a metric in the input variable space

o define the volume.

It there 1s a great difference in the ranges spanned by some of the
variables. then they are imphcitly given different weights.
Typically scale the input variables so as to give approximately
equal distances between relevant features. Try e.g.

Linear scaling in unit range: x ' =——2& 0=x =1|
Y max ™~ Y min
. q- . T Sl ¥ . . .
Standardization: X = (zero mean. unit variance)
(r
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Curse of dimensionality tor K-NN
Suppose out data are unitormly distributed in a D-dimensional unit cube.
We want a “small” volume to capture a fraction r = K/N of the events.
Make a hypercube local neighbourhood with side e. volume e”

Its volume fractionis 7=e"

/D

The side of an edge of the small volume is €=7"

For e.g. r=0.001 and D = 30 the side of the “neighborhood™ 1s 0.8, almost
the entire range of the input.

(cl. Hastie, Tibshirani and Friedman p 23.)

G. Cowan Statistical Methods in Particle Physics
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Boosted decision trees

First use of boosted decision trees in HEP was for particle identification

for the MiniBoone neutrino oscillation experiment.

G. Cowan

H.J.Yang, B.P. Roe, ). Zhu, “Studies of Boosted Decision Trees for
MiniBooNE Particle Identification™, Physics/0508045, Nucl. Instum. & Meth.
A 555(2005) 370-385.

B.P. Roe, H.]J. Yang, J. Zhu, Y. Liu, 1. Stancu, G. McGregor, "Boaosted decision
trees as an alternative to artificial neural networks for particle identification™,
physics/0408124, NIMA 543 (2005) 577-584.
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Particle 1.d. In MiniBooNE

Detector iIs a 12-m diameter tank
of mineral oil exposed to a beam &iectron candidate

fuzzy ring, short track

of neutrinos and viewed by 1520 v~ &

photomultiplier tubes: w
P

MiniBooNE Detector

Muon candidate
sharp ring, filled in

Vll\ “*\1‘(/..-’-"' u—
w

ﬁ i Pion candidate A~ %
_two "e-like" rings T AN,
yu . - s ‘vp 7 :

Search for v, to v, oscillations - -
required particle 1.d. using 1 < (
information from the PMTs. H.J. Yang, MiniBooNE PID, DNP06
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Decision trees

Out of all the input variables, find the one for which with a
single cut gives best improvement in signal purity:

E W,

signal !

E , w+§ W.
signal ! background !

where w.. is the weight of the ith event.

P=

Resulting nodes classified as either
signal/background.

Iterate until stop criterion reached
based on e.g. purity or minimum
number of events in a node.

The set of cuts defines the decision
boundary.

G. Cowan Statistical Methods in Particle Physics

S

71

219

Example by MiniBooNE experiment,
B. Roe et al., NIM 543 (2005) 577
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Decision trees (2)

The terminal nodes (leaves) are classified as signal or background
depending on majority vote (or e.g. signal fraction greater than a
specified threshold).

This classifies every point in input-variable space as either signal
or background, a decision tree classifier, with the discriminant function

f(x)=1if xesignalregion, -1 otherwise

Decision trees tend to be very sensitive to statistical fluctuations in
the training sample.

Methods such as boosting can be used to stabilize the tree.
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Boosting

Boosting is a general method of creating a set of classifiers
which can be combined to achieve a new classifier that is more stable
and has a smaller error than any individual one.

Often applied to decision trees but, can be applied to any classifier.

Suppose we have a training sample 7 consisting of N events with

X ... X, event data vectors (each x multivariate)

1
Vs ¥, lrue class labels, +1 for signal, —1 for background
W, W o event weights

Now define a rule to create from this an ensemble of training samples
I.T, ... derive aclassifier from each and average them.
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AdaBoost

A successtul boosting algorithm 1s AdaBoost (Freund & Schapire, 1997).

