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Discussion and guidelines on significance

1 Introduction

In this note we discuss how to quantify the statistical significance of a discovery. We will
address what measure of significance is appropriate in various circumstances, and discuss
methods for including systematic uncertainties. The primary method which is sufficiently well
established in HEP to the point where we feel justified in making concrete recommendations
is based on the p-value of the background-only hypothesis, discussed below. Other related
measures such as the Bayes factor can also be considered and contribute to the robustness of
a claimed discovery.

In Section 2, the concept of a p-value is introduced along with the equivalent Gaussian
significance (number of standard deviations). Section 3 applies these constructs to the case
of a simple counting experiment, and validity of several approximations is explored. We also
address the issue of the sensitivity of a planned experiment, which is effectively the expected
(e.g., mean or median) significance with which one rejects the background-only hypothesis,
under some assumption for the expected signal.

In Section 6 we address the issue of incorporating systematic uncertainties by using the
profile likelihood ratio, and in addition the entire formalism is extended to the case of mul-
tiple channels, e.g., combination of multiple decay channels, or the use of multiple bins in a
histogram.

2 p-values and equivalent Gaussian significance

The primary means by which one can establish a claim for New Physics is by rejecting the
hypothesis that the observed data sample contains only Standard Model background events.
The usual way of quantifying the level of compatibility (or lack thereof) between the data
and a given hypothesis is to compute a p-value. This is the probability, under assumption of
the hypothesis in question, of obtaining data with equal or lesser compatibility compared to
the level found with the observed data.

Determining a p-value thus requires a definition of what data values constitue equal or
lesser compatibility with the hypothesis in question, relative to the level actually observed.
If we are testing the hypothesis that the events are all background, then this region is taken
to be those data values that are equally signal-like or more so. In many analyses one can, at
least approximately, choose the p-value to be constructed in such a way that one maximizes
the probability of rejecting the background-only hypothesis if a particular signal model is
true. For the examples treated below there will be a well-motivated choice for the definition
of the p-value, and this choice is separate from the primary questions that we address in this
note, which focuses on how best to approximate the significance in commonly occuring cases.

In addition to reporting the p-value, in HEP one often quotes the significance, defined
as the number of standard deviations Z at which a Gaussian random variable of zero mean
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would give a one-sided tail area equal to to the p-value. That is, the significance Z is related
to the p-value by

p =

∫ ∞

Z

1√
2π
e−x2/2 dx = 1 − Φ(Z) , (1)

where Φ is the cumulative distribution for the standard (zero mean, unit variance) Gaussian.
Equivalently one has

Z = Φ−1(1 − p) , (2)

where Φ−1 is the quantile of the standard Gaussian (inverse of the cumulative distribution),
which can be found using root with TMath::NormQuantile. The equivalent relation using
the inverse error function is

Z =
√

2erf−1(1 − 2p) . (3)

The relation between Z and p is illustrated in Fig. 1. To reduce the chance of missing factors
of 2 in coding, Eq. (2) is preferred.

xσZ
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Figure 1: Illustration of the corre-
spondence between the significance
Z and a p-value.

Often in HEP, a significance of Z = 3 is regarded as “evidence”, and Z = 5 is taken as
“discovery”. These correspond to p-values of 1.35 × 10−3 and 2.87 × 10−7, respectively. Of
course to actually draw a firm conclusion about whether a discovery has been made, more
than only the p-value should be taken into account. For example, the plausibility of the
proposed alternative and the degree to which it describes the data are relevant, as is the
reliability of the background model used to determine the p-value and significance.

3 A simple counting experiment

Consider an experiment where one measures a number of events n in a region where signal is
expected to be present. Suppose first that the expected number of background events, b, has
been determined with negligible uncertainty, and that a signal model predicts an expected
number of events s. Thus the number n will follow a Poisson distribution with a mean of
s+ b.

