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Tutorial Materials

The exercises involve some paper-and-pencil calculations and
running/modifying python programs.

To use python on your own computer, you will need to install the
package iminuit (should just work with “pip install iminuit”). See:

https://pypi.org/project/iminuit/
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Tutorial 1: Maximum Likelihood

The materials for this tutorial can be found on
https://www.pp.rhul.ac.uk/~cowan/stat/exercises/fitting/
The exercise and are described in the file ml_fit_exericise.pdf.

The exercises for parameter estimation are done with the program
mlFit.py (or with jupyter mlFit.ipynb).

The exercise does an unbinned maximum-likelihood fit and
analysis of the uncertainties.

In addition there is a program histFit.py that does the same
analysis but with histogram data (look at this later).
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Gaussian sighal on exponential background

Consider a pdf for continuous random variable x, (truncate and
renormalizein 0 < x<x

max)
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gives signal rate.

Depending on context, take ¢, i, ¢
as nuisance parameters or fixed.

Generate i.i.d. sample x,,..., x,,.

Estimate 6 (and other params.) oloommuummmnmmmmumuumummmn LT
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A quick look at mlFit.py

# Example of maximum-likelihood fit with iminuit version 2.

# pdf is a mixture of Gaussian (signal) and exponential (background),
# truncated in [xMin,xMax].

# G. Cowan / RHUL Physics / December 2022

import numpy as np

import scipy.stats as stats

from scipy.stats import truncexpon
from scipy.stats import truncnorm
from scipy.stats import chi2
import iminuit

from iminuit import Minuit

import matplotlib.pyplot as plt
from matplotlib import container
plt.rcParams["font.size"] = 14
print("iminuit version:", iminuit.__version__) # need 2.x

# define pdf and generate data
np.random.seed(seed=1234567) # fix random seed

theta=0.2 # fraction of signal
mu = 10. # mean of Gaussian
sigma = 2. # std. dev. of Gaussian
Xi =5. # mean of exponential
XMin = 0.

xMax = 20.

G. Cowan / RHUL Physics Statistical Data Analysis / Tutorial material



Define the fit function

def f(x, par):
theta = par[0]
mu = par[1]
sigma = par[2]
Xxi  =par[3]
fs = stats.truncnorm.pdf(x, a=(xMin-mu)/sigma, b=(xMax-mu)/sigma,
loc=mu, scale=sigma)
fb = stats.truncexpon.pdf(x, b=(xMax-xMin)/xi, loc=xMin, scale=xi)
return theta*fs + (1-theta)*fb

Generate the data

numVal = 200
xData = np.empty([numVal])
foriin range (numVal):
r = np.random.uniform();
if r < theta:
xDatali] = stats.truncnorm.rvs(a=(xMin-mu)/sigma, b=(xMax-mu)/sigma,
loc=mu, scale=sigma)
else:
xDatali] = stats.truncexpon.rvs(b=(xMax-xMin)/xi, loc=xMin, scale=xi)
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Set up the fit

# Function to be minimized is negative log-likelihood
def neglogl(par):

pdf = f(xData, par)

return -np.sum(np.log(pdf))

# Initialize Minuit and set up fit:

parin = np.array([theta, mu, sigma, xi]) # initial values (here = true values)
parname = ['theta’, 'mu’, 'sigma’, 'xi']

parname_latex = [r'S\theta$', r'S\mus$', r'S\sigmas’, r'S\xiS']

parstep = np.array([0.1,1.,1.,1.]) #initial setp sizes

parfix = [False, True, True, False]  # change these to fix/free params
parlim =[(0.,1), (None, None), (0., None), (0., None)] # set limits

m = Minuit(negloglL, parin, name=parname)

m.errors = parstep

m.fixed = parfix

m.limits = parlim

m.errordef =0.5 # errors from InL = InLmax - 0.5
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Do the fit, get errors, extract results

# Do the fit, get errors, extract results

m.migrad() # minimize -loglL

MLE = m.values # max-likelihood estimates
sigmaMLE = m.errors # standard deviations
CoV = m.covariance # covariance matrix

rho = m.covariance.correlation() # correlation coeffs.