First initialize the training sample 7 using the original

I],...., Iv event data vectors
1

Voreeurs V true class labels (+1 or -1)

RO NN -
W W event weights N

with the weights equal and normalized such that Z WE-” =1.
i=1

Train the classifier f (x) (e.g. a decision tree) using the weights w'

so as to minimize the classification error rate.
N
_ (1) v :
51_2 w; Iy f1(x;)<0),
i=1

where [(X) = 1 if X 1s true and is zero otherwise.
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Updating the event weights (AdaBoost)

Assign a score to the kth classifier based on its error rate:

1—¢,

o, =In——
3

Define the training sample for step k+1 from that of k by updating

the event weights according to

e_“kfk Y2
k+1 k
I
/ /Z k- ¥~__ Normalize so that
[ = event index k = training sample index (k+1)_
& Samp > wkb=1
K

Iterate K times, final classifieris y(X)=)_ o fr(x,T})

k=1
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BDT example from MiniBooNE

~200 Input variables for each event (v interaction producing e, u or m).

Each individual tree is relatively weak, with a misclassification
error rate ~ 0.4 — 0.45

_ |I | | | | | I | | | I | | | I | | | I | i
1 1 e un-weighted misclassified event rate ]
08 _: a weighted misclassified event rate, err_ 1
- ] o, = B*In((1-err_)lerr ). !3.=El.f.
= 064 PRI
B ]
S 04
0.2
[J | I I I I 1 I I 1 I I 1 I I 1

I l | I l '
0 200 400 600 a0 1000
Number of Tree [terations

B. Roe et al., NIM 543 (2005) 577
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Monitoring overtraining

From MiniBooNE
example:

Performance stable
after a few hundred
trees.

G. Cowan

Training MC Samples

VS.  Testing MC Samples

Boosting Outputs

Boosting Output

Statistical Methods in Particle Physics
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Monitoring overtraining (2)

Here performance stable after a few hundred trees

10 $000
& '
2 £ 6000 ]
g " g 6000 -
2 Sional =71 . £
= : 5000 1 _r. .
T ————— - [ 2 '! :
E Signal Eff = 60% E 4000 7 ]
g - - 2 3000 4 i E
& 105 Signal Eff = 50% e T %
. Somod & DBackgrounds
A 3 Z 1000 3
B T P U " " ¥
= 40 <30 <200 -0 0 0w N 30

Number of Trees
AdaBoost Output
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Comparison of boosting algorithms

A number of boosting algorithms on the market; differ in the

update rule for the weights.

Relative Ratio

Relative Ratio

G. Cowan
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Boosted decision tree summary

Advantage of boosted decision tree 1s 1t can handle a large number
of inputs. Those that provide little/no separation are rarely used as tree
splitters are effectively 1gnored.

Easy to deal with inputs of mixed types (real, integer, categorical...).

[f a tree has only a few leaves 1t 1s easy to visualize (but rarely use only a
single tree).

There are a number of boosting algorithms, which differ primarily in the
rule for updating the weights (e-Boost, LogitBoost....)

Other ways of combining weaker classifiers: Bagging (Boostrap-
Aggregating), generates the ensemble of classifiers by random sampling
with replacement from the full training sample.
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Single top quark production (CDF/D0)

Top quark discovered in pairs, but
SM predicts single top production.

q t
W+

q b

Pair-produced tops are now
a background process.

proton

|

antiproton

G. Cowan

Events/11.25 GeV

Statistical Methods in Particle Physics

Use many inputs based on
jet properties, particle i.d., ...

CDF Run Il Preliminary, L=3.2 fb

LN LB L L B L B B L
e Da B Wbb ] WsLF

- B schannel [ tthar 0 HonW |l =
250 ~ [l tchannel [ We+Wee [ 7+jets,Diboson, 2
- o
o
200 B
: : 0
; _— signal g
150 18
- (blue + 18
i ] E
100 5 green) - %
- I | &
3

50 ;‘ -

i TEAleatans?

100 150 200 250 300 350 400 450 500 550

Ht (GeV)
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Different classifiers for single top

(b Z+jets IR tt—>¢ M | 500

Multijets Il tt—/(+jets IR

500,

(a) Data ¢ wbb I

th+tgb I Wec Il
Wjj+ We

150

150

Event Yield
w S
o o
>, 2
Event Yield
i
o
[ =]
[

100 100

50 50

Y L

85 07 08 09 1
D@ 2.3 b’

200 %6 07 08 09 1

4 D@ 2.3 fb’

100 -
0 ’ 0 :
0 02 04 06 08 1 0O 02 04 06 08 1

Bayesian Neural Networks Qutput Boosted Decision Trees Qutput

Also Naive Bayes and various approximations to likelihood ratio,....