When searching for evidence of a new type of event, we usually regard an observation
of a greater number of events as an indication that signal could be present. If we see fewer
events than expected from background alone, this is usually not regarded as a discovery of a
new phenomenon, but rather an indication of a statistical fluctuation or that the background
has been overestimated. Therefore the region of n values that constitute equal or lesser
compatibility with the hypothesis of background-only (i.e., s = 0) is given by n ≥ nobs,
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where nobs is the number actually found. The p-value of the background-only hypothesis is
therefore

p =
∞
∑

n=nobs

P (n; b) =
∞
∑

n=nobs

bn

n!
e−b , (4)

where P (n; b) is the Poisson probability to observe n events for a mean of b. To carry out
the sum of Poisson probabilities one can exploit an identity that relates it to the cumulative
chi-square distribution Fχ2 . This gives

p =
∞
∑

n=nobs

bn

n!
e−b = Fχ2(2b; 2nobs)

= 1 − TMath::Prob(2b, 2nobs) , (5)

where the final line indicates how to evalute numerically using the root routine Prob. Using
this with Eq. (2) gives the significance Z. In root code one therefore has

Double_t p = 1 - TMath::Prob(2*b, 2*n_obs);

Double_t Z = TMath::NormQuantile(1 - p);

This can be called the Poisson significance ZP; there are no approximations used in its
calculation.

4 Simple counting experiment using the likelihood ratio

The problem above can be reformulated in an equivalent way using the likelihood ratio. The
advantage of this approach appears when we generalize to cases with multiple channels or
where one must incorporate systematic uncertainties.

We can write the expectation value of the number of events n as

E[n] = µs+ b , (6)

where µ is a strength parameter defined such that µ = 0 is the background-only hypothesis,
and µ = 1 corresponds to background plus the nominal signal. To test a hypothesized value
of µ we construct the likelihood ratio

λ(µ) =
L(µ)

L(µ̂)
, (7)

where µ̂ is the Maximum Likelihood Estimator (MLE) for µ. Here we require µ̂ ≥ 0, as this
is the usual situation for a physically meaningful signal model. Maximizing the likelihood
function with this constraint gives

µ̂ =

{ n−b
s n ≥ b

0 otherwise ,
(8)

(9)
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In addition to λ(µ) it is convenient to define

qµ = −2 ln λ(µ) . (10)

The ratio λ(µ) is expected to be close to unity (i.e., qµ is near zero) if the data are in good
agreement with the hypothesized value of µ, which corresponds to having a small value for
qµ.

Using the ratio of Poisson probabilities for the hypothesis µ = 0 gives

q0 = −2 lnλ(0) = −2n ln
b

µ̂s+ b
− 2µ̂s , (11)

where µ̂ is given by Eq.(8). Suppose the data results in a value of q0 = q0,obs. The level of
agreement between the data and the hypothesis µ = 0 is given by the p-value,

p = P (q0 ≥ q0,obs|µ = 0) . (12)

Here one always has a larger value of q0 (less compatibility with the µ = 0 hypothesis), for
an increasing number of events found n. That is, one finds q0 ≥ q0,obs for n ≥ nobs. Thus the
p-value from Eq. (12) is exactly the same as that from Eq. (4).

For a sufficiently large expected number of events, the statistic qµ can be treated as a
continuous variable, and thus the p-value of a hypothesized value µ can be written

p =

∫ ∞

qobs

f(qµ|µ) dqµ , (13)

where f(qµ|µ) is the sampling distribution of qµ under the assumption of µ.

Thus to find the p-value we need the sampling distribution f(qµ|µ) (specifically, for dis-
covery we need f(q0|0)). Under a set of regularity conditions and for a sufficiently large
data sample, Wilks’ theorem says that for a hypothesized value of µ, the pdf of the statistic
qµ = −2 ln λ(µ) approaches the chi-square pdf for one degree of freedom [3]. More generally,
if there are N parameters of interest, i.e., those parameters for which one gives hypothesized
values in the numerator and MLE values in the denominator of the likelihood ratio (39), then
qµ asymptotically follows a chi-square distribution for N degrees of freedom. A proof and
details of the regularity conditions can be found in standard texts such as [4].

In many cases of interest, the data samples are large enough to ensure the validity of the
asymptotic formulae for the likelihood-ratio distributions. Nevertheless the distributions are
modified because of constraints imposed on the expected number of events.

