
1G. Cowan / RHUL Physics CERN Summer Student Lectures / Statistics Lecture 4

Summer Student Lectures
CERN 
8 – 11 July 2025

Glen Cowan
Physics Department
Royal Holloway, University of London
g.cowan@rhul.ac.uk

www.pp.rhul.ac.uk/~cowan

Statistics for Particle Physicists
Lecture 4:  Introduction to Machine Learning

https://indico.cern.ch/event/1508891/timetable/



2G. Cowan / RHUL Physics CERN Summer Student Lectures / Statistics Lecture 4

Outline

Lecture 1: Introduction, probability, 

Lecture 2:  Parameter estimation

Lecture 3:  Hypothesis tests

Lecture 4:  Systematic uncertainties and further examples
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Systematic uncertainties and nuisance parameters

In general, our model of the data is not perfect:

x 

P
 (x

|μ
)

model:  

truth:

Can improve model by including 
additional adjustable parameters.

Nuisance parameter  systematic uncertainty. Some point in the
parameter space of the enlarged model should be “true”.  

Presence of nuisance parameter decreases sensitivity of analysis
to the parameter of interest (e.g., increases variance of estimate).
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Profile Likelihood

Suppose we have a likelihood L(μ,θ) = P(x|μ,θ) with  N 
parameters of interest μ = (μ1,..., μN) and M nuisance parameters 
θ = (θ1,..., θM).  The “profiled” (or “constrained”) values of θ are:

and the profile likelihood is:

The profile likelihood depends only on the parameters of 
interest; the nuisance parameters are replaced by their profiled 
values.

The profile likelihood can be used to obtain confidence 
intervals/regions for the parameters of interest in the same way 
as one would for all of the parameters from the full likelihood.
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Profile Likelihood Ratio – Wilks theorem

Goal is to test/reject regions of μ space (param. of interest).

Rejecting a point μ should mean pμ ≤ α for all possible values of the 
nuisance parameters θ.

Test μ using the “profile likelihood ratio”:

Let tμ = −2 ln λ(μ).  Wilks’ theorem says in large-sample limit:

where the number of degrees of freedom is the number of 
parameters of interest (components of μ).  So p-value for μ is
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Profile Likelihood Ratio – Wilks theorem (2)

The recipe to get confidence regions/intervals for the parameters 
of interest at CL = 1 – α is thus the same as before, simply use the 
profile likelihood:

If we have a large enough data sample to justify use of the
asymptotic chi-square pdf, then if μ is rejected, it is rejected for 
any values of the nuisance parameters.

where the number of degrees of freedom N for the chi-square 
quantile is equal to the number of parameters of interest.

If the large-sample limit is not justified, then use e.g. Monte 
Carlo to get distribution of tμ.
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Example:  fitting a straight line

Data:

Model: yi independent and all follow yi  ~ Gauss(μ(xi ), σi )

 

assume xi and σi known.

Goal:  estimate θ0 

Here suppose we don’t care 
about θ1 (example of a 
“nuisance parameter”)
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Maximum likelihood fit with Gaussian data

In this example, the yi are assumed independent, so the
likelihood function is a product of Gaussians:

Maximizing the likelihood is here equivalent to minimizing

i.e., for Gaussian data, ML same as Method of Least Squares (LS)
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θ1 known a priori

For Gaussian yi, ML same as LS

Minimize χ2 → estimator

Come up one unit from     

to find 
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Correlation between

             causes errors

to increase.

Standard deviations from

tangent lines to contour

ML (or LS) fit of θ0 and θ1
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The information on θ1

improves accuracy of

If we have a measurement t1 ~ Gauss (θ1, σt1
)
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Reminder of Bayesian approach

In Bayesian statistics we can associate a probability with
a hypothesis, e.g., a parameter value θ.

        Interpret probability of θ as ‘degree of belief’ (subjective).

Need to start with ‘prior pdf’ π(θ), this reflects degree 
of belief about θ before doing the experiment.

        Our experiment has data x, → likelihood L(x|θ).

Bayes’ theorem tells how our beliefs should be updated in
light of the data x:

Posterior pdf  p(θ|x) contains all our knowledge about θ.
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Bayesian approach:  yi ~ Gauss(μ(xi;θ0,θ1), σi) 

We need to associate prior probabilities with θ0 and θ1, e.g.,

Likelihood for control
measurement t1

← ‘non-informative’, in any
case much broader than L(θ0)

Ur = “primordial”
         prior 

← suppose knowledge of θ0 has 
no influence on knowledge of θ1

prior after t1,
before y
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Bayesian example:  yi ~ Gauss(μ(xi;θ0,θ1), σi) 

Putting the ingredients into Bayes’ theorem gives:

posterior    ∝                  likelihood         ✕       prior

Note here the likelihood only reflects the measurements y.

