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Outline 
Lecture 1:  Introduction and basic formalism 

       Probability, statistical tests, confidence intervals. 

Lecture 2:  Tests based on likelihood ratios 
       Systematic uncertainties (nuisance parameters) 

Lecture 3:  Limits for Poisson mean 
       Bayesian and frequentist approaches 

Lecture 4:  More on discovery and limits 
                  Spurious exclusion 
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Setting limits on Poisson parameter 
Consider again the case of finding n = ns + nb events where 

nb events from known processes (background) 
ns events from a new process (signal) 

are Poisson r.v.s with means s, b, and thus n = ns + nb 
is also Poisson with mean = s + b.  Assume b is known. 

Suppose we are searching for evidence of the signal process, 
but the number of events found is roughly equal to the 
expected number of background events, e.g., b = 4.6 and we  
observe nobs = 5 events. 

→  set upper limit on the parameter s. 

The evidence for the presence of signal events is not 
statistically significant, 
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Upper limit for Poisson parameter 
Find the hypothetical value of s such that there is a given small 
probability, say, γ = 0.05, to find as few events as we did or less: 

Solve numerically for s = sup, this gives an upper limit on s at a 
confidence level of 1-γ. 

Example:  suppose b = 0 and we find nobs = 0.  For 1-γ = 0.95, 

→ 
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Calculating Poisson parameter limits 
To solve for slo, sup, can exploit relation to χ2 distribution: 

Quantile of χ2 distribution 

For low fluctuation of n the  
formula can give negative  
result for sup;  i.e. confidence  
interval is empty. 
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Limits near a physical boundary 
Suppose e.g. b = 2.5 and we observe n = 0.   

If we choose CL = 0.9, we find from the formula for sup 

Physicist:   
 We already knew s ≥ 0 before we started; can’t use negative  
 upper limit to report result of expensive experiment! 

Statistician: 
 The interval is designed to cover the true value only 90% 
 of the time — this was clearly not one of those times. 

Not uncommon dilemma when limit of parameter is close to a  
physical boundary.  



G. Cowan  Discovery and limits / DESY, 4-7 October 2011 / Lecture 3 Lecture 12  page 7 

Expected limit for s = 0 

Physicist:  I should have used CL = 0.95 — then sup = 0.496 

Even better:  for CL = 0.917923 we get sup = 10-4 ! 

Reality check:  with b = 2.5, typical Poisson fluctuation in n is 
at least √2.5 = 1.6.  How can the limit be so low? 

Look at the mean limit for the  
no-signal hypothesis (s = 0) 
(sensitivity). 

Distribution of 95% CL limits 
with b = 2.5, s = 0. 
Mean upper limit = 4.44 
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The Bayesian approach to limits 
In Bayesian statistics need to start with ‘prior pdf’ π(θ), this  
reflects degree of belief about θ before doing the experiment. 

Bayes’ theorem tells how our beliefs should be updated in 
light of the data x: 

Integrate posterior pdf  p(θ | x) to give interval with any desired 
probability content.   

For e.g. n ~ Poisson(s+b), 95% CL upper limit on s from 
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Bayesian prior for Poisson parameter 
Include knowledge that s ≥0 by setting prior π(s) = 0 for s<0. 

Could try to reflect ‘prior ignorance’ with e.g.  

Not normalized but this is OK as long as L(s) dies off for large s. 

Not invariant under change of parameter — if we had used instead 
a flat prior for, say, the mass of the Higgs boson, this would  
imply a non-flat prior for the expected number of Higgs events. 

Doesn’t really reflect a reasonable degree of belief, but often used 
as a point of reference; 

or viewed as a recipe for producing an interval whose frequentist 
properties can be studied (coverage will depend on true s).  
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Bayesian interval with flat prior for s 
Solve numerically to find limit sup. 

For special case b = 0, Bayesian upper limit with flat prior 
numerically same as classical case (‘coincidence’).  

Otherwise Bayesian limit is 
everywhere greater than 
classical (‘conservative’). 

Never goes negative. 

Doesn’t depend on b if n = 0. 
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Priors from formal rules  
Because of difficulties in encoding a vague degree of belief 
in a prior, one often attempts to derive the prior from formal rules, 
e.g., to satisfy certain invariance principles or to provide maximum 
information gain for a certain set of measurements. 

 Often called “objective priors”  
 Form basis of Objective Bayesian Statistics 

The priors do not reflect a degree of belief (but might represent 
possible extreme cases).    

