
1G. Cowan / RHUL Physics CERN Summer Student Lectures / Statistics Lecture 3

Summer Student Lectures
CERN 
8 – 11 July 2025

Glen Cowan
Physics Department
Royal Holloway, University of London
g.cowan@rhul.ac.uk

www.pp.rhul.ac.uk/~cowan

Statistics for Particle Physicists
Lecture 3:  Hypothesis Tests, Confidence 

Intervals

https://indico.cern.ch/event/1508891/timetable/



2G. Cowan / RHUL Physics CERN Summer Student Lectures / Statistics Lecture 3

Outline

Lecture 1: Introduction, probability, 

Lecture 2:  Parameter estimation 

Lecture 3:  Hypothesis tests and confidence intervals

   (some exercises here).

Lecture 4:  Systematic uncertainties and further examples

https://www.pp.rhul.ac.uk/~cowan/stat/exercises/hypTest/
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Suppose a measurement produces data x; consider a hypothesis H0 
we want to test and alternative H1

 H0, H1 specify probability for x: P(x|H0), P(x|H1)

A test of H0 is defined by specifying a critical region w of the
data space such that there is no more than some (small) probability
α, assuming H0 is correct,  to observe the data there, i.e.,

  P(x ∈ w | H0) ≤ α

Need inequality if data are
discrete.

α is called the size or 
significance level of the test.

If x is observed in the 
critical region, reject H0.

Frequentist hypothesis tests 

data space Ω

critical region w
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Definition of a test (2)

But in general there are an infinite number of possible critical 
regions that give the same size .

Use the alternative hypothesis H1 to motivate where to place the 
critical region.

Roughly speaking, place the critical region where there is a low 
probability (α) to be found if H0 is true, but high if H1 is true:
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Classification viewed as a statistical test
Suppose events come in two possible types:  

      s (signal) and b (background)

For each event, test hypothesis that it is background, i.e., H0 = b.

Carry out test on many events, each is either of type s or b, i.e., 
here the hypothesis is the “true class label”, which varies randomly 
from event to event, so we can assign to it a frequentist probability.

Select events for which where H0 is rejected as “candidate events of 
type s”.  Equivalent Particle Physics terminology:

background efficiency

signal efficiency
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Example of a test for classification

Suppose we can measure for 
each event a quantity x, where

with 0 ≤ x ≤ 1.

For each event in a mixture of signal (s) and background (b) test

 H0 : event is of type b

using a critical region W of the form:  W = { x : x ≤ xc }, where
xc is a constant that we choose to give a test with the desired size α.
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Classification example (2)

Suppose we want α = 10−4.     Require:

and therefore 

For this test (i.e. this critical region W), the power with respect 
to the signal hypothesis (s) is

Note:  the optimal size and power is a separate question that will 
depend on goals of the subsequent analysis.
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Classification example (3)

Suppose that the prior probabilities for an event to be of  
type s or b are:

   πs = 0.001

   πb = 0.999

The “purity” of the selected signal sample (events where b 
hypothesis rejected) is found using Bayes’ theorem:
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Testing significance / goodness-of-fit

Suppose hypothesis H predicts pdf f (x|H) for a set of
observations x = (x1,...xn). 

We observe a single point in this space: xobs. 

How can we quantify the level of compatibility between the data 
and the predictions of H?

Decide what part of 
the data space represents 
equal or less compatibility  
with H than does the 
point xobs.  (Not unique!) 

ω≤ = { x : x “less 
or eq. compatible” 
with H }

ω> = { x : x “more
compatible” with H }

xobs

xi

xj



p-values
Express level of compatibility between data and hypothesis 
(sometimes ‘goodness-of-fit’) by giving the p-value for H:

= probability, under assumption of H, to observe data 
with equal or lesser compatibility with H relative to the 
data we got. 

= probability, under assumption of H, to observe data as      
discrepant with H as the data we got or more so.

Basic idea:  if there is only a very small probability to find data
with even worse (or equal) compatibility, then H is “disfavoured by 
the data”.

If the p-value is below a user-defined threshold α (e.g. 0.05) then H 
is rejected (equivalent to hypothesis test of size α as seen earlier).
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p-value of H is not P(H)

where π(H) is the prior probability for H.

The p-value of H is not the probability that H is true!

In frequentist statistics we don’t talk about P(H) (unless H 
represents a repeatable observation). 