The information from the control measurement t1 has been put 
into the prior for θ1.

We would get the same result using the likelihood P(y,t|θ0,θ1) and 
the constant  “Ur-prior” for θ1.
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Marginalizing the posterior pdf

For this example, numbers come out same as in frequentist 
approach, but interpretation different.  

We then integrate (marginalize)  p(θ0, θ1 | y) to find p(θ0  | y):

In this example we can do the integral (rare).  We find

(same as for MLE)
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Marginalization with MCMC

Bayesian computations involve integrals like

often high dimensionality and impossible in closed form,
also impossible with ‘normal’ acceptance-rejection Monte Carlo.

Markov Chain Monte Carlo (MCMC) has revolutionized
Bayesian computation.  

MCMC (e.g., Metropolis-Hastings algorithm) generates 
correlated sequence of random numbers:

 cannot use for many applications, e.g., detector MC;
 effective stat. error greater than if all values independent .

Basic idea:  sample multidimensional θ but look only at 
distribution of parameters of interest. 
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MCMC basics:  Metropolis-Hastings algorithm

1)  Start at some point 

2)  Generate  

Proposal density q(θ; θ0 )
e.g. Gaussian centred
about θ0

3)  Form test ratio

4)  Generate

5)  If

else

move to proposed point

old point repeated

6)  Iterate

Goal:  given an n-dimensional pdf p(θ) up to a proportionality 
constant, generate a sequence of points θ1 , θ2 , θ3 ,... 
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Metropolis-Hastings (continued)

This rule produces a correlated sequence of points (note how 
each new point depends on the previous one).

Still works if p(θ) is known only as a proportionality, which is 
usually what we have from Bayes’ theorem: p(θ|x) ∝ p(x|θ) π(θ).

The proposal density can be (almost) anything, but choose
so as to minimize autocorrelation.  Often take proposal
density symmetric:  q(θ; θ0 ) = q(θ0; θ )

Test ratio is (Metropolis-Hastings):

I.e. if the proposed step is to a point of higher p(θ), take it;  

if not, only take the step with probability p(θ)/p(θ0).

If proposed step rejected, repeat the current point.



19G. Cowan / RHUL Physics CERN Summer Student Lectures / Statistics Lecture 4

Example:  posterior pdf from MCMC

Sample the posterior pdf from previous example with MCMC:

Normalized histogram of θ0 gives 
its marginal posterior pdf:
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Bayesian method with alternative priors
Suppose we don’t have a previous measurement of θ1 but rather, 
an “expert” says it should be positive and not too much  greater 
than 0.1 or so, i.e., something like

From this we obtain (numerically) the posterior pdf for θ0:

This summarizes all 
knowledge about θ0.

Look also at result from 
variety of  priors.
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Examples of maximum likelihood 
and confidence regions

The materials for this tutorial can be found on

 https://www.pp.rhul.ac.uk/~cowan/stat/exercises/fitting/

The exercise and are described in the file ml_fit_exericise.pdf.

The exercises for parameter estimation are done with the program 
mlFit.py (or with jupyter mlFit.ipynb).

The exercise does an unbinned maximum-likelihood fit and 
analysis of the uncertainties.  

In addition there is a program histFit.py that does the same 
analysis but with histogram data (look at this later).

These need the iminuit package (usually “pip install iminuit”)
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Gaussian signal on exponential background

Consider a pdf for continuous random variable x, (truncate and 
renormalize in 0 ≤  x ≤ xmax)

θ = parameter of interest ,
gives signal rate.

Depending on context, take ξ, μ, σ 
as nuisance parameters or fixed.

Generate i.i.d. sample x1,..., xn.

Estimate θ (and other params.)
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A quick look at mlFit.py
# Example of maximum-likelihood fit with iminuit version 2.
# pdf is a mixture of Gaussian (signal) and exponential (background),
# truncated in [xMin,xMax].
# G. Cowan / RHUL Physics / December 2022

import numpy as np
import scipy.stats as stats
from scipy.stats import truncexpon
from scipy.stats import truncnorm
from scipy.stats import chi2
import iminuit
from iminuit import Minuit
import matplotlib.pyplot as plt
from matplotlib import container
plt.rcParams["font.size"] = 14
print("iminuit version:", iminuit.__version__)  # need 2.x

# define pdf and generate data
np.random.seed(seed=1234567)     # fix random seed
theta = 0.2             # fraction of signal
mu = 10.               # mean of Gaussian
sigma = 2.              # std. dev. of Gaussian
xi = 5.               # mean of exponential
xMin = 0.
xMax = 20.
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Define the fit function