print(r"par index, name, estimate, standard deviation:")
for i in range(m.npar):
if not m.fixed[i]:
print("{:4d}".format(i), "{:<10s}".format(m.parameters[i]), " =",
"{:..6f}" format(MLE[i]), " +/- ", "{:.6f}" .format(sigmaMLE[i]))

print()
print(r"free par indices, covariance, correlation coeff.:")
for i in range(m.npar):
if not(m.fixed[i]):
for j in range(m.npar):
if not(m.fixed[j]):
print(i, j, "{:.6f}" .format(covl[i,j]),
"{:.6f}" format(rholi,j]))

Make some plots...
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Comment on the InL =InlL_. — 2 contour

In the lectures, we saw that the standard deviations of fitted
parameters are found from the tangent lines (planes) to the

contour 1
InL =InLy.x — 5

A similar procedure can be used to find a confidence region in the
parameter space that will cover the true parameter with probability
CL=1- a (the “confidence level”). This uses the contour

1

2FX_21(1 —a;N) | N = number of parameters

If you want the contour InL = InL, ., — 2 in iminuit, you need
to choose CL (= 1—a) such that F,(1-a,N) =1, i.e,,
CL = F,2(1; N) = stats.chi2.cdf(1.,N)
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Exercises on Maximum Likelihood (a)

1a) Run mlFit.py, look at the plots

1(a) By default the program m1Fit.py fixes the parameters u and o, and treats only 6 and
¢ as free. By running the program, obtain the following plots:

e the fitted pdf with the data;

e a “scan” plot of —In L versus 6,

e a contour of InL = In Ly, — 1/2 in the (0, &) plane;

e confidence regions in the (6, £) plane with confidence levels 68.3% and 95%.

From the graph of —In L versus 6, show that the standard deviation of @ is the same as the
value printed out by the program.

From the graph of InL = In Ly« — 1/2, show that the distances from the MLEs to the
tangent lines to the contour give the same standard deviations o, and o¢ as printed out by
the program.
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Exercises on Maximum Likelihood (b,c)

1b,c) show standard deviation of estimator ~ 1/\n

1(b) Recall that the inverse of the covariance matrix variance of the maximum-likelihood
estimators V;; = cov[6;, §;] can be approximated in the large sample limit by

0?InL 02%1n P(x|0)
-1 _ _
Vi, =-E ! ] -

90,00, | a0,00, L xl0)dx, @

where here 0 represents the vector of all of the parameters. Show that Vz;l is proportional
to the sample size n and thus show that the standard deviations of the MLEs of all of the
parameters decrease as 1/4/n. (Hint: write down the general form of the likelihood for an
ii.d. sample: L(0) = [[i-; f(x;;0). There is no need to use the specific f(z;8) for this
problem.)

1(c) By modifying the line
numVal = 200

rerun the program for a sample size of n = 100,400 and 800 events, and find in each case the
standard deviation of 6. Plot (or sketch) o, versus n for n = 100,200, 400,800 and comment
on how this stands in relation to what you expect.
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Exercises on Maximum Likelihood (d,e)

1d,e) Investigate effect of nuisance parameters

1(d) By modifying the line
parfix = [False, True, True, Falsel # change these to fix/free parameters

find 6 and its standard deviation o, in the following four cases:

o 0 free, u, o, & fixed;
e 0 and £ free, u, o fixed;
e 0, ¢ and o free, p fixed;

e 0, & pand o all free.

Comment on how the standard deviation o; depends on the number of adjustable parameters
in the fit.

