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Outline

Lecture 1: Introduction, probability, 

Lecture 2:  Parameter estimation

   See exercises on fitting with iminuit here 
   and on least squares with curve_fit here.

Lecture 3:  Hypothesis tests

Lecture 4:  Systematic uncertainties, further examples

https://www.pp.rhul.ac.uk/~cowan/stat/exercises/lsFit/iminuit/
https://www.pp.rhul.ac.uk/~cowan/stat/exercises/lsFit/curve_fit/
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Hypothesis, likelihood
Suppose the entire result of an experiment (set of 
measurements) is a collection of numbers x.  

A (simple) hypothesis is a rule that assigns a probability to each 
possible data outcome:

Note:

 1)  For the likelihood we treat the data x as fixed.

 2)  The likelihood function L(θ) is not a pdf for θ. 

Often we deal with a family of hypotheses labeled by one or
more undetermined parameters (a composite hypothesis):

=   the likelihood of H

=    the “likelihood function”
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The likelihood function for i.i.d.* data

Consider n independent observations of x:  x1, ..., xn,  where 
x follows f (x; θ).  The joint pdf for the whole data sample is:

In this case the likelihood function is

(xi constant)

* i.i.d. = independent and identically distributed
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Parameter estimation

The parameters of a pdf are any constants that characterize it, 

r.v.

Suppose we have a sample of observed values: x = (x1, ..., xn)

parameter

We want to find some function of the data to estimate the 
parameter(s):

←  estimator written with a hat

Sometimes we say ‘estimator’ for the function of x1, ..., xn;

‘estimate’ for the value of the estimator with a particular data set.

i.e., θ indexes a
set of hypotheses.
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Properties of estimators

If we were to repeat the entire measurement, the estimates
from each would follow a pdf:

We want small (or zero) bias (systematic error):

→  average of repeated measurements should tend to true value.

And we want a small variance (statistical error):

→  small bias & variance are in general conflicting criteria

biasedlarge
variance

best
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Maximum Likelihood Estimators (MLEs)

We define the maximum likelihood estimators or MLEs to be 
the parameter values for which the likelihood is maximum.

Maximizing L 
equivalent to 
maximizing log L

Could have multiple maxima (take highest).

MLEs not guaranteed to have any ‘optimal’ properties, (but 
in practice they’re very good).
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MLE example:  parameter of exponential pdf

Consider exponential pdf,

and suppose we have i.i.d. data,

The likelihood function is

The value of τ for which L(τ) is maximum also gives the 
maximum value of its logarithm (the log-likelihood function):
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MLE example:  parameter of exponential pdf (2)

Find its maximum by setting 

→

Monte Carlo test:  
 generate 50  values
 using τ = 1:

We find the ML estimate:
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MLE example:  parameter of exponential pdf (3)

For the MLE

For the exponential distribution one has for mean, variance:

we therefore find

→

→
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Variance of estimators:  Monte Carlo method
Having estimated our parameter we now need to report its
‘statistical error’, i.e., how widely distributed would estimates
be if we were to repeat the entire measurement many times.

One way to do this would be to simulate the entire experiment
many times with a Monte Carlo program (use ML estimate for MC).

For exponential example, from 
sample variance of estimates
we find:

Note distribution of estimates is roughly
Gaussian − (almost) always true for 
ML in large sample limit.
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Variance of estimators from information inequality
The information inequality (RCF) sets a lower bound on the 
variance of any estimator (not only ML):

Often the bias b is small, and equality either holds exactly or
is a good approximation (e.g. large data sample limit).   Then,

Estimate this using the 2nd derivative of  ln L at its maximum:

Minimum Variance
Bound (MVB) 



13G. Cowan / RHUL Physics CERN Summer Student Lectures / Statistics Lecture 2

MVB for MLE of exponential parameter

We found for the exponential parameter the MLE 

and we showed b = 0, hence 𝜕b/𝜕τ = 0.

Find 

We find

and since E[ti] = τ for all i,

and therefore (Here MLE is “efficient”)..

,
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Variance of estimators: graphical method
Expand ln L(θ) about its maximum:

First term is ln Lmax, second term is zero, for third term use 
information inequality (assume equality):

i.e.,

→  to get , change θ away from until ln L decreases by 1/2.
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Example of variance by graphical method

ML example with exponential:

Not quite parabolic ln L since finite sample size (n = 50).
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Curve fitting

Consider N independent 
measured values yi, i = 1,.., N.

Each yi has a standard deviation 
σi, and is measured at a value xi 

of a control variable x known 
with negligible uncertainty:

The goal is to find a curve μ(x; θ) that passes “close to” the data 
points (more formally:  want E[yi] = μ(xi; θ)).

Suppose the functional form of μ(x; θ) is given; goal is to estimate 
its parameters θ  (= “curve fitting”).

yi ± σi

μ(x; θ)
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Gaussian likelihood function → LS estimators
Suppose the measurements y1, ..., yN, are independent Gaussian 
r.v.s with means E[yi] = μ(xi; θ) and variances V[yi] = σi

2 , so the 
the likelihood function is

The log-likelihood function is therefore

So maximizing the likelihood is equivalent to minimizing

The minimum of χ 
2(θ) defines the least squares (LS) estimators θ.

^ 
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Information inequality for N parameters

Suppose we have estimated N parameters θ = (θ1,...,θN)   

The Fisher information matrix is

The information inequality states that the matrix

and the covariance matrix of estimators θ is 
^

is positive semi-definite:  

 zTMz ≥ 0 for all z ≠ 0, diagonal elements ≥ 0  
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Information inequality for N parameters (2)

In practice the inequality is ~always used in the large-sample limit:

 bias → 0

 inequality → equality, i.e, M = 0, and therefore V−1 = I

That is, 

This can be estimated from data using

Find the matrix V−1 numerically (or with automatic differentiation),
then invert to get the covariance matrix of the estimators
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Variance of LS estimators for Gaussian data

If yi ~ Gauss, then we found 

To the extent this (approximately) holds, we can use

and so we estimate the inverse covariance matrix with

and invert to estimate the covariance matrix U.  

For Gaussian data with the linear LS problem, U is the minimum 
variance bound (the LS estimators are unbiased and efficient).
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Covariance from derivatives of χ2(θ)

This is what programs like curve_fit and MINUIT do (derivatives 
computed numerically).  Example with straight-line fit gives:

,       
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The contour χ 2(θ) = χ 2
min + 1

If μ(x; θ) is linear in the parameters, then χ2(θ) is quadratic:

Standard deviations from 
tangents to (hyper-) planes of

(corresponds to 
lnL(θ) = lnLmax – ½)
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Example code (1)
Simple version:  lineFit.py uses scipy.optimize.curve_fit:
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Example code (2)
Better version:  lsFit.py uses iminuit:

←   install with:  pip install iminuit
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Example code (3)
iminuit provides detailed control of fit, diagnostic plots, etc.
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Extra slides
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LS with correlated measurements

If y ~ multivariate Gaussian with covariance matrix Vij = cov[yi,yj]

where μT = (μ(x1),...,μ(xN)), then maximizing the likelihood is 
equivalent to minimizing
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LS with correlated measurements (2)

For the special case of a diagonal covariance matrix, i.e., 
uncorrelated measurements.  Then

→

V 
-1

ij = δij /σi
2, carry out one of the sums, χ2(θ) same as before:
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