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Outline of lectures

Day #1:  Introduction

Review of probability and Monte Carlo

Review of statistics:  parameter estimation

Day #2:  Multivariate methods (I)

Event selection as a statistical test

Cut-based, linear discriminant, neural networks      

Day #3:  Multivariate methods (II)

More multivariate classifiers:  BDT, SVM ,...

Day #4:  Significance tests for discovery and limits

Including systematics using profile likelihood

Day #5:  Bayesian methods

Bayesian parameter estimation and model selection
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Day #3: outline

Nonparametric probability density estimation methods

histograms

kernel density estimation, 

K nearest neighbour

Boosted Decision Trees

Support Vector Machines
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Review of the problem
Suppose we have events from Monte Carlo of two types, signal 

and background (each instance of x is multivariate):

Goal is to use these training events to adjust the parameters

of a test statistic (―classifier‖) y(x), that we can then use on

real data to distinguish between the two types.

Yesterday we saw linear classifiers, neural networks and started

talking about probability density estimation methods, where we

find the classifier from the ratio of estimated pdfs.
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Boosted decision trees
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Particle i.d. in MiniBooNE
Detector is a 12-m diameter tank 
of mineral oil exposed to a beam 
of neutrinos and viewed by 1520 
photomultiplier tubes:

H.J. Yang, MiniBooNE PID, DNP06

Search for n
m

to n
e

oscillations 
required particle i.d. using 
information from the PMTs.
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Decision trees
Out of all the input variables, find the one for which with a 
single cut gives best improvement in signal purity:

Example by MiniBooNE experiment,
B. Roe et al., NIM 543 (2005) 577

where w
i
. is the weight of the ith event.

Resulting nodes classified as either 
signal/background.

Iterate until stop criterion reached 
based on e.g. purity or minimum 
number of events in a node.

The set of cuts defines the decision 
boundary.
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BDT example from MiniBooNE
~200 input variables for each event (n interaction producing e, m or p).

Each individual tree is relatively weak, with a misclassification 
error rate ~ 0.4 – 0.45 

B. Roe et al., NIM 543 (2005) 577
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Monitoring overtraining

From MiniBooNE
example:

Performance stable
after a few hundred
trees.
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Monitoring overtraining (2)
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Comparison of boosting algorithms
A number of boosting algorithms on the market; differ in the
update rule for the weights.
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Single top quark production (CDF/D0)

Top quark discovered in pairs, but

SM predicts single top production.
Use many inputs based on 

jet properties, particle i.d., ...

signal

(blue +

green)

Pair-produced tops are now 

a background process.
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Different classifiers for single top

Also Naive Bayes and various approximations to likelihood ratio,....

Final combined result is statistically significant (>5s level) but not 

easy to understand classifier outputs.
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Using an SVM
To use an SVM the user must as a minimum choose

a kernel function (e.g. Gaussian)
any free parameters in the kernel (e.g. the s of the Gaussian)
a cost parameter C (plays role of regularization parameter)

The training is relatively straightforward because, in contrast to neural
networks, the function to be minimized has a single global minimum.

Furthermore evaluating the classifier only requires that one retain
and sum over the support vectors, a relatively small number of points.

The advantages/disadvantages and rationale behind the choices above 
is not always clear to the particle physicist -- help needed here.
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SVM in particle physics
SVMs are very popular in the Machine Learning community but have
yet to find wide application in HEP.  Here is an early example from
a CDF top quark anlaysis (A. Vaiciulis, contribution to PHYSTAT02).

signal
eff.
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Summary on multivariate methods

Particle physics has used several multivariate methods for many years:

linear (Fisher) discriminant

neural networks

naive Bayes

and has in the last several years started to use a few more

k-nearest neighbour

boosted decision trees

support vector machines

The emphasis is often on controlling systematic uncertainties between

the modeled training data and Nature to avoid false discovery.

Although many classifier outputs are "black boxes", a discovery

at 5s significance with a sophisticated (opaque) method will win the

competition if backed up by, say, 4s evidence from a cut-based method.



Quotes I like

“If you believe in something 
you don't understand, you suffer,...”

– Stevie Wonder

“Keep it simple.
As simple as possible.
Not any simpler.”

– A. Einstein

G. Cowan page 54Statistical Methods in Particle Physics



G. Cowan Statistical Methods in Particle Physics page 55

Extra slides 
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