1(e) Consider the case where 6 and £ are adjustable and o and p are fixed. Suppose that
one has an independent estimate u of the parameter £ in addition to the n = 200 values
of xz. Treat u as Gaussian distributed with a mean £ and standard deviation o, = 0.5
and take the observed value u = 5. Find the log-likelihood function that includes both the
primary measurements (z1,...,Z,) and the auxiliary measurement u and modify the fitting
program accordingly. Investigate how the uncertainties of the MLEs for # and £ are affected
by including wu.
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Comments on using iminuit

0.16 6 =0.2046+0.0527

In our earlier iminuit example - =5 1070206446
mlFit.py, the only argument of o1z
the log-likelihood function was  _o.o.
the parameter array, and the < 0.08;
data array xData entered as "
global (usually not a good idea):

0.04 -

0.02 1

0.0 MIMRINRILR0RDL IOAREA AR MO mcanih e

Il
00 25 50 75 100 125 150 175 20.0
X

def negLogL(par):
pdf = f(xData, par)
return —np.sum(np.log(pdf))

m = Minuit(neglLoglL, par, name=parname)
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InL in a class, binned data,...

Sometimes it is convenient to have the function being
minimized as a method of a class. An example of this is shown
in the program histFit.py, which does the same fit as in mlFit.py
but with a histogram of the data:

20.0
Maximum Likelihood

17.51 6=0.2015+0.0530
$15.0
< 12.5-
©10.01
3
e 7.5
-} ™
< 501 N

25 | B
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X
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A look at histFit.py

The global data can be avoided if we make the objective function a
method of a class:

class ChiSquared: # function to be minimized

def

def

def

G. Cowan / RHUL Physics

__init__(self, xHist, bin_edges, fitType):
self.setData(xHist, bin_edges)
self.fitType = fitType

setData(self, xHist, bin_edges):

numVal = np.sum(xHist)

numBins = len(xHist)

binSize = bin_edges[1] - bin_edges[0]

self.data = xHist, bin_edges, numVal, numBins, binSize

chi2lLS(self, par): # least squares

XHist, bin_edges, numVal, numBins, binSize = self.data
xMid = bin_edges[:numBins] + ©0.5%binSize

binProb = f(xMid, par)*binSize

nu = numValxbinProb

sigma = np.sqrt(nu)

Z = (xHist - nu)/sigma

return np.sum(z**2)
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class ChiSquared (continued)

def chi2M(self, par): # multinomial maximum likelihood
XHist, bin_edges, numVal, numBins, binSize = self.data
xMid = bin_edges[:numBins] + 0.5%binSize
binProb = f(xMid, par)*xbinSize
nu = numValxbinProb
InL = 0.
for 1 in range(len(xHist)):
if xHist[i] > @.:
InL += xHist[il*np.log(nulil/xHist[i])
return -2.x1nL

def __call__(self, par):

if self.fitType == 'LS':
return self.chi2LS(par)

elif self.fitType == 'M':
return self.chi2M(par)

else:
print("fitType not defined")
return -1
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Using the ChiSquared class

# Put data values into a histogram

numBins=40

XxHist, bin_edges = np.histogram(xData, bins=numBins, range=(xMin, xMax))
binSize = bin_edges[1] - bin_edges[0]

# Initialize Minuit and set up fit:

parin = np.array([theta, mu, sigma, xi]) # initial values (here = true)
parname = ['theta', 'mu', 'sigma', 'xi']

parstep = np.array([0.1, 1., 1., 1.1) # initial setp sizes

parfix = [False, True, True, Falsel # change to fix/free param.

parlim = [(@.,1), (None, None), (0., None), (@., None)]
chisq = ChiSquared(xHist, bin_edges, fitType)
m = Minuit(chisq, parin, name=parname)

m.errors = parstep

m.fixed = parfix

m.limits = parlim

m.errordef = 1.0 # errors from chi2 = chi2min + 1
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Tutorial 2: Bayesian parameter estimation

The exercise is described
https://www.pp.rhul.ac.uk/~cowan/stat/exercises/bayesFit/
in the file bayes_fit_exercise.pdf.

The program is in bayesFit.py or bayesFit.ipynb.

This exercise treats the same fitting problem as seen with
maximum likelihood, here using the Bayesian approach.

Bayes’ theorem is used to find the posterior pdf for the

parameters, and these are summarized using the posterior mode
(MAP estimators).