In a Subjective Bayesian analysis, using  objective priors can be an  
important part of the sensitivity analysis. 
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Priors from formal rules (cont.)  
In Objective Bayesian analysis, can use the intervals in a 
frequentist way, i.e., regard Bayes’ theorem as a recipe to produce 
an interval with certain coverage properties.  For a review see: 

Formal priors have not been widely used in HEP, but there is 
recent interest in this direction; see e.g. 

L. Demortier, S. Jain and H. Prosper, Reference priors for high 
energy physics, Phys. Rev. D 82 (2010) 034002,  
arxiv:1002.1111 (Feb 2010) 
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Jeffreys’ prior 
According to Jeffreys’ rule, take prior according to 

where 

is the Fisher information matrix. 

One can show that this leads to inference that is invariant under 
a transformation of parameters. 

For a Gaussian mean, the Jeffreys’ prior is constant; for a Poisson  
mean µ it is proportional to 1/√µ.  
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Jeffreys’ prior for Poisson mean 

Suppose n ~ Poisson(µ).  To find the Jeffreys’ prior for µ, 

So e.g. for µ = s + b, this means the prior π(s) ~ 1/√(s + b),   
which depends on b.  Note this is not designed as a degree of  
belief  about s. 
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Bayesian limits with uncertainty on b 
Uncertainty on b goes into the prior, e.g., 

Put this into Bayes’ theorem, 

Marginalize over the nuisance parameter b,  

Then use p(s|n) to find intervals for s with any desired  
probability content. 
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MCMC basics:  Metropolis-Hastings algorithm 
Goal:  given an n-dimensional pdf  
generate a sequence of points  

1)  Start at some point  

2)  Generate   

Proposal density 
e.g. Gaussian centred 
about 

3)  Form Hastings test ratio 

4)  Generate 

5)  If 

else 

move to proposed point 

old point repeated 

6)  Iterate 
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Metropolis-Hastings (continued) 
This rule produces a correlated sequence of points (note how  
each new point depends on the previous one). 

For our purposes this correlation is not fatal, but statistical 
errors larger than naive 

The proposal density can be (almost) anything, but choose 
so as to minimize autocorrelation.  Often take proposal 
density symmetric: 

Test ratio is (Metropolis-Hastings): 

I.e. if the proposed step is to a point of higher           , take it;   
if not, only take the step with probability  
If proposed step rejected, hop in place. 
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More on priors 
Suppose we measure n ~ Poisson(s+b), goal is to make inference 
about s. 

Suppose b is not known exactly but we have an estimate b 
with uncertainty σb. 

For Bayesian analysis, first reflex may be to write down a  
Gaussian prior for b, 

But a Gaussian could be problematic because e.g. 
 b ≥ 0, so need to truncate and renormalize; 
 tails fall off very quickly, may not reflect true uncertainty. 

ˆ 
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Gamma prior for b 
What is in fact our prior information about b?  It may be that  
we estimated b using a separate measurement (e.g., background  
control sample) with 

        m ~ Poisson(τb)              (τ = scale factor, here assume known) 

Having made the control measurement we can use Bayes’ theorem 
to get the probability for b given m, 

If we take the “original” prior π0(b) to be to be constant for b ≥ 0, 
then the posterior π(b|m), which becomes the subsequent prior  
when we measure n and infer s, is a Gamma distribution with: 

 mean =  (m + 1) /τ	

 standard dev. = √(m + 1) /τ 
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Gamma distribution 
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Frequentist approach to same problem 

In the frequentist approach we would regard both variables 

 n ~ Poisson(s+b) 
 m ~ Poisson(τb) 

as constituting the data, and thus the full likelihood function is 

Use this to construct test of s with e.g. profile likelihood ratio 

Note here that the likelihood refers to both n and m, whereas 
the likelihood used in the Bayesian calculation only modeled n. 
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Choice of test for limits 
Often we want to ask what values of µ can be excluded on  
the grounds that some lower value of µ describes the data better. 

To do this take the alternative to correspond to lower values of µ. 

The critical region to test µ thus contains low values of the data. 

 → One-sided (e.g., upper) limit. 

In other cases we want to exclude µ on the grounds that some other 
measure of incompatibility between it and the data exceeds some 
threshold (e.g., likelihood ratio wrt two-sided alternative). 