Assuming as above only non-negative event rates, the maximum-likelihood estimator for
µ is constrained to µ̂ ≥ 0. If nobs < b, i.e., the observed number of events is below the level
predicted by the background alone, then the maximum of the likelihood occurs for µ = 0,
and thus the likelihood ratio is

λ(0) =
L(0)

L(µ̂)
= 1 , (14)

In this case the statistic q0 = −2 lnλ(0) is thus equal to zero.

Under the background-only hypothesis, the data will fall above or below the background
expectation with approximately equal probability. In those cases where the data fluctuate
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up we have µ̂ > 0 and q0 follows a chi-square pdf for one degree of freedom, fχ2
1

. If µ̂ = 0,
then q0 = 0. Assuming a fraction w for the cases with µ̂ > 0 one has the pdf

f(q0|0) = wfχ2
1

(q0) + (1 − w)δ(q0) . (15)

In the usual case where upward and downward fluctuations are equally likely we have w = 1/2.

Consider now the variable

u =
√
q0 =

√

−2 ln λ(0) , (16)

which has the pdf

f(u) = Θ(u)w

√

2

π
e−u2/2 + (1 − w)δ(u) , (17)

where Θ(u) = 1 for u ≥ 0 and is zero otherwise. The second term in (17) follows from the
fact that the values q0 = 0 and u = 0 occur with equal probability, 1 − w. Furthermore
if a variable x follows the standard Gaussian, then one can show x2 follows a chi-square
distribution for one degree of freedom. Therefore if x2 follows a χ2 distribution, then

√
x2

follows a Gaussian scaled up by a factor of two for x > 0 so as to have a total area of unity.

The p-value of the µ = 0 hypothesis for a non-zero observation q0 is therefore

p = P (u ≥ √
q0) = 2w

∫ ∞

√
q0

1√
2π
e−u2/2 du = 2w(1 − Φ(

√
q0)) . (18)

Combining this with equation (2) for the significance Z gives

Z = Φ−1(1 − 2w(1 − Φ(
√
q0))) . (19)

In the usual case where the weights of the chi-square and delta-function terms are equal, i.e.,
w = 1/2, equation (19) reduces to to the simple formula

Z =
√
q0 =

√

−2 lnλ(0) . (20)

For an observed number of events n this becomes

ZW =
√

2n ln(1 + µ̂s/b) − 2µ̂s , (21)

where µ̂ is given by Eq. (8) and the subscript W indicates that the approximation relies on
the asymptotic chi-square distribution from Wilks’ theorem.

5 Sensitivity for a simple counting experiment

To characterize the sensitivity of a planned experiment, one can give the expected (e.g., mean
or median) significance assuming a given signal model. For the case of discovery (testing
µ = 0, one is most often interested in the expected significance assuming the nominal signal
model, i.e., µ = 1. This can be done by generating data by Monte Carlo with µ = 1, and
looking at the distribution of q0.
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The median significance can be found by substituting the median value of the number of
events n, which is approximately equal to s + b when this is sufficiently large. If this is to
be done using the Poisson p-value from Eq. (4), then one needs to choose an integer value to
represent the median, e.g., nmed ≈ floor(s+ b). Then the median significances is

med[ZP] = Φ−1(1 − Fχ2(2b; 2nmed)) . (22)

Or when using the approximate formula (21) based on the asymptotic distribution of q0
from Wilks theorem, a good approximation can be found simply by substituting s + b for n
(the “Asimov” data value), giving

med[ZW] =
√

2 ((s+ b) ln(1 + s/b) − s) . (23)

If one then takes the limit s≪ b, then by expanding the logarithm in (22) and retaining
terms up to order s2, one finds

med[ZW] ≈ s√
b
. (24)

Thus in the limit of small s/b, one recovers the widely used formula for Gaussian distributed
data.

6 Case with multiple bins and systematic uncertainties

In this section the likelihood ratio method above is extended to cover the case of multiple
channels or bins and also where the model includes additional adjustable parameters beyond
the parameter of interest µ. Usually these nuisance parameters are constrained by including
additional measurements, e.g., from control samples that provide information on background
rates.

The nuisance parameters correspond to systematic uncertainties in the model. By includ-
ing enough additional adjustable parameters one can in general improve a model to the point
where for at least some point in its parameter space it can be regarded as correct. The price
one pays is that the nuisance parameters degrade the significance with which one can reject
the background-only hypothesis.