Generate the data

def f(x, par):
  theta  = par[0]
  mu    = par[1]
  sigma  = par[2]
  xi    = par[3]
  fs = stats.truncnorm.pdf(x, a=(xMin-mu)/sigma, b=(xMax-mu)/sigma,      
    loc=mu, scale=sigma)
  fb = stats.truncexpon.pdf(x, b=(xMax-xMin)/xi, loc=xMin, scale=xi)
  return theta*fs + (1-theta)*fb

numVal = 200
xData = np.empty([numVal])
for i in range (numVal):
  r = np.random.uniform();
  if r < theta:
    xData[i] = stats.truncnorm.rvs(a=(xMin-mu)/sigma, b=(xMax-mu)/sigma, 
         loc=mu, scale=sigma)
  else:
    xData[i] = stats.truncexpon.rvs(b=(xMax-xMin)/xi, loc=xMin, scale=xi)
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Set up the fit

# Function to be minimized is negative log-likelihood
def negLogL(par):
  pdf = f(xData, par)
  return -np.sum(np.log(pdf))

# Initialize Minuit and set up fit:
parin  = np.array([theta, mu, sigma, xi]) # initial values (here = true values)
parname = ['theta', 'mu', 'sigma', 'xi']
parname_latex = [r'$\theta$', r'$\mu$', r'$\sigma$', r'$\xi$']
parstep = np.array([0.1, 1., 1., 1.])    # initial setp sizes
parfix  = [False, True, True, False]    # change these to fix/free params
parlim  = [(0.,1), (None, None), (0., None), (0., None)]   # set limits
m = Minuit(negLogL, parin, name=parname)
m.errors = parstep
m.fixed = parfix
m.limits = parlim
m.errordef = 0.5              # errors from lnL = lnLmax - 0.5
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Do the fit, get errors, extract results

Make some plots...

# Do the fit, get errors, extract results
m.migrad()                     # minimize -logL
MLE = m.values                   # max-likelihood estimates
sigmaMLE = m.errors                # standard deviations
cov = m.covariance                 # covariance matrix
rho = m.covariance.correlation()          # correlation coeffs.
 

print(r"par index, name, estimate, standard deviation:")
for i in range(m.npar):
  if not m.fixed[i]:
    print("{:4d}".format(i), "{:<10s}".format(m.parameters[i]), " = ",
    "{:.6f}".format(MLE[i]), " +/- ", "{:.6f}".format(sigmaMLE[i]))

print()
print(r"free par indices, covariance, correlation coeff.:")
for i in range(m.npar):
  if not(m.fixed[i]):
    for j in range(m.npar):
      if not(m.fixed[j]):
        print(i, j, "{:.6f}".format(cov[i,j]),         
 "{:.6f}".format(rho[i,j]))
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mlFit.py output

Fit results, confidence regions,...  (see 
https://www.pp.rhul.ac.uk/~cowan/stat/
exercises/cowan_stat_exercises.pdf and 
links therein)

https://www.pp.rhul.ac.uk/~cowan/stat/exercises/cowan_stat_exercises
https://www.pp.rhul.ac.uk/~cowan/stat/exercises/cowan_stat_exercises
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Example of Bayesian parameter estimation

The exercise is described 

https://www.pp.rhul.ac.uk/~cowan/stat/exercises/bayesFit/

in the file bayes_fit_exercise.pdf.

The program is in bayesFit.py or bayesFit.ipynb.

This exercise treats the same fitting problem as seen with 
maximum likelihood, here using the Bayesian approach.

Bayes’ theorem is used to find the posterior pdf for the 
parameters, and these are summarized using the posterior mode 
(MAP estimators).

The posterior pdf is marginalized over the nuisance parameters 
using Markov Chain Monte Carlo.
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Gaussian signal on exponential background

Same pdf as from mlFit.py (see tutorial 1) with n = 400 
independent values of x from 

At first take prior pdf constant for all parameters subject to 
0 ≤ θ ≤ 1, σ > 0, ξ > 0 (later try different priors).

Posterior pdf for parameters λ =  (θ, μ, σ, ξ) from Bayes theorem,

where 
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Data and MAP estimates

Maximize posterior with minuit (minimize – ln p(λ|x)).

Standard deviations from 
minuit correspond to 
approximating posterior as 
Gaussian near its peak.