Final combined result is statistically significant (>5c level) but not
easy to understand classifier outputs.
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Support Vector Machines

Support Vector Machines (SVMs) are an example of a kernel-based
classitier, which exploits a nonlinear mapping of the input variables
onto a higher dimensional feature space.

The SVM finds a linear decision boundary in the higher dimensional space.

But thanks to the “kernel trick” one does not every have to write down
explicitly the feature space transtormation.

Some references for kernel methods and SVMs:

The books mentioned in www.pp.rhul.ac.uk/~cowan/mainz_lectures.html

C. Burges, A Tutorial on Support Vector Machines for Pattern Recognition,
research.microsoft.com/~cburges/papers/SVMTutorial.pdf

N. Cristianini and J.Shawe-Taylor. An Introduction to Support Vector Machines
and other kernel-based learning methods. Cambridge University Press, 2000.

The TMVA manual (!)
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Linear SVMSs

Consider a training data set consisting of
X....X, ~ eventdata vectors

JPRRS UR (& class labels (+1 or —1)

1

Suppose the classes can be separated by a hyperplane defined by
a normal vector w and scalar offset b (the “*bias™). We have

X.W+h>+1 forall y =+1
I I

. _ forall y = -1
X; wW+b<-1 orally,

or equivalently

margin

y]-(_x,.-erb)—l >() forall:

Bishop Ch. 7
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Margin and support vectors

The distance between the hyperplanes defined by y(x) =xw + b =+1 and
v(x) =—1 1s called the margin, which is:

[f the training data are perfectly separated then this means there are
no points inside the margin.

Suppose there are points on the margin (this is equivalent to defining
the scale of w). These points are called support vectors.
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[.inear SVM classifier

We can define the classifier using

f(x)=sign(x-w+Db)

which is +1 for points on one side of the hyperplane and —1 on the other.

The best classifier should have a large margin, so to maximize

o 2 : .
we can minimize ||WH subject to the constraints

Vi X;w+b)-1>( forall:
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Lagrangian formulation

This constrained minimization problem can be reformulated using
a Lagrangian

N
L= Wi~ 3 oy, (x w+b)-1)
i=1

\

We need to minimize L with respect to w and /» and maximize

positive Lagrange multipliers o

with respect to o.
I

There is an o for every training point. Those that lie on the margin
(the support vectors) have o > 0, all others have o = 0. The solution

can be written (sum only contains

w:ZD‘fyixi
l

support vectors)
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Dual formulation

The classifier function is thus

f(x)=sign(x-w+b)=sign

Y oy XX +b
1

[t can be shown that one finds the same solution a by minimizing
the dual Lagrangian

1
LD:Z]_: 0‘:‘5; XX Y Vi Xt X

So this means that both the classifier function and the Lagrangian
only involve dot products of vectors in the input variable space.
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Nonseparable data

If the training data points cannot be separated by a hyperplane,
one can redefine the constraints by adding slack variables ‘Cj,j_:

Vi(X;w+D)+&-1>0with&>0 foran:
Thus the training point x_ is allowed to
be up to a distance E_,E, on the wrong side
of the margin, and & = 0 at or on the

right side.

For an error to occur we have ¢ > 1, s0

p%3

i
is an upper bound on the number of training errors.
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Cost function for nonseparable case

To limit the magnitudes of the @j we can define the error function that

we minimize to determine w to be

o 1 y k
E(w)=7wl+C( 22
i
where C is a cost parameter we must choose that limits the amount
of misclassification. It turns out that for k=1 or 2 this 1s a quadratic

programming problem and furthermore for k=1 it corresponds to

minimizing the same dual Lagrangian

PED)
DT L& GG Y Y X X
i L,
where the constraints on the o become () g aigc .

G. Cowan Statistical Methods in Particle Physics page 46



Nonlinear SVM

So far we have only reformulated a way to determine a linear
classifier, which we know 1s useful only in limited circumstances.

