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Exercise on Hypothesis Testing

The purpose of this exercise is to design a statistical test to discover a signal process by
counting events in a detector. The exercise involves calculations by hand as well as some
computations using python. The program hypTest.py can be used as a starting point for
parts (a)–(f) and hypTestMC.py can be used for part (g).

Suppose a detector that looks, e.g., for Dark Matter interactions can for each event
measure a quantity x with 0 ≤ x ≤ 1. The events can be of two types: signal (s) or
background (b). The probability density functions for the s and b events are

f(x|s) = 3(1− x)2 , (1)

f(x|b) = 3x2 . (2)

1(a) Suppose for each event we test the hypothesis that it is background. We reject this
hypothesis if the observed value of x is less than a specified cut value xcut. Find the value of
xcut such that the probability P (x < xcut|b) to reject the background hypothesis (i.e., accept
as signal) if it is background is α = 0.05. (The value α is the size or significance level of the
test used to select events.)

1(b) For the value of xcut that you find, what is the probability P (x < xcut|s) to reject the
background hypothesis (i.e., accept as a candidate signal event) with x < xcut given that it is
signal. (This is the power of the test of the background hypothesis with respect to the signal
alternative or equivalently the signal efficiency.)

1(c) Suppose that the expected number of background events is btot = 100 and for a given
signal model one expects stot = 10 signal events. Find the expected numbers of events s and
b of signal and background events that will satisfy x < xcut using the value of xcut = 0.1, i.e.,

s = stotP (x < xcut|s) , (3)

b = btotP (x < xcut|b) . (4)

1(d) Assuming the numbers from 1(c), the prior probabilities for an event to be signal or
background are

πs =
stot

stot + btot
= 0.09 , (5)

πb =
btot

stot + btot
= 0.91 . (6)

Using Bayes’ theorem with these values, find the probability for an event to be signal given
that it has x < xcut (the signal purity of the selected sample).
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1(e) Suppose for a certain xcut one has b = 0.5 and we find there nobs = 3 events in the search
region x < xcut. We want to test the hypothesis that s = 0 (the background-only hypothesis
or “b”), against the alternative that signal is present with s ̸= 0 (the “s+ b” hypothesis).

The actual number of events n found in the experiment with x < xcut can be modeled as
following a Poisson distribution with a mean value of s+ b. That is, the probability to find
n events is

P (n|s, b) = (s+ b)n

n!
e−(s+b) . (7)

The p-value of the background-only hypothesis is the probability, assuming s = 0, to find
n ≥ nobs:

p = P (n ≥ nobs|s = 0, b) =
∞∑

n=nobs

bn

n!
e−b = 1−

nobs−1∑
n=0

bn

n!
e−b . (8)

Find the p-value using the values given above and from this find the significance with which
one can reject the s = 0 hypothesis, defined as

Z = Φ−1(1− p) , (9)

where Φ is the standard cumulative Gaussian distribution and Φ−1 is its inverse (the standard
Gaussian quantile).

1(f) The expected (median) significance assuming the s+b hypothesis of the test of the s = 0
hypothesis is a measure of sensitivity and this is what one tries to maximize when designing
an experiment. It can be approximated with a number of different formulas. For s ≪ b one
can use med[Zb|s+ b] = s/

√
b. If s ≪ b does not hold, a better approximation is

med[Zb|s+ b] =

√
2

(
(s+ b) ln

(
1 +

s

b

)
− s

)
. (10)

Using Eq. (10), find me median significance for xcut = 0.1. If you have time, try to write a
program to find the value of xcut that maximizes the median significance.

1(g) Now suppose that for each event we do not simply count the events having x in a certain
region but we design a test that exploits each measured value in the entire range 0 ≤ x ≤ 1.
Thus there is no cut on x and in here we use s = 10 and b = 100 to refer to the total expected
numbers of signal and background events. The data consist of the number n of events, which
follows a Poisson distribution with mean of s+ b, and the n values x1, . . . , xn.

The Poisson probability to find n events can be written in terms of a strength parameter
µ as

P (n|µ) = (µs+ b)n

n!
e−(µs+b) (11)

where µ = 0 corresponds to the background only hypothesis and µ = 1 adds to this the
contribution from the signal. The joint distribution for x = (x1, . . . , xn) given n is

f(x|n, µ) =
n∏

i=1

[
µs

µs+ b
f(xi|s) +

b

µs+ b
f(xi|b)

]
, (12)
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and the full likelihood is therefore

L(µ) = P (n,x|µ) = P (n|µ)f(x|n, µ)

=
(µs+ b)n

n!
e−(µs+b)

n∏
i=1

[
µs

µs+ b
f(xi|s) +

b

µs+ b
f(xi|b)

]
. (13)

We can define a statistic q to test the background-only hypothesis as as

q = −2
n∑

i=1

ln

[
1 +

s

b

f(xi|s)
f(xi|b)

]
= −2 ln

L(1)

L(0)
+ C , (14)

where C is a constant that can be dropped (the factor of −2 is conventional and could be
omitted). This is a monotonic function of the likelihood ratio L(1)/L(0) and thus according
to the Neyman-Pearson lemma gives a test of µ = 0 with the highest possible sensitivity
(highest power with respect to the alternative of µ = 1).

Run the program hypTestMC.py. This will produce histograms of q under the b and s+ b
hypotheses, corresponding to the distributions f(q|µ) for µ = 0 and µ = 1, respectively. The
program also finds the median q for the s+ b hypothesis, med[q|s+ b].

You should add code that finds the median p-value of the b-only hypothesis for the data
generated under assumption of the s+ b hypothesis. That is, find the fraction of experiments
simulated according to b-only that have q < med[q|s+ b]. From this, find the p-value of the
background-only hypothesis and the corresponding median significance med[Zb|s + b] (the
sensitivity). Compare to the values you found from Eq. (10).

To find the value with reasonable accuracy you will need to simulate 107 experiments,
which could take about 30 minutes to compute (the default value of numExp is set to 106).
To test your code, use at first a smaller number of experiments.
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