Suppose that the data from an experiment consist of a histogram of some discriminating
variable x, which gives values n = (n1, . . . , nN ). In some cases one may consider a histogram
with only one bin, i.e., the measured outcome is simply a number of candidate events found.
The number of entries in bin i, ni, is modeled as a Poisson variable with mean value

E[ni] = µsi + bi , (25)

where si and bi are the expected number of signal and background events in bin i and as
before µ is a strength parameter.

The expected signal and background for bin i can be written

si = stot

∫

bin i
fs(x;θs) dx , (26)

bi = btot

∫

bin i
fb(x;θb) dx , (27)
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where stot and btot are the total expected numbers of events in the histograms, fs(x;θs) and
fb(x;θb) are the probability density functions (pdfs) of x for signal and background, and θs

and θb represent sets of shape parameters.

The parametric forms of the pdfs fs(x;θs) and fb(x;θb) are determined from Monte Carlo
simulations or data control samples. In the following we will use θ = (θs,θb, btot) to refer
to all of the nuisance parameters. The signal normalization stot here is not an adjustable
parameter, but rather is fixed to the prediction of the nominal signal model.

In addition to the measured histogram n, some search channels also make use of a set
of subsidiary measurements m = (m1, . . . ,mM ) in control regions where one expects mainly
background events. These can be modeled as being Poisson distributed with mean values

E[mi] = ui(θ) , (28)

where the ui are calculable quantities depending on a set of parameters, at least some of
which are the same as those entering into the predictions for si and bi above. In practice
the subsidiary measurements are constructed so as to provide information on the background
normalization btot and sometimes also on its shape.

The likelihood function is the product of Poisson probabilities for all bins:

L(µ,θ) =
N
∏

j=1

(µsj + bj)
nj

nj!
e−(µsj+bj)

M
∏

k=1

umk

k

mk!
e−uk . (29)

Equivalently the log-likelihood is

lnL(µ,θ) =
N

∑

j=1

(nj ln(µsj + bj) − (µsj + bj)) +
M
∑

k=1

(mk lnuk − uk) + C , (30)

where C represents terms that do not depend on the parameters and thus can be dropped.
Here and in (38) the parameters θ enter through Eqs. (26), (27), and (28).

In the case of several independent search channels, the method described above is gener-
alized in a straightforward manner. For each channel i there is a likelihood function Li(µ,θi).
Its general form is given by Eq. (38), except that all quantities carry an additional index i to
label the channel except the global strength parameter µ, which is assumed to be the same
for all channels. Since the channels are statistically independent, the full likelihood function
is given by the product

L(µ,θ) =
∏

i

Li(µ,θi) , (31)

where θ here represents all of the nuisance parameters.

Systematic uncertainties are effectively included in the analysis through the nuisance
parameters θ. The model must be sufficiently flexible, i.e., it must contain enough parameters,
so that for at least some point in its parameter space it can be regarded as representing the
truth. One must exercise some restraint in achieving this, however, as an increasing number
of nuisance parameters leads to a decrease in sensitivity to the parameters of interest. Some
of the components of θ may be common among different channels, e.g., parameters relating
to uncertainty in the integrated luminosity. These then represent a common (correlated)
systematic uncertainty.

7



As an example, consider the signal efficiency ε that enters in the relation between the cross
section and expected number of signal events. Suppose the efficiency has been estimated to
have a value ε̂ and systematic uncertainty σε̂. To incorporate this uncertainty into the model,
we can regard the measured value ε̂ as a random variable whose true value ε is treated as
a nuisance parameter. For the pdf fε(ε̂; ε, σε̂) one could use, e.g., a Gaussian distribution
centred about ε, or for a quantity such as the efficiency which must lie in the range 0 ≤ ε ≤ 1
one could use a pdf that automatically satisfies this constraint (e.g., a beta distribution).
For whatever choice is deemed appropriate, the likelihood (38) is multiplied by fε(ε̂; ε, σε̂),
evaluated with the best estimate ε̂, and the parameter ε is included in the set of nuisance
parameters θ.