The posterior pdf is marginalized over the nuisance parameters
using Markov Chain Monte Carlo.
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Gaussian signal on exponential background

Same pdf as from mlFit.py (see tutorial 1) with n = 400
independent values of x from

1 2 /952 1
A) =6 —(z=p)*/20% 4 (1 _ @)= %/€
flelX) = 0—— (1-6)ge

Posterior pdf for parameters 4 = (6, u, o, &) from Bayes theorem,

P(Alx) x p(x|A)m(A), where  p(x|A) = Hf(wzl)\)

At first take prior pdf constant for all parameters subject to
0<6<1,0>0,&>0 (later try different priors).
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Data and MAP estimates

Maximize posterior with minuit (minimize

0.16 - MAP Estimators
0.14 - 6 =0.1979+0.0816
= +
0.12 - U =9.3093+0.7853
o= 2.3472+0.7197
0.10
= & =5.0546+0.7553

— In p(4)x)).

Standard deviations from
minuit correspond to
approximating posterior as
Gaussian near its peak.

Here priors constant so
MAP estimates same as
MLE, covariance matrix

V;=cov|0,, 6] also same.
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A look at bayesFit.py

Find maximum of posterior with iminuit (minimize — In p(4|x)),
similar to maximum likelihood:

# Negative log-likelihood
def neglogl(par):

fx = f(xData, par)

return -np.sum(np.log(fx))

# Prior pdf
def prior(par):
theta = par[0]
mu = par[1]
sigma = par[2]
Xi  =par[3]
pi_theta = 1. if theta >=0. and theta <= 1. else 0.
pi_mu =1.if mu>=0.elseO.
pi_sigma = 1. if sigma > 0. else 0.
pi_xi =1.ifxi>0.elseO.
piArr = np.array([pi_theta, pi_mu, pi_sigma, pi_xi])
pi = np.product(piArr[np.array(parfix) == False]) # exclude fixed par
return pi

# Negative log of posterior pdf / minimize with iminuit
def neglLogPost(par):

return neglLogl(par) - np.log(prior(par))
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Metropolis-Hastings algorithm in bayesFit.py

# lterate with Metropolis-Hastings algorithm
chain = [np.array(MAP)] # start point is MAP estimate

numiterate = 10000 -

numBurn = 100 Try increasing number
numAccept =0 o . .

print("Start MCMC iterations: ", end="") Of Iterations (1Ok runs
while len(chain) < numiterate: in about 20 s).

par = chain[-1]
log_post = -neglogl(par) + np.log(prior(par))
par_prop = np.random.multivariate_normal(par, cov_prop)
if prior(par_prop) <= 0:
chain.append(chain[-1]) # never accept if prob<=0.
else:
log_post_prop = -neglLoglL(par_prop) + np.log(prior(par_prop))
alpha = np.exp(log_post_prop - log_post)
u = np.random.uniform(0, 1)
if u <= alpha:
chain.append(par_prop)
numAccept +=1
else:
chain.append(chain[-1])
if len(chain)%(numlterate/100) == 0:
print(".", end="", flush=True)
chain = np.array(chain)
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Exercises on Bayesian parameter estimation (a)

1a) Run bayesFit.py, look at the plots

1(a) Run the program and examine the plots. These include:

1. The data values as ticks on the z axis together with the fitted curve evaluated with
MAP estimators (Fig. 1 below). The uncertainties on the parameters correspond to
the covariance Vj; = cov[\;, ;] that iminuit finds by approximating the posterior as
a multivariate Gaussian near its maximum (similar to finding the covariance matrix of

the MLEs).

2. Trace plots of each of the parameters (Fig. 2). In some problems it can be useful to
discard a subset of the points (called “burn-in”) if the starting point Ao is too far from
the main concentration of the target density’s probability; this is indicated in the trace
plots with a vertical yellow bar.

3. Marginal distributions of the individual parameters (Fig. 3). The histograms are nor-
malized to unit area and the MAP estimates are indicated with the vertical bars.

4. The autocorrelation function for the parameters (Fig. 4).
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Exercises on Bayesian parameter estimation (b,c)

1b) Investigate effect of data sample size, fixing parameters and
length of MCMC chains.

1(b) Change the data sample size from n = 400 to 200 and 1000 and note the changes in the
results.