If we do define P(H), e.g., in Bayesian statistics as a degree of 
belief,  then we need to use Bayes’ theorem to obtain

For now stick with the frequentist approach; 
result is p-value, regrettably easy to misinterpret as P(H).
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The Poisson counting experiment
Suppose we do a counting experiment and observe n events.

 Events could be from signal process or from background – 
 we only count the total number.

Poisson model:  

s = mean (i.e., expected) # of signal events

b = mean # of background events

Goal is to make inference about s, e.g.,

     test s = 0 (rejecting H0 ≈ “discovery of signal process”)

     test all non-zero s  (values not rejected =  confidence interval)

In both cases need to ask what is relevant alternative hypothesis.
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Poisson counting experiment: discovery p-value
Suppose b = 0.5 (known), and we observe nobs = 5.  

Should we claim evidence for a new discovery?  

    Give p-value for hypothesis s = 0:
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Significance from p-value

Often define significance Z as the number of standard deviations
that a Gaussian variable would fluctuate in one direction
to give the same p-value.

in ROOT:

p = 1 - TMath::Freq(Z)

Z = TMath::NormQuantile(1-p)

in python (scipy.stats):

p = 1 - norm.cdf(Z) = norm.sf(Z)

Z = norm.ppf(1-p)

Result Z is a “number of sigmas”.  Note this does not mean that 
the original data was Gaussian distributed.
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Poisson counting experiment: discovery significance

In fact this tradition should be 
revisited:  p-value intended to 
quantify probability of a signal-
like fluctuation assuming 
background only; not intended 
to cover, e.g., hidden 
systematics, plausibility signal 
model, compatibility of data with 
signal, “look-elsewhere effect” 
(~multiple testing), etc.

Equivalent significance for p = 1.7 × 10−4:  

Often claim discovery if Z > 5 (p < 2.9 × 10−7, i.e., a “5-sigma effect”)
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Confidence intervals by inverting a test

In addition to a ‘point estimate’ of a parameter we should report 
an interval reflecting its statistical uncertainty.  

Confidence intervals for a parameter θ can be found by 
defining a test of the hypothesized value θ (do this for all θ): 

 Specify values of the data that are ‘disfavoured’ by θ 
 (critical region) such that P(data in critical region|θ) ≤ α 

 for a prespecified α, e.g., 0.05 or 0.1.

 If data observed in the critical region, reject the value θ.

Now invert the test to define a confidence interval as:

 set of θ values that are not rejected in a test of size α  
 (confidence level CL is 1− α).
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Relation between confidence interval and p-value

Equivalently we can consider a significance test for each
hypothesized value of θ, resulting in a p-value, pθ.  

 If pθ ≤ α, then we reject θ. 

The confidence interval at CL = 1 – α consists of those values of 
θ  that are not rejected.

E.g. an upper limit on θ is the greatest value for which pθ > α. 

 In practice find by setting pθ = α and solve for θ.

For a multidimensional parameter space θ = (θ1,... θM) use same 
idea – result is a confidence “region” with boundary determined 
by pθ = α.
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Coverage probability of confidence interval

If the true value of θ is rejected, then it’s not in the confidence 
interval.  The probability for this is by construction (equality for 
continuous data):

  P(reject θ|θ) ≤ α = type-I error rate

Therefore, the probability for the interval to contain or “cover” θ is

  P(conf. interval “covers” θ|θ) ≥ 1  α

This assumes that the set of θ values considered includes the true 
value, i.e., it assumes the composite hypothesis P(x|H,θ).
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Frequentist upper limit on Poisson parameter

Consider again the case of observing n ~ Poisson(s + b).

Suppose b = 4.5, nobs = 5.  Find upper limit on s at 95% CL.

Relevant alternative is s = 0 (critical region at low n)

p-value of hypothesized s is P(n ≤ nobs; s, b)

Upper limit sup at CL = 1 – α found from



20G. Cowan / RHUL Physics CERN Summer Student Lectures / Statistics Lecture 3

n ~ Poisson(s+b):  frequentist upper limit on s

For low fluctuation of n, formula can give negative result for sup; 
i.e. confidence interval is empty;  all values of s ≥ 0 have ps ≤ α.
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Approximate confidence intervals/regions 
from the likelihood function

Suppose we test parameter value(s) θ = (θ1, ..., θn)  using the ratio

Lower λ(θ) means worse agreement between data and 
hypothesized θ.  Equivalently, usually define

so higher tθ means worse agreement between θ and the data.

p-value of θ therefore 

need pdf
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Confidence region from Wilks’ theorem

Wilks’ theorem says (in large-sample limit and provided 
certain conditions hold...)

chi-square dist. with # d.o.f. = 
# of components in θ = (θ1, ..., θn).