Here priors constant so 
MAP estimates same as 
MLE, covariance matrix 
Vij = cov[θi, θj] also same.
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A look at bayesFit.py
Find maximum of posterior with iminuit (minimize – ln p(λ|x)), 

similar to maximum likelihood:

# Negative log-likelihood
def negLogL(par):
  fx = f(xData, par)
  return -np.sum(np.log(fx))

# Prior pdf
def prior(par):
  theta   = par[0]
  mu    = par[1]
  sigma   = par[2]
  xi    = par[3]
  pi_theta = 1. if theta >= 0. and theta <= 1. else 0.
  pi_mu   = 1. if mu >= 0. else 0.
  pi_sigma = 1. if sigma > 0. else 0.
  pi_xi   = 1. if xi > 0. else 0.
  piArr = np.array([pi_theta, pi_mu, pi_sigma, pi_xi])
  pi = np.product(piArr[np.array(parfix) == False])  # exclude fixed par
  return pi
 

# Negative log of posterior pdf
def negLogPost(par):
  return negLogL(par) - np.log(prior(par))

minimize with iminuit



32G. Cowan / RHUL Physics CERN Summer Student Lectures / Statistics Lecture 4

Metropolis-Hastings algorithm in bayesFit.py
# Iterate with Metropolis-Hastings algorithm
chain = [np.array(MAP)]     # start point is MAP estimate
numIterate = 10000
numBurn = 100
numAccept = 0
print("Start MCMC iterations: ", end="")
while len(chain) < numIterate:
  par = chain[-1]
  log_post = -negLogL(par) + np.log(prior(par))
  par_prop = np.random.multivariate_normal(par, cov_prop)
  if prior(par_prop) <= 0:
    chain.append(chain[-1])   # never accept if prob<=0.
  else:
    log_post_prop = -negLogL(par_prop) + np.log(prior(par_prop))
    alpha = np.exp(log_post_prop - log_post)
    u = np.random.uniform(0, 1)
    if u <= alpha:
      chain.append(par_prop)
      numAccept += 1
    else:
      chain.append(chain[-1])
    if len(chain)%(numIterate/100) == 0:
      print(".", end="", flush=True)
chain = np.array(chain)

Try increasing number 
of iterations (10k runs 
in about 20 s).
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MCMC trace plots
Take θ as parameter of interest, rest are nuisance parameters.

Marginalize by sampling posterior pdf with Metropolis-Hastings.

Gaussian proposal pdf, 
covariance U = sV, 

s = (2.38)2/Npar = 1.41,  
gives acceptance 
probability ~ 0.24.

Here 10 000 iterations 
(should use more).
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Marginal distributions

Note long tails.

Interpretation: data 
distribution can be 
approximated by  
Gaussian term only,  
(θ large, μ small) with 
large width (σ ~ 4-8) 
and a narrow 
exponential (ξ ~ 1-3).

MAP estimates shown with vertical bars
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Correlation plots and marginal distributions

Estimates/intervals for theta:
MCMC acceptance fraction =  0.3737
Posterior mode (MAP estimate)   =  0.197936
Posterior mean                  =  0.351234
Posterior median                =  0.250764
MAP +/- sigmaMAP (from minuit)  =  [0.140056, 0.255816]
Posterior mean +/- sigmaMCMC    =  [0.118503, 0.583964]
68.3% central credible interval =  [0.158557, 0.685847]
68.3% HPD interval              =  [0.093997, 0.392642]
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Correlation plots and marginal distributions 
using auxiliary measurement for ξ

Estimates/intervals for theta:
MCMC acceptance fraction =  0.3516
Posterior mode (MAP estimate)   =  0.200077
Posterior mean                  =  0.224898
Posterior median                =  0.212835
MAP +/- sigmaMAP (from minuit)  =  [0.149282, 0.250873]
Posterior mean +/- sigmaMCMC    =  [0.148481, 0.301314]
68.3% central credible interval =  [0.156736, 0.291246]
68.3% HPD interval              =  [0.137607, 0.267077]
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Finally

Four lectures only enough for a brief introduction to:

 Probability, frequentist & Bayesian approaches

 Parameter estimation, maximum likelihood

 Hypothesis tests, p-values, limits

 Fitting with systematic uncertainties, frequentist vs. Bayesian 

Many other important areas:

 Statistics of Machine Learning,...

 Profile likelihood ratio tests, asymptotics,...

Please take a look at the exercises
         https://www.pp.rhul.ac.uk/~cowan/stat/exercises/cowan_stat_exercises.pdf

that contain simple python programs for least squares, hypothesis 
tests, maximum likelihood and Bayesian fitting – enjoy!
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Extra slides
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Comments on using iminuit

In our earlier iminuit example 
mlFit.py, the only argument of 
the log-likelihood function was 
the parameter array, and the 
data array xData entered as 
global (usually not a good idea):

⠇
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lnL in a class, binned data,...
Sometimes it is convenient to have the function being 
minimized as a method of a class.  An example of this is shown 
in the program histFit.py, which does the same fit as in mlFit.py 
but with a histogram of the data:
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The global data can be avoided if we make the objective function a 
method of a class:

A look at histFit.py
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class ChiSquared  (continued)
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Using the ChiSquared  class
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Extra Slides
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Extra Slides
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