To test a hypothesized value of µ we construct the profile likelihood ratio,

λ(µ) =
L(µ,

ˆ̂
θ)

L(µ̂, θ̂)
. (32)

Here
ˆ̂
θ in the numerator denotes the value of θ that maximizes L for the specified µ, i.e., it

is the conditional maximum-likelihood estimator (MLE) of θ (and thus is a function of µ).
The denominator is the maximized (full) likelihood function, i.e., µ̂ and θ̂ are the MLEs. The
presence of the nuisance parameters broadens the profile likelihood ratio as a function of µ
relative to what one would have if their values were fixed. This reflects the loss of information
about µ due to the systematic uncertainties.

Although the situation now appears substantially more complicated than what was en-
countered in the previous sections, we can exploit the fact that the distribution assuming µ
of −2 ln λ(µ), even with multiple channels and nuisance parameters, still approaches a chi-
square pdf for one degree of freedom. The validity of this for a finite data sample should be
checked, e.g., with Monte Carlo, but in practice the approximation is found to be quite good
even for small data samples. Providing this is true, we can obtain the discovery significance
in the same manner as above, namely,

Z =
√
q0 =

√

−2 lnλ(0) . (33)

To estimate the median discovery significance assuming the nominal signal model, i.e.,
µ = 1, in many cases it is a good approximation to simply evaluate Z with ni = si + bi (the
Asimov data set).

7 Simple counting experiment with background uncertainty

Suppose n events are selected in a search region where both signal and background could be
present. The expectation value of n can be written

E[n] = µs+ btot , (34)

where s is the expected number from signal and btot is the expected total background (i.e.,
from all sources). Here µ is a strength parameter defined such that µ = 0 corresponds to the
background-only hypothesis and µ = 1 gives the nominal signal rate plus background.

Suppose that btot consists of N components, i.e.,
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btot =
N

∑

i=1

bi . (35)

To estimate the expected number of events from background component i using Monte Carlo,
we generate a sample of Mi events, and in addition the generator calculates a cross section
σi. From these we have the equivalent integrated luminosity of the MC sample, Li = Mi/σi.

Supposemi of these events are selected in the search region. From a statistical standpoint,
this is equivalent to having a subsidiary measurement mi modeled as following a Poisson
distribution with expectation value

E[mi] = τibi . (36)

Here τi is a scale factor that relates the mean number of events that contribute to n (the
primary measurement), to that of the ith subsidiary measurement. If mi is the number of
MC events found in the search region, then τi is the ratio of the integrated luminosity of the
Monte Carlo sample to that of the data,

τi =
LMC,i

Ldata
. (37)

In the case where the mi represents a number of events found in a control region based on
real data, the τi is effectively the ratio of the sizes of the control to signal regions. In either
case we will assume that the τi can be determined with negligible uncertainty.

The likelihood function for the parameters µ and b = (b1, . . . , bN ) is the product of
Poisson probabilities:

L(µ,b) =
(µs+ btot)

n

n!
e−(µs+btot)

N
∏

i=1

(τibi)
mi

mi!
e−τibi . (38)

Here µ is the parameter of interest; the components of b are nuisance parameters.

To test a hypothesized value of µ, one computes the profile likelihood ratio

λ(µ) =
L(µ,

ˆ̂
b)

L(µ̂, b̂)
(39)

where the double-hat notation refers to the conditional maximum-likelihood estimators (MLEs)
for the given value of µ, and the single hats denote the unconditional MLEs.

To calculate the value of λ(µ) that one would obtain from a set of data values n and
m1, . . . ,mN , one needs the unconditional estimators µ̂ and b̂, and the conditional MLEs
ˆ̂
b, i.e., the values of b that maximize the likelihood for the specified value of µ. In cases
with more than one background component, it is easiest to solve for the required quantities
numerically. A program for doing this is available from [6].

As an example consider a planned search [7] where six different background sources were
investigated with separate MC samples. The expected numbers of events for a luminosity of
L = 1 fb−1 and the equivalent luminosity of the MC samples is shown Table 1.