The critical region can contain both high and low data values.   

 → Two-sided or unified (Feldman-Cousins) intervals. 



I.e. for purposes of setting an upper limit, take critical region of 
test to correspond to data outcomes better described by a 
lower value of µ. 

From observed qµ find p-value: 

Large sample approximation:    

95% CL upper limit on µ is highest value for which p-value is  
not less than 0.05. 

G. Cowan  Discovery and limits / DESY, 4-7 October 2011 / Lecture 3 24 

A test statistic for upper limits 
For purposes of setting an upper limit on µ can use 

where 
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Unified (Feldman-Cousins) intervals 
We can use directly 
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as a test statistic for a hypothesized µ. 

where 

Large discrepancy between data and hypothesis can correspond 
either to the estimate for µ being observed high or low relative 
to µ. 

This is essentially the statistic used for Feldman-Cousins intervals 
(here also treats nuisance parameters).   
     G. Feldman and R.D. Cousins, Phys. Rev. D 57 (1998) 3873. 

Lower edge of interval can be at µ = 0, depending on data. 
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Distribution of tµ	


Using Wald approximation, f (tµ|µ′) is noncentral chi-square 
for one degree of freedom:  
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Special case of µ = µ ′ is chi-square for one d.o.f. (Wilks). 

The p-value for an observed value of tµ is 

and the corresponding significance is 
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Upper/lower edges of F-C interval for µ versus b 
for n ~ Poisson(µ+b) 

Lower edge may be at zero, depending on data. 

For n = 0, upper edge has (weak) dependence on b. 

Feldman & Cousins, PRD 57 (1998) 3873 

G. Cowan  
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Feldman-Cousins discussion 
The initial motivation for Feldman-Cousins (unified) confidence 
intervals was to eliminate null intervals. 

The F-C limits are based on a likelihood ratio for a test of µ  
with respect to the alternative consisting of all other allowed values 
of µ (not just, say, lower values). 

The interval’s upper edge is higher than the limit from the one-
sided test, and lower values of µ may be excluded as well.  A 
substantial downward fluctuation in the data gives a low (but 
nonzero) limit. 

This means that when a value of µ is excluded, it is because 
there is a probability α for the data to fluctuate either high or low 
in a manner corresponding to less compatibility as measured by 
the likelihood ratio. 
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Coverage probability of intervals for Poisson mean 
Probability for interval to cover s as function of s 
(note effect of Poisson discreteness). 
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Summary for first three lectures 
Using a frequentist statistical test we can: 

 test the background-only model (rejection = discovery), 
 test possible signal models (rejection leads to limits). 

For large enough data sample, approximate formulae allow for 
easy evaluation of discovery/exclusion significance. 

The important properties of limits include: 
 specified probability to cover true parameter. 

Bayesian approach extends probability to degree of belief, 
 and also produce intervals with good frequentist properties. 

We saw in the Poisson example that with a one-sided test, 
all parameter values can be excluded (null interval).  
We will return to this point on Friday.  
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Extra slides 



Reference priors J. Bernardo, 
L. Demortier, 
M. Pierini Maximize the expected Kullback–Leibler 

divergence of posterior relative to prior: 

This maximizes the expected posterior information 
about θ when the prior density is π(θ). 

Finding reference priors “easy” for one parameter: 
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(PHYSTAT 2011) 



Reference priors (2) 
J. Bernardo, 
L. Demortier, 
M. Pierini 

Actual recipe to find reference prior nontrivial; 
see references from Bernardo’s talk, website of 
Berger (www.stat.duke.edu/~berger/papers) and also  
Demortier, Jain, Prosper, PRD 82:33, 34002 arXiv:1002.1111: 

Prior depends on order of parameters.  (Is order dependence  
important? Symmetrize?  Sample result from different orderings?) 
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(PHYSTAT 2011) 



L. Demortier 
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(PHYSTAT 2011) 
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RooStats 
G. Schott 
PHYSTAT2011 
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RooFit Workspaces 

Able to construct full likelihood for combination of channels 
(or experiments). 
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G. Schott 
PHYSTAT2011 
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Combined ATLAS/CMS Higgs search 
K. Cranmer 
PHYSTAT2011 

Given p-values p1,..., pN of H, what is combined p? 

Better, given the results of N (usually independent) experiments,  
what inferences can one draw from their combination? 

Full combination is difficult but worth the effort for e.g. Higgs search. 