Using again n = 400, fix the parameters p and o (by changing the corresponding elements in
the array parfix from False to True) and note the changes in the results. When finished,
go back to having all four parameters free.

Change the number of MCMUC iterations from 10000 to 100000 and note the change in the
results, particularly in the structures you see in the trace plots. (This probably takes some
time to run; for the rest of the exercises it is probably best to change back to 10000 iterations.

1c) Investigate changing the prior

1(c) Change the prior pdfs for £ and o to be w(§)  1/£ and 7(0) x 1/0 and note the change
in the results. When finished, go back to constant priors.
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Exercises on Bayesian parameter estimation (d)

1d) Include auxiliary measurement to constrain &

1(d) Suppose that one has an independent estimate u of the parameter £ in addition to the
n = 400 values of z. Treat u as Gaussian distributed with a mean £ and standard deviation
o, = 0.5 and take the observed value u = 5. Find the log-likelihood function that includes
both the primary measurements (z1,...,x,) and the auxiliary measurement v and modify
the fitting program accordingly. Investigate how the results are affected by including wu.

le) Investigate point and interval estimates for ¢

1(e) Using the functions cc_interval and HPD_interval provided in bayesFit.py, compute
the central credible interval and HPD (highest probability density) interval for the parameter
of interest 6 using a credibility level of 68.3%. Compare these to the intervals one obtains
from a point estimate (the MAP estimate, posterior median or posterior mean) plus or minus
one standard deviation. For the standard deviation, try using both the sample standard
deviation from the MCMC values and the standard deviation found by iminuit, which is
based on a Gaussian approximation to the peak of the posterior. Find the estimates and
intervales both with and without the auxiliary measurement of £ as in (d) above and note
how this effects the results.
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MCMC trace plots

Take O as parameter of interest, rest are nuisance parameters.

Marginalize by sampling posterior pdf with Metropolis-Hastings.

1} Gaussian proposal pdf,
@ covariance U = sV,
0 . . . . | s = (2.38)2/Npar = 1.41,
10- gives acceptance
=) probability ~ 0.24.
]
04

Here 10000 iterations
(should use more).

7.5
5.0
2.5

0 2000 4000 6000 8000 10000
iteration number
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Marginal distributions

MAP estimates shown with vertical bars

G. Cowan / RHUL Physics

Statistical Data Analysis / Tutorial material

Note long tails.

Interpretation: data
distribution can be
approximated by
Gaussian term only,
(0 large, u small) with
large width (o ~ 4-8)
and a narrow
exponential (&~ 1-3).

£ (x)

28



Autocorrelation versus lag

MCMC samples are not independent, autocorrelation function
= correlation coefficient of sample x; with x;,; as a function of
the lag, [, where x = any of 0, u, o, £ minus its mean:

L'-'JO.S- ACF:—Z 1Y+
2

" 00 ' ' ' ' ' ' ' N= o
1.0
§0_5-\ Effective sample size
<

o Ng=-— N
s I & 15252 ACF,
<

0.0

1.0 - In stat. error estimates
0.5-\ 1 1
0.0 . . . . | | | Ny
0 25 50 75 100 125 150 175 200 VN Neg
lag

ACF[£&]
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Ways to summarize the posterior

Point estimates:
Posterior mode (MAP, coincides with MLE for constant prior).

Posterior median (invariant under monotonic transformation
of parameter).

Posterior mean; coincides with above in large-sample limit.
Intervals:

Highest Probability Density (HPD) interval, shortest for a
given probability content, not invariant under param. trans.

Central credible intervals, equal upper and lower tail areas,
e.g.,af/2 forCL=1-a.

Point estimate +/- standard deviation, std. dev. from MCMC
sample or by approximating core of posterior as Gaussian
(from minuit); coincides with above in large-sample limit.
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Types of intervals

HPD = Highest Posterior Density

Equal tail (central) from posterior x(\| £x)

Classical (frequentist)

|
| |
o
| 1.5

Classical -—‘-f—l

|
|
|
O
|
I |
L4———-HPD————

|
|
| |
L——-Equal tail -——-

G. Casella and R. Berger, Statistical Inference, 2002
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Tutorial 3: Hypothesis Tests
See https://www.pp.rhul.ac.uk/~cowan/stat/exercises/hypTest/

in hyp_test_exercise.pdf. Uses hypTest.py and hypTestMC.py.