For L = 1 fb−1, s = 312 signal events are predicted. Using these numbers gives Z = 18.1. In
a similar manner the 5σ discovery threshold is found to be at a luminosity of 72 pb−1.
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Table 1: Number of expected background events bi and equivalent luminosities Li from Monte Carlo
in a planned search.

bi Li (fb−1)

11 0.95
0 2.67
1 2.98
0 1.22
0 2.98
0 0.75

In this example, the impact of those background components where no events passed the
cuts is small. If they are neglected entirely one finds Z = 18.8. If, however, the equivalent
luminosity of one of the background samples had been much less than the data luminosity,
then this would have a significant effect. Changing the luminosity of the last component in
Table 1 from 0.75 to 0.075 results in Z = 6.7; if it is reduced to 0.0075, one finds Z = 2.2. A
more detailed study of this effect is shown for the case of a single background component in
Section 8.

8 Case of a single background component

If we only have one background component, i.e., a measurement m with mean τb, then the
required estimators can be written easily in closed form. Taking into account the constraint
µ̂ ≥ 0 one finds

µ̂ =







n−m/τ
s n ≥ m/τ

0 otherwise ,
(40)

b̂ =







m/τ n ≥ m/τ

n+m
τ+1 otherwise ,

(41)

For the case of discovery, we are only interested in the hypothesis of µ = 0. The conditional
MLE for b given µ = 0 is

ˆ̂
b =

n+m

τ + 1
. (42)

Putting together the ingredients for lnλ(0) yields

lnλ(0) =







ψ(m, τ
ˆ̂
b) + ψ(n,

ˆ̂
b) − ψ(m, τ b̂) − ψ(n, µ̂s+ b̂) n ≥ m/τ ,

0 otherwise ,
(43)

where
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ψ(x, y) =

{

0 x = y = 0 ,

x ln y − y otherwise .
(44)

To find the median significance assuming the signal is present at the nominal rate, we replace
n by s+ b̂ (the Asimov data set).

As an example where no background events survive the cuts, suppose s = 7, τ = 6.7, and
m = 0, and therefore we take n = 7 and have b̂ = 0. In this case the result simplifies to

q0 = −2 lnλ(0) = 2s ln(1 + τ) = 28.5 . (45)

Using the asymptotic formula (20) for the significance gives

Z =
√
q0 = 5.3 . (46)

The accuracy of this approximation can be checked over a range of values of b using a simple
Monte Carlo simulation. Note that in this case because m = 0, the significance goes to zero as
τ decreases to zero. That is, a very weak constraint on the background leads to a decreasing
discovery significance.

In the limit where τ is very large, the background estimates
ˆ̂
b and b̂ both approach b, and

the formulae for the significance revert to those found in Section 3 for the case with known
background.

Figure 2 shows the significance Z with b = 10 computed as a function of s. The plot
shows the full calculation for Z for τ = 1, the formula valid for large τ , and the limiting
formula valid for large τ and s≪ b.
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Figure 2: The significance Z as
a function of the expected signal s
according to several formulae (see
text).

From the figure one can see that for s = 10, i.e., in this example s/b = 1, the approximate
formula s/

√
b gives 2.78, the full calculation gives 3.16, and the large τ approximation gives

1.84. For s/b much greater than unity, s/
√
b overestimates the significance by an increasingly

non-negligible amount. The effect of the statistical error on the estimate of b is also seen to
be very significant through the substantial difference between the curves for τ = 1 and the
large-τ limit.

11



Also shown in Fig. 2 are curves for the mean and median significances computed nu-
merically for the case of b known with n generated according to a Poisson distribution with
mean s+ b. These two curves represent the exact answer for the fixed b case in that they do
not rely on any asymptotic approximations. For significance values relevant to discovery or
exclusion, say, Z > 1, they are in good agreement with the curve using the profile likelihood
with Asimov data. For low s one can see that the profile likelihood prediction in the large τ
limit is too high, but this is only in a region of very low significance values, not relevant for
discovery or limits.

The significance calculation shown here can be used to help establish the appropriate
amount of MC data needed to determine the discovery significance. Figure 3 shows the
discovery significance Z as a function of the luminosity ratio τ = LMC/Ldata for several
values of b and s.
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Figure 3: The significance Z as
a function of the luminosity ratio
τ = LMC/Ldata for several values
of b and s.

In these examples one sees a rapid change in Z as the luminosity ratio τ varies between
around 0.5 and 5. For τ < 0.5 the significance is degraded by a factor of two; for τ > 5 the
improvement is slight.
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