Assuming this holds, the p-value is

To find boundary of confidence region set pθ = α and solve for tθ:

Recall also 

← set equal to α 
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Confidence region from Wilks’ theorem (cont.)

i.e., boundary of confidence region in θ space is where

For example, for 1 – α = 68.3% and n = 1 parameter,

and so the 68.3% confidence level interval is determined by

Same as recipe for finding the estimator’s standard deviation, i.e.,

is a 68.3% CL confidence interval.
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Example of interval from ln L(θ) 

For n=1 parameter, CL = 0.683, Qα = 1.

Our exponential 
example, now with
only n = 5 events.

Can report ML estimate
with approx. confidence
interval from ln Lmax – 1/2

as “asymmetric error bar”:
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Multiparameter case

For increasing number of parameters, CL = 1 – α decreases for
confidence region determined by a given 
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Multiparameter case (cont.)

Equivalently, Qα increases with n for a given CL = 1 – α.
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Extra slides
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Limits near a boundary of the parameter space

Suppose e.g. b = 2.5 and we observe n = 0.  

If we choose CL = 0.9, we find from the formula for sup

Physicist:  
 We already knew s ≥ 0 before we started; can’t use negative 
 upper limit to report result of expensive experiment!

Statistician:
 The interval is designed to cover the true value only 90%
 of the time — this was clearly not one of those times.

Not uncommon dilemma when testing parameter values for which
one has very little experimental sensitivity, e.g., very small s.
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Expected limit for s = 0

Physicist:  I should have used CL = 0.95 — then sup = 0.496

Even better:  for CL = 0.917923 we get sup = 10−4 !

Reality check:  with b = 2.5, typical Poisson fluctuation in n is
at least √2.5 = 1.6.  How can the limit be so low?

Look at the mean limit for the 
no-signal hypothesis (s = 0)
(sensitivity).

Distribution of 95% CL limits
with b = 2.5, s = 0.

Mean upper limit = 4.44
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Obvious where to put W?

In the 1930s there were great debates as to the role of the 
alternative hypothesis.

Fisher held that one could test a hypothesis H0 without reference 
to an alternative.  

Suppose, e.g., H0 predicts that x (suppose positive) usually comes 
out low.  High values of x are less characteristic of H0, so if a high 
value is observed, we should reject H0, i.e., we put W at high x:  

If we see x 
here, reject H0.
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Or not so obvious where to put W?

But what if the only relevant alternative to H0 is H1 as below:

Here high x is more characteristic of H0 and not like what we 
expect from H1.  So better to put W at low x.

Neyman and Pearson argued that “less characteristic of H0” is 
well defined only when taken to mean “more characteristic of 
some relevant alternative H1”.
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Type-I, Type-II errors 

Rejecting the hypothesis H0 when it is true is a Type-I error.  

The maximum probability for this is the size of  the test:

 P(x ∈ W | H0 ) ≤ 

But we might also accept H0 when it is false, and an alternative 
H1 is true.

This is called a Type-II error, and occurs with probability

 P(x ∈ S − W | H1 ) = 

One minus this is called the power of the test with respect to
the alternative H1:

 Power =  − 
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Distribution of  the p-value

The p-value is a function of the data, and is thus itself a random
variable with a given distribution.  Suppose the p-value of H is 
found from a test statistic t(x) as

The pdf of pH under assumption of H is

In general for continuous data,  under 
assumption of H, pH ~ Uniform[0,1]
and is concentrated toward zero for 
some (broad) class of alternatives. pH

g(pH|H)

0 1

g(pH|H′)
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Using a p-value to define test of H0

One can show that under assumption of a hypothesis H0, its
p-value, p0, follows a uniform distribution in [0,1].

So we can define the critical region of a test of H0 with size α as the 
set of data space where p0 ≤ α .

Formally the p-value relates only to H0, but the resulting test will
have a given power with respect to a given alternative H1.

So the probability to find p0 
less than a given α is
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