Suppose we search for a signal like Dark Matter by counting events,
and signal/background events are characterized by a variable x

(0<x<1): 3.0
f(x|s)
2.51 — fix|b)
f(iES) — 3(1_$)2a
2.0 1
f(z|b) = 3z°. S1s
As a first step, test the 1.0-
background hypothesis for .

each event: if x <x,,

reject background hypothesis. 00 0> o024 o6 o8 1o

X
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Exercises on hypothesis testing (a,b)

1a) Find boundary of critical region x_, for test event is background.

1(a) Suppose for each event we test the hypothesis that it is background. We reject this
hypothesis if the observed value of z is less than a specified cut value x.,;. Find the value of
Zeyt such that the probability P(xz < zey|b) to reject the background hypothesis (i.e., accept
as signal) if it is background is @ = 0.05. (The value « is the size or significance level of the
test used to select events.)

1b) Find power of the test with respect to event being signal.

1(b) For the value of z¢y¢ that you find, what is the probability P(z < zcut|s) to reject the
background hypothesis (i.e., accept as a candidate signal event) with z < z.y; given that it is
signal. (This is the power of the test of the background hypothesis with respect to the signal
alternative or equivalently the signal efficiency.)

G. Cowan / RHUL Physics Statistical Data Analysis / Tutorial material
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Exercises on hypothesis testing (c)

1c) In an experiment, s,,=10, b,,=100, select as s if x <x_,= 0.1,
find expected numbers of signal, background.

1(c) Suppose that the expected number of background events is byt = 100 and for a given
signal model one expects siot = 10 signal events. Find the expected numbers of events s and
b of signal and background events that will satisfy x < z.y; using the value of x4 = 0.1, i.e.,

s = sgtP(z < Zeutls) , (3)

b = btotP(LU < wcut|b) . (4)

G. Cowan / RHUL Physics Statistical Data Analysis / Tutorial material
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Exercises on hypothesis testing (d)

1d) Find signal purity

1(d) Assuming the numbers from 1(c), the prior probabilities for an event to be signal or
background are

Stot
s = —— =10.09 5
" Stot + btot ’ (5)
S T (6)
Stot 1 btot

Using Bayes’ theorem with these values, find the probability for an event to be signal given
that it has < x.y (the signal purity of the selected sample).
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Exercises on hypothesis testing (e)

1e) Suppose n events are found with x <x_,. Find the p-value of
the background-only hypthesis (s = 0).

1(e) Suppose for a certain x.y one has b = 0.5 and we find there nyps = 3 events in the search
region < Tcy. We want to test the hypothesis that s = 0 (the background-only hypothesis
or “b”), against the alternative that signal is present with s # 0 (the “s+ b” hypothesis).

The actual number of events n found in the experiment with x < x.yt can be modeled as
following a Poisson distribution with a mean value of s + b. That is, the probability to find
n events 1s

P(nls,b) = %e_(ﬁb) : (7)

The p-value of the background-only hypothesis is the probability, assuming s = 0, to find

T 2 Nobs:
oo bn b Nobs—1 b'n, b
p=P(n > neps|s =0,b) = Z e = 1— Z e (8)
N=TNgbs n=0

Find the corresponding significance: Z =& '(1—p)
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Exercises on hypothesis testing (f)

1f) Find the expected discovery significance median[Z, |s+b].
Find the x_, that maximizes median[Z,|s+b].

cut

1(f) The expected (median) significance assuming the s+ b hypothesis of the test of the s =0
hypothesis is a measure of sensitivity and this is what one tries to maximize when designing
an experiment. It can be approximated with a number of different formulas. For s < b one
can use med[Zy|s + b] = s/v/b. If s < b does not hold, a better approximation is

med[Zy|s + b] = \/2 ((s +b)In (1 + %) — s) . (10)

Using Eq. (10), find me median significance for z¢,y = 0.1. If you have time, try to write a
program to find the value of z.,; that maximizes the median significance.
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Exercises on hypothesis testing (g) « challenging

1g) Using the Monte Carlo program hypTestMC.py, investigate the
test of s=0 by using the x values of each event (no cut).