But the important extension to nonlinear classifiers comes from first
transforming the input variables to feature space:

—+

@ X)=(@1(X) ..., Pp (X))

These will behave just as our new “input variables”. Everything
about the mathematical formulation of the SVM will look the same

as before except with ¢@(x) appearing in the place of x.
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Only dot products

Recall the SVM problem was formulated entirely in terms of dot
products of the input variables, e.g., the classifier is

Z“fl’ix'xﬁb)

so in the feature space this becomes

Z%yi@(’“)fo(xiwrb)

f(x)=sign

f(x)=sign
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The Kernel trick

How do the dot products help? It turns on that a broad class of
kernel functions can be written in the form:

— N

Kix,x')=¢(x)-p(x')

Functions having this property must satistfy Mercer's condition
| K(x,x"g(x)g(x")dxdx'=0

for any function g wheref g (x)dx is finite.

So we don't even need to find explicitly the feature space transformation

¢(x), we only need a kernel.
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Finding kernels

There are a number of techniques for finding kernels, e.g., constructing
new ones from known ones according to certain rules (ct. Bishop Ch 6).

Frequently used kernels to construct classifiers are e.g.

K(x,x")=(x-x"+0)" polynomial
x|
Kix,x"')=exp Gaussian
20

K(x,x')=tanh(k(x-x')+60)  sigmoidal
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Using an SVM

To use an SVVM the user must as a minimum choose

a kernel function (e.g. Gaussian)
any free parameters in the kernel (e.g. the o of the Gaussian)
a cost parameter C (plays role of regularization parameter)

The training is relatively straightforward because, in contrast to neural
networks, the function to be minimized has a single global minimum.

Furthermore evaluating the classifier only requires that one retain
and sum over the support vectors, a relatively small number of points.

The advantages/disadvantages and rationale behind the choices above
IS not always clear to the particle physicist -- help needed here.
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SVM In particle physics

SVMs are very popular in the Machine Learning community but have
yet to find wide application in HEP. Here is an early example from
a CDF top quark anlaysis (A. Vaiciulis, contribution to PHYSTAT02).

1 ; ; . pr>
' | | Eal
signal o !'5
eff. 0.8t Mo e S
whe 0
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0.4 g ur®i1g UM |
s
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0.2 Pl ]

0 02 04 06 08 1
background eff.
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Summary on multivariate methods

Particle physics has used several multivariate methods for many years:
linear (Fisher) discriminant
neural networks
naive Bayes

and has in the last several years started to use a few more
k-nearest neighbour
boosted decision trees
support vector machines

The emphasis is often on controlling systematic uncertainties between
the modeled training data and Nature to avoid false discovery.

Although many classifier outputs are "black boxes", a discovery
at 5o significance with a sophisticated (opaque) method will win the
competition if backed up by, say, 4o evidence from a cut-based method.
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Quotes | like

“Keep it simple.
As simple as possible.
Not any simpler.”
— A\ Einstein

“If you believe in something
you don't understand, you suffer,...”
— Stevie Wonder
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Extra slides
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Impertect pdf estimation

What if the approximation we use (e.o.. parametrc form. assumption
PP g, p L
of variable independence, etc.) to estimate p(x) 1s wrong?

If we use poor estimates to construct the test variable

then the discrimination between the event classes will not be optimal.
But can this cause us e.g. to make a false discovery?

Even if the estimate of p(x) used 1n the discriminating variable are
impertect, thas will not atfect the accuracy of the Llis-;lrihuliuns-;ﬁ}-'lHﬂ}.

fivlH ): this only depends on the rehability of the traning data.
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Using the classifier output for discovery
signal
search

A . .
fy) N(y) region
background background

y Y !c ut y

Normahzed to umtv Normahized to LT}LPLTCIL':(]
number of events
Discovery = number of events found 1n search region incompatible
with backeround-only hypothesis. Maximize the probability of this

happening by setting y_ for maximum s b (roughly true).

G. Cowan Statistical Methods in Particle Physics page 57



Controlling talse discovery

So tor a rehable discovery what we depend on 1s an accurate estimalte
of the expected number of background events, and this accuracy only
depends on the quality of the training data: works for any function v(x).

But we do not blindly rely on the MC model for the training data for
background: we need to test it by comparing to real data in control
samples where no signal 1s expected.

The ability to perform these tests will depend on on the complexity of
the analysis methods.
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Decision boundary flexibility

The decision boundary will be defined by some free parameters that
we adjust using training data (of known type) to achieve the best
separation between the event types.

Goal 1s to determine the boundary using a finite amount of training data
SO as to best separate between the event types for an unseen data sample.

overtraining boundary too rigid good trade-off
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