1(g) Now suppose that for each event we do not simply count the events having x in a certain
region but we design a test that exploits each measured value in the entire range 0 < z < 1.
Thus there is no cut on x and in here we use s = 10 and b = 100 to refer to the total expected
numbers of signal and background events. The data consist of the number n of events, which
follows a Poisson distribution with mean of s + b, and the n values z,...,z,.

The likelihood-ratio test statistic is

_ o\ ff($i|3)} (s = 10,6 = 100,
7= ;m [1 i b f(z;|b) i.e., no cut)

Simulate 10° (or if possible 107) experiments and find the median
discovery significance median[Z,|s+b].
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Likelihood ratio for test of =0

The likelihood for a signal strength u is

L(p) = P(n,x|p) = P(n|p)f(x|n, p)

(Ms;b e~ (ns+b) H { 1) + s b bf(xilb)}

We can test the hypothesis u=0 with the likelihood ratio statistic

Oy s fals)] L)
=21 [1 bf(ﬂ?zlb)] "I T

constant,
can drop

According to the Neyman-Pearson lemma, this gives the test of =0
with the highest possible sensitivity (power with respect to the
alternative u=1).
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Expected discovery significance using g

107 experiments simulated simulated according to “b” and “s+b”.

10_1; i — fq|b) Program: hypTestMC.py
i f(q|s + b) Add code to:
1072 - : ---- median[q|s + b]
§ i * find median[g|s+b]
= 10_3'; i * find median p-value of b,
= 104 i median[p, | s+b]
By E i p-value  find median significance,
10 i of ”b” median[Z,|s+b]
10764 |
0 40 60 80 100
q
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Tutorial 4: Student’s t average =2 =

See: https://www.pp.rhul.ac.uk/~cowan/stat/exercises/stave/
Sample program stave.py

The program stave.py implements the Gamma Variance Model
(GVM) for averaging N measurements.

For details see G. Cowan, EPJC (2019) 79:133.

In this version the model does not distinguish between statistical
and systematic errors.

Confidence interval for the mean u becomes sensitive to goodness-
of-fit (increases if data internally inconsistent).

Estimated mean less sensitive to outliers.
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Least Squares vs Gamma Variance Model

Quadratic terms from Least Squares replaced by logarithmic ones:

(m—Mj

U4

(yz' — M)2
o}

1
— 1+ — | In|1+2r]
27'%-
where
y; = measured value
v; = 5 = estimated variance

r; = relative uncertainty on estimate of variance

Equivalent to replacing Gauss pdf for measurements by
Student’s ¢, number of degrees of freedom = 1/2r?
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A quick look at stave.py

Set measured values, estimates of std. dev., errors on errors:

y =np.array([17., 19., 15., 3.]) # measured values
s =np.array([1.5, 1.5, 1.5, 1.5]) # estimates of std. dev

v =5%*2 # estimates of variances
r =np.array([0.2, 0.2, 0.2, 0.2]) # relative errors on errors

log-likelihood:

class NeglLoglL:

def _init_ (self,y, s, r):
self.setDatal(y, s, r)

def setData(self, y, s, r):
self.data=vy,s,r

def _call__(self, mu):
y, s, r = self.data
v=s**2
Inf =-0.5%(1. + 1./(2.%r**2))*np.log(1. + 2.*%(r*(y-mu))**2/v)
return -np.sum(Inf)
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Example average with GVM

Suppose four measurements of the parameter L.

Each reports an estimated standard dev. of s = 1.5 and
a “relative error on the error” r=10.2.

25 -
20 -
* + Suggested exercise:
| ' . . .
15 + Experiment with different
> numbers of measurements,
10 - different levels of internal
outlier consistency, different values
51 e measured data / for the std. dev. and error
0

1 2 3 4
